静定结构的内力与内力图
合集下载
静定结构的内力计算图文
30 30
4m
4m
4m
4m
12kN
12kN 12kN
M 图(kN·m)
9kN
9kN
2kN/m
7kN
5kN
9kN
4.5kN
7.5kN
39
第40页/共76页
作业
习题3-5、3-6、3-9 习题3-10、3-12
40
第41页/共76页
§3-3 三铰拱
41
第42页/共76页
一、 概述
1、定义:
通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
AC段受力图:
q
MC
t
C
FNC
FQC
n
x
FAY
FAYSinα
(2)求内力方程:
MC = 0 Ft = 0 Fn= 0
M = 1 qlx 1 qx2 (0 x l) 22
FN
=
q(1 l 2
x) sin
(0 x l)
FQ
=
q(1 2
l
x) cos
(0 x l)
FAYcosα
FAY
M中 =162 / 8 6.23/ 2 =1.385kN.m(下拉)
弯矩图见下图。
1kN/m
6.23 D
C 1.385
6.23 E
1.385kN A
4.5kN
M 图(kN.m)
B 1.385kN
1. 5kN
38
第39页/共76页
例:主从刚架弯矩图。
12kN
2kN/m
36 36
6m
12 42 30
F
F
曲梁
拱
f / l : 高跨比(1~1/10)
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
结构力学静定结构的内力计算图文
dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜
静定结构内力计算PPT课件
杆件的内力计算
直杆平衡的微分方程
qy Q
N M
qx
Q+d Q
N+d N M+d M
dx
dN
dQ
dx qx, dx qy,
d2M dx2
d dx
dM dx
qy
dM Q dx
Depatment of Egnieering Mechanics, Hohai University
杆件的内力计算
直杆内力图的形状特征
Depatment of Egnieering Mechanics, Hohai University
杆件的内力计算
列内力方程法:把某一截面的内力表示为该截面 位置的函数,绘内力图。 控制截面法:将若干个控制截面截开,取某一侧 为隔离体,根据隔离体的平衡条件计算内力,将 这些控制截面的内力绘制成图。
Depatment of Egnieering Mechanics, Hohai University
杆件的内力计算
例:用列内力方程方法作图示梁内力图
q A
l
解:
B
HA 0,VA ql/2(), VB ql/2()
X 0, N(x) 0
M Q
1 ql 2
Y 0,Q(x) 1 ql qx
1 ql 2
几何特性:无多余约束的几何不变体系。 静力特征:仅由静力平衡条件可求全部反力和内力。
静定结构受力分析:计算荷载作用下结构的反力和内力, 并绘出结构的内力图。 静定结构受力分析的基本方法:选取atment of Egnieering Mechanics, Hohai University
集中力作 用点
集中力偶 作用点
均布荷载 作用区段
无横向荷 载作用区 段
结构力学 第三章 静定结构
• 由结点弯矩平 衡校核弯矩计算是 否正确。
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
建筑力学与结构第三章
M 0 x a V ( x ) R A l AC段 : M ( x) R x Mx 0 x a A l
M /l
V
Mb / l
M
Ma / l
讨论:集中力偶M作用点C处:
M V ( x) RB l a x l CB段 : M ( x) RB l x M l x a x l l
4、判断各段V、M图形状:
3.8 2.2 CA和DB段:
q=0,V图为水平线, M图为斜直线。
AD段:q<0, V 图为向下斜直线,
1.41
M图为下凸抛物线。
按叠加原理作弯矩图(AB=2a,力P作用在梁AB的中点处)。 P A P A V B + M B x
Pa qa2 + 2 2
+ x
= +
V B
V=12KN/m
根据2-2截面右侧的外力计算V2 、 M2 V2 =+(V· 1.5)-RB =12· 1.5-29 =-11KN M2 =-(V· 1.5)· 1.5/2+RB· 1.5 =-(12· 1.5)· 1.5/2+29· 1.5 = +30 KN· m
M2 V2Βιβλιοθήκη RB第三章 静定结构的内力
MDC=30×2=-60KNM(左拉)
NDE=30KN(压力) VDE=40KN MDE= 30×2=-60KNM(上拉)
VBE=30KN
MBE= 0
60
180
30
40
30 80
M图(KNM)
30 40
V图(KN)
80
N图(KN)
三、三铰刚架弯矩图
M /l
V
Mb / l
M
Ma / l
讨论:集中力偶M作用点C处:
M V ( x) RB l a x l CB段 : M ( x) RB l x M l x a x l l
4、判断各段V、M图形状:
3.8 2.2 CA和DB段:
q=0,V图为水平线, M图为斜直线。
AD段:q<0, V 图为向下斜直线,
1.41
M图为下凸抛物线。
按叠加原理作弯矩图(AB=2a,力P作用在梁AB的中点处)。 P A P A V B + M B x
Pa qa2 + 2 2
+ x
= +
V B
V=12KN/m
根据2-2截面右侧的外力计算V2 、 M2 V2 =+(V· 1.5)-RB =12· 1.5-29 =-11KN M2 =-(V· 1.5)· 1.5/2+RB· 1.5 =-(12· 1.5)· 1.5/2+29· 1.5 = +30 KN· m
M2 V2Βιβλιοθήκη RB第三章 静定结构的内力
MDC=30×2=-60KNM(左拉)
NDE=30KN(压力) VDE=40KN MDE= 30×2=-60KNM(上拉)
VBE=30KN
MBE= 0
60
180
30
40
30 80
M图(KNM)
30 40
V图(KN)
80
N图(KN)
三、三铰刚架弯矩图
静定结构的内力与内力图
N
Q图
40kN·m
80kN·m
M图
q=20kN/m
B
C
P=40kN D
2m A 2m
80kN·m
(-)
N图
8.1 静定平面刚架的内力计算
例8.2 作图示三铰刚架的M图、Q图、N图。已知:P=60kN,
q=10kN/m,a=4m。
a/2
解:(1)取整体为研究对象:
∑X=0 XA + qL =XB
y
∑ mA(Fi)=0
由于推力的存在,拱的
弯小M矩。K比 O相应简支梁的弯矩要
FAY X F1 ( X a1) FAX yk M K 0
QK M K P1
M K FAY X F1( X a1) FAX yk
三铰拱的内力不
NK
M
0 K
8.2 三铰拱的内力与合理拱轴线方程
2、特点: (1)弯矩比相应简支梁小,水平推力存在的原因。 (2)用料省、自重轻、跨度大。 (3)可用抗压性能强的砖石材料。 (4)构造复杂,施工费用高。
3、工程实例 广泛用于桥梁建筑外,在房屋建筑体育馆大跨度建
筑使用。
8.2 三铰拱的内力与合理拱轴线方程
隋代赵州安济桥,又称赵州桥
0 A
X =X =H YA
P1 b1
l
P2
b2
A
B
H=
M0 C
/
f
8.2 三铰拱的内力与合理拱轴线方程
y P1 K C
A
x
y
f
XA
x
l/2
l/2
YA
l
P2 ★8.2.3三铰拱 ---内力计 算
第五章 静定结构的内力分析
1 a) A 1 B
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,
第七章静定结构的内力计算
C
B
q a
qa 2
qa
A
a
qa
2
1.求支反力 2.分段 3.截面法求各段杆端内力值 4.用直线或曲线连接各段 5.标出数据、正负、图名
M CB
qa2 2
(下拉)
M CA
qa2 2
(右拉)
qa 2
C2
B
qa 2
2
qa 2
8
A
M
内力图的作法——剪力图
C
B
qa 2
qa
FQAC qa
FQCA 0
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
5kN
FQDA
M DA
FDA
截面法计算D截面杆端内力
5kN
A
C
D
FNDC
M DC
FDC
4kN
3m 1m
B
5kN 4kN
5m
4kN
截面法计算D截面杆端内力
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
FNDB
M DB
FQDB
5kN
4kN
内力图的作法——弯矩图
超静定结构
对于具有多余约束的几何不变体系,却不 能由静力平衡方程求得其全部反力和内力,这 类结构称为超静定结构
杆件类型
杆件
内力:轴力、剪力、弯矩 梁式杆
类型:梁、刚架、拱
链杆
内力:轴力 类型:桁架
梁
概念:是一种受弯构件,其轴线为直线, 有单跨和 多跨之分
单跨静定梁
6-2-2静定平面刚架的内力计算和内力图绘制.
(1)刚架任一横截面上的弯矩,其数值等于该截面任一边刚架
上所有外力对该截面形心之矩的代数和。力矩与该截面上规定的 正号弯矩的转向相反时为正,相同时为负。 (2)刚架任一横截面上的剪力,其数值等于该截面任一边刚架上 所有外力在该截面方向上投影的代数和。外力与该截面上正号剪 力的方向相反时为正,相同时为负。
作用点、分布荷载作用的起点和终点等)和杆件的连接点作为控
制截面,按刚架内力计算规律,计算各控制截面上的内力值。
国家共享型教学资源库
四川建筑职业技术学院
(3)按单跨静定梁的内力图的绘制方法,逐杆绘制内力图, 即用区段叠加法绘制弯矩图,由微分关系法绘制剪力图和轴 力图;最后将各杆的内力图连在一起,即得整个刚架的内力 图。
M BE 0
M EB FBx 4.5 62.1 kN m (右侧受拉)
M CE 0
M EC M EB 62.1 kN m
(上侧受拉)
四川建筑职业技术学院
国家共享型教学资源库
(3)绘剪力图。
FS AD FS DA 13.8 kN
FS BE FS EB 13.8 kN
四川建筑职业技术学院
例6-3 绘制图所示简支刚架的内力图。
解 (1)求支座反力。 FAx=16 kN, FBx=12 kN, FBy=24 kN
国。将刚架分为AC、CE、CD和DB
四段,取每段杆的两端为控制截面。这些截面上的内力为
MAC=0 MCA=-2kN/m×6m×3m=-36kN· m (左侧受拉) MCD= MCA=-36 kN· m (上侧受拉) MDC=-12kN×6m +12 kN· m =-60 kN· m (上侧受拉) MDB=-12kN×6m =-72 kN· m (右侧受拉) MBD=0 FSAC=0 FSCA=-2kN/m×6m=-12 kN FSCE= FSEC=16kN FSED=FSDE=-24kN FSDB=FSBD=12kN FNAC=FNCA=-16kN FNCD=FNDC=-12kN FNDB=FNBD=-24kN
4.4.3静定梁的内力方程及内力图
1443梁的内力方程及内力图剪力图和弯矩图若以横坐标x表示横截面在梁轴线上的位置则各横截面上的剪力和弯矩皆可表示为坐标x的函数即qqxmmx以上两函数表达了剪力和弯矩沿梁轴线的变化规律分别称为梁的剪力方程和弯矩方程
4.4.3
梁的内力方程及 内力图
剪力图和弯矩图
剪力方程和弯矩方程
• 若以横坐标x表示横截面在梁轴线上的 位置,则各横截面上的剪力和弯矩皆可表示 为坐标x的函数,即 • Q=Q(x) • M=M(x) • 以上两函数表达了剪力和弯矩沿梁轴线 的变化规律,分别称为梁的剪力方程和弯矩 方程。
பைடு நூலகம் x=0,MA=0
x=l/2,MC=ql2/8 x=l,MB=0 弯矩图如图9.15(c)所示。 从所作的内力图可知,最大剪力发生在梁端,其值为|Qmax|=ql/2,最 大弯矩发生在剪力为零的跨截面,其值为|Mmax|=ql2/8。
【例 9.6】简支梁受集中力P作用如图9.16(a)所示,试画出梁的剪力图和弯矩 图。 【解】(1) 求支座反力 以整梁为研究对象,由平衡方程求支座反力。 ∑mB(F)= 0,-RAl+Pb=0 RA=Pb/l ∑Fy=0,RA+RB-P=0 RB=Pa/l (2) 列剪力方程和弯矩方程 梁在C截面处有集中力P作用,AC段和CB段所受的外力不同,其剪力方 程和弯矩方程也不相同,需分段列出。取梁左端A为坐标原点
剪力图和弯矩图
为了形象地表示剪力和弯矩沿梁轴的变化规律, 把剪力方程和弯矩方程用其图像表示,称为剪力图 和弯矩图。 剪力图和弯矩图的画法与轴力图、扭矩图很相 似,用平行于梁轴的横坐标x表示梁横截面的位置, 用垂直于梁轴的纵坐标表示相应截面的剪力和弯矩。
在土建工程中,习惯上将正剪力画在x轴上方, 负剪力画在x轴的下方;正弯矩画在x轴下方,负弯 矩画在x轴的上方,即把弯矩图画在梁受拉的一侧。
4.4.3
梁的内力方程及 内力图
剪力图和弯矩图
剪力方程和弯矩方程
• 若以横坐标x表示横截面在梁轴线上的 位置,则各横截面上的剪力和弯矩皆可表示 为坐标x的函数,即 • Q=Q(x) • M=M(x) • 以上两函数表达了剪力和弯矩沿梁轴线 的变化规律,分别称为梁的剪力方程和弯矩 方程。
பைடு நூலகம் x=0,MA=0
x=l/2,MC=ql2/8 x=l,MB=0 弯矩图如图9.15(c)所示。 从所作的内力图可知,最大剪力发生在梁端,其值为|Qmax|=ql/2,最 大弯矩发生在剪力为零的跨截面,其值为|Mmax|=ql2/8。
【例 9.6】简支梁受集中力P作用如图9.16(a)所示,试画出梁的剪力图和弯矩 图。 【解】(1) 求支座反力 以整梁为研究对象,由平衡方程求支座反力。 ∑mB(F)= 0,-RAl+Pb=0 RA=Pb/l ∑Fy=0,RA+RB-P=0 RB=Pa/l (2) 列剪力方程和弯矩方程 梁在C截面处有集中力P作用,AC段和CB段所受的外力不同,其剪力方 程和弯矩方程也不相同,需分段列出。取梁左端A为坐标原点
剪力图和弯矩图
为了形象地表示剪力和弯矩沿梁轴的变化规律, 把剪力方程和弯矩方程用其图像表示,称为剪力图 和弯矩图。 剪力图和弯矩图的画法与轴力图、扭矩图很相 似,用平行于梁轴的横坐标x表示梁横截面的位置, 用垂直于梁轴的纵坐标表示相应截面的剪力和弯矩。
在土建工程中,习惯上将正剪力画在x轴上方, 负剪力画在x轴的下方;正弯矩画在x轴下方,负弯 矩画在x轴的上方,即把弯矩图画在梁受拉的一侧。
静定结构的内力分析
40
第 三 章80 静定结构的内力计算
D
FNDE FNED
E
30
30
FNDC
FNEB
FQ
40 kN
FN 30 kN
80 kN
练习:
第三章
静定结构的内力计算
解: (1) 求支座反力。
F=qa
C
D
由 X 0
E
FxA q 2a 0
q
a B
得 FAx 2qa
a
由 M A 0
FxA
A
FyB
2qa a F a FyB 2a 0
首先进行定性分析。
由内力图的外观校核。杆上无分布荷载FS图为水 平直线;M图为斜直线。杆上有分布荷载FS图为斜直 线;M图为二次抛物线。 FS图为零的截面M为极值。 杆上集中荷载作用的截面, FS图上有突变;M图上有折 弯。根据这些特征来检查,本题的M图、FS图均无误。
第 三 章 静定结构的内力计算
6
FA=58 kN 26
10
18 FB=12 kN
q ME
FQE
MF
FS 图 ( kN )
FQF
第 三 章 静定结构的内力计算
二、 多跨静定梁 (multi-span statically determinate beam)
附属部分--依赖基本
基本部分--不依赖其它
部分的存在才维持几
部分而能独立地维持其
据
3.外力与杆轴关系(平行,垂直,重合) 4.特殊部分(悬臂部分,简支部分)
5.区段叠加法作弯矩图
第 三 章 静定结构的内力计算
结点平衡条件的应用:
一、铰结点: (集中力偶只能作用于杆端处)
M
单元十二 静定结构内力分析
反映剪力(弯矩)随截面位置变化规律的曲线, 称作剪力(弯矩)图。
返回 下一张 上一张 小结
二、剪力图和弯矩图的作法: 取平行梁轴的轴线表示截面位置,规定 正值的剪力画轴上侧,正值的弯矩画轴下侧; 可先列内力方程再作其函数曲线图。
如悬臂梁:当x=o, Q(x)=-P, M(x)=0; x=l, Q(x)=-P-ql, M(x)=-Pl-ql2/2. 其剪力图和弯矩图如图示。
pL 2L P VB L 0 2 3 7P VB () 6 PL L M 0 P VA L 0 B 2 3 P V A () 6 P 7P Y V P V P 0 A B 校核 6 6
MA 0
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN – 3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。
q(x) 解:x 坐标向右为正,坐标原点在 自由端。 取左侧x 段为对象,内力N(x)为:
例 用叠加法作图所示外伸梁的 M 图。 解:1)先分解荷载为P1、P2单独作用情况; 2)分别作出各荷载单独作用下梁的弯矩图; [如图 a] 3)叠加各控制截面各弯矩图上的纵坐标得梁的弯矩图。[如图d]
三、区段叠加法作梁弯矩图
梁中取出的任意梁段都可看作是简支梁, 用叠加法作简支梁的弯矩图即梁段的弯矩图。
3)画内力图:(先求控制截面内力值,再按
内力图特征画图。) 剪力图 AB 段: QA Qc VA 6KN BC 段:QC 6KN , QB VA q 4 6 6 4 18KN 弯矩图 AB 段: M A 0, M C VA 2 12KN m BC 段:
建筑力学与结构选型第4章 静定杆系结构内力分析
A
2 k N /m A D F Ax F Ay
6kN B C F By
由
2m
F
2m
y
C
0
2m
B
则 解得
FAy FBy 2 2 6
FAy 8kN
( ↑)
解得
由
F
x
0
FAx 0
6kN (2)用截面法求指定截面的内力 k N /m A C 求截面C的弯矩 2m 2m B 2m D
第 4章
静定杆系结构内力分析
4.1 杆件的基本变形与内力 4.2 单跨静定梁的内力计算与内力图 4.3 多跨静定梁的内力计算与内力图 4.4 静定平面刚架的内力计算与内力图
4.5 静定三铰拱
4.6 静定平面桁架
4.1 杆件的基本变形及内力
4.1.1 内力和截面法
内力是荷载在构件内部的传递方式。
F F F F F F
非圆截面等直杆(如巨型截面梁和箱形梁)的扭转较复杂,截 面将发生翘曲
4.2 单跨静定梁的内力计算与内力图
梁的特点: 荷载垂直于杆件轴线的横向荷载,变形以挠曲为主。 起横向连接作用,是间接传力构件。
简支梁的变形图
悬臂梁的变形图
4.2.1单跨静定梁的基本形式
简支梁
简支斜梁
悬臂梁
伸臂梁
4.2.2 梁式杆指定截面内力的计算
2 k N /m A F Ax F Ay
6kN B C F By
由 解得
M
C
0
FNC
MC
C FQC右
B 2kN
M C FBy 2 4kN m()
2kN/m B D A
求A左截面的剪力 MC
由
2 k N /m A D F Ax F Ay
6kN B C F By
由
2m
F
2m
y
C
0
2m
B
则 解得
FAy FBy 2 2 6
FAy 8kN
( ↑)
解得
由
F
x
0
FAx 0
6kN (2)用截面法求指定截面的内力 k N /m A C 求截面C的弯矩 2m 2m B 2m D
第 4章
静定杆系结构内力分析
4.1 杆件的基本变形与内力 4.2 单跨静定梁的内力计算与内力图 4.3 多跨静定梁的内力计算与内力图 4.4 静定平面刚架的内力计算与内力图
4.5 静定三铰拱
4.6 静定平面桁架
4.1 杆件的基本变形及内力
4.1.1 内力和截面法
内力是荷载在构件内部的传递方式。
F F F F F F
非圆截面等直杆(如巨型截面梁和箱形梁)的扭转较复杂,截 面将发生翘曲
4.2 单跨静定梁的内力计算与内力图
梁的特点: 荷载垂直于杆件轴线的横向荷载,变形以挠曲为主。 起横向连接作用,是间接传力构件。
简支梁的变形图
悬臂梁的变形图
4.2.1单跨静定梁的基本形式
简支梁
简支斜梁
悬臂梁
伸臂梁
4.2.2 梁式杆指定截面内力的计算
2 k N /m A F Ax F Ay
6kN B C F By
由 解得
M
C
0
FNC
MC
C FQC右
B 2kN
M C FBy 2 4kN m()
2kN/m B D A
求A左截面的剪力 MC
由
第3章_静定结构的内力分析
第3章
静定结构受力分析
一、静定单跨梁的类型
(1)简支梁;
(2)悬臂梁; (3)伸臂梁
二、杆件截面内力及正负号规定 1、轴力:沿杆件轴线方向的截面内力,拉力为正、压力为负。 2、剪力:相切于横截面的内力,顺转为正,反之为负。
3、弯矩:截面内力对截面形心的力矩,下部受拉为正、反之 为负。 + + M M Q Q + N N - - M M Q Q - N N
C 60
B
叠加法绘制直杆弯矩图 一、简支梁弯矩图的叠加方法
MA
A
q L
MB
B
MA
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB
+
A 1 qL2 8
B
MAB中= ( MA + MB)/2
MA A
P a b
MB B MA M Pab L MB
L
M怎么计算?
C A 3.75kN 2m
D
4m
B
2m 0.25kN
ND左 = -10kN
求截面C、D左、D右的内力。 解:1、求支座反力 2、C截面的内力 取C截面以左为对象:
QD左 = 3.75-2×2 =-0.25kN MD左 = 3.75×6-2×2×5
=2.5kNm
4、D右截面的内力 取D右截面以右为对象:
三、内力图的校核
除一般校核平衡条件和荷载、内力微分关系外,重点是校核 刚结点处的平衡条件,即∑X = 0 , ∑Y = 0,∑M = 0
例1:作图示刚架的弯矩图。 2kN/m C A B 5m 4m
16
4
C
B MCB = 0 MBC = 2×4×2 =16kNm(上拉) MBA = 2×4×2 = 16kNm(右拉) MAB =2×4×2 = 16kNm(右拉)
静定结构受力分析
一、静定单跨梁的类型
(1)简支梁;
(2)悬臂梁; (3)伸臂梁
二、杆件截面内力及正负号规定 1、轴力:沿杆件轴线方向的截面内力,拉力为正、压力为负。 2、剪力:相切于横截面的内力,顺转为正,反之为负。
3、弯矩:截面内力对截面形心的力矩,下部受拉为正、反之 为负。 + + M M Q Q + N N - - M M Q Q - N N
C 60
B
叠加法绘制直杆弯矩图 一、简支梁弯矩图的叠加方法
MA
A
q L
MB
B
MA
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB
+
A 1 qL2 8
B
MAB中= ( MA + MB)/2
MA A
P a b
MB B MA M Pab L MB
L
M怎么计算?
C A 3.75kN 2m
D
4m
B
2m 0.25kN
ND左 = -10kN
求截面C、D左、D右的内力。 解:1、求支座反力 2、C截面的内力 取C截面以左为对象:
QD左 = 3.75-2×2 =-0.25kN MD左 = 3.75×6-2×2×5
=2.5kNm
4、D右截面的内力 取D右截面以右为对象:
三、内力图的校核
除一般校核平衡条件和荷载、内力微分关系外,重点是校核 刚结点处的平衡条件,即∑X = 0 , ∑Y = 0,∑M = 0
例1:作图示刚架的弯矩图。 2kN/m C A B 5m 4m
16
4
C
B MCB = 0 MBC = 2×4×2 =16kNm(上拉) MBA = 2×4×2 = 16kNm(右拉) MAB =2×4×2 = 16kNm(右拉)
结构力学——3静定结构的内力分析
x=1.6m 3.K截面弯矩的计算
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)
结构力学第三章静定结构受力分析1-6
5m
45° 141kN
125kN.m
5m
Q1= 50 +5×5-141×0.707 =-25kN M1=125 +141×0.707×10-50×5 -5/2×5² =812.5kNm (下拉)
6
§3.2 荷载与内力之间的关系
1 ) 微分关系 ↓↓↓↓↓↓↓ Q+d dN/dx= - q x qx N+d N Q dQ/dx=-qy , qy向下为正 →→→→→ N x M+d dM/dx=Q M M 微分关系给出了内力图的形状特征 dx y A B 2) 增量关系 Q Q+ΔQ
6
C
三铰刚架的反 力计算方法二 (双截面法) O1 a
↓↓↓↓↓↓↓↓↓↓↓
q
29
a
a q
a
a
Y1
a O2
↓↓↓↓↓↓↓↓↓↓↓
19
斜梁的弯矩图也可用叠加法绘制,但叠加的是相应水平 简支梁的弯矩图,竖标要垂直轴线。
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ MB
斜梁的内力除 弯矩和剪力外 还有轴力,内 力图中要包括 轴力图。
MA
l
MB MA
ql2/8
20
§3.5多跨静定梁(statically determinate multi-span beam)
25
§3.6 静定平面刚架受力分析
(statically determinate frame)
几何可 变体系 桁架 刚架
一、刚架的定义:若干直杆全部或部分用刚节点联结而成的结构 二、刚架的特点 ①内部空间大,便于使用。 ② 弯矩分布较为均匀,节省材料。 ③刚结点将梁柱联成一整体,增大了结构的刚度,变形小。
45° 141kN
125kN.m
5m
Q1= 50 +5×5-141×0.707 =-25kN M1=125 +141×0.707×10-50×5 -5/2×5² =812.5kNm (下拉)
6
§3.2 荷载与内力之间的关系
1 ) 微分关系 ↓↓↓↓↓↓↓ Q+d dN/dx= - q x qx N+d N Q dQ/dx=-qy , qy向下为正 →→→→→ N x M+d dM/dx=Q M M 微分关系给出了内力图的形状特征 dx y A B 2) 增量关系 Q Q+ΔQ
6
C
三铰刚架的反 力计算方法二 (双截面法) O1 a
↓↓↓↓↓↓↓↓↓↓↓
q
29
a
a q
a
a
Y1
a O2
↓↓↓↓↓↓↓↓↓↓↓
19
斜梁的弯矩图也可用叠加法绘制,但叠加的是相应水平 简支梁的弯矩图,竖标要垂直轴线。
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ MB
斜梁的内力除 弯矩和剪力外 还有轴力,内 力图中要包括 轴力图。
MA
l
MB MA
ql2/8
20
§3.5多跨静定梁(statically determinate multi-span beam)
25
§3.6 静定平面刚架受力分析
(statically determinate frame)
几何可 变体系 桁架 刚架
一、刚架的定义:若干直杆全部或部分用刚节点联结而成的结构 二、刚架的特点 ①内部空间大,便于使用。 ② 弯矩分布较为均匀,节省材料。 ③刚结点将梁柱联成一整体,增大了结构的刚度,变形小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律
① 梁在任意截面上的剪力,在数值上等于该截面左 侧或右侧梁段上所有竖向外力(包括支座反力)的代 数和。如果外力对该截面形心产生顺时针转向的矩, 则引起正剪力,反之引起负剪力。
② 梁在任意截面上的弯矩,在数值上等于该截面左 侧或右侧梁段上所有外力(包括外力偶)对该截面形 心的矩的代数和。如果外力使得梁段下边受拉、上边 受压,则引起正弯矩,反之引起负弯矩。
力偶矩为
2 n / 60
P M M P/
则,力偶矩为 M 9550P / n
根据力偶只能与力偶来平衡的原理,横截面上的 内力就是内力偶矩,简称扭矩,用T表示。
扭矩的计算与拉(压)杆的内力计算步骤相同。 如图所示传动轴简图,为求任一截面上的扭矩,假 想地沿该截面截开,用T代替两段间相互作用的扭 矩,取左段研究其平衡,可得
由此可知,当杆件受拉时轴力为正,杆件受压时 轴力为负。
❖ 轴力图
实际问题中,杆件所受外力可能很复杂,这时直杆 各横截面上的轴力将不相同,FN将是横截面位置坐标 x的函数。即
FN=FN(x) 用平行于杆件轴线的x坐标表示各横截面的位置,以 垂直于杆轴线的FN坐标表示对应横截面上的轴力,这 样画出的函数图形称为轴力图。
4)列平衡方程,求出内力
根据平衡
Fx 0
FA FS 0
FS FA
FS--是横截面上切向分布内力分量的合力,称为剪力。
M O 0 M FAx 0 M FA x
M--是横截面上法向分布内力分量的合力偶矩,称
为弯矩.
梁在横向外力作用下发生平面 弯曲时,横截面上会产生两种内 力,剪力和弯矩。
4.3.3 梁的内力图
为了便于形象、直观地反映内力的变化规律,将剪 力和弯矩沿梁轴线的变化情况用图形来表示。这种 表示剪力和弯矩变化规律的图形,分别称为剪力图 和弯矩图。它们都是函数图形,其横坐标表示梁的 横截面的位置,纵坐标表示相应截面上的剪力或弯 矩。
通常规定:在画梁的内力图时, 剪力:正剪力画在x轴的上方,负剪力画在x轴的 下方,并标明正负号; 弯矩:弯矩则画在梁的受拉一侧,不标正负号。
4.1.2 轴向拉(压)的内力
内力的概念 结构在外部荷载作用下,所组成的构件内部各部
分之间存在着相互作用力。杆件截面同一方向上所 受作用力的合力称为内力。
构件的强度、刚度 和稳定性等问题的分 析,离不开内力计算 。内力分析是建筑力 学的基础。
轴力与轴力图 ❖ 轴力的计算
FN-F=0 由上面方程得 FN=F 这种假想地将构件截开成两部分,从而显示并解 出内力的方法称为截面法。
【例4-1】直杆AD受力如图所示。已知F1=16kN, F2=10kN,F3=20kN,试画出直杆AD的轴力图。
【例4-2】钢杆上端固定,下端自由,受力如图所示 。已知l=2m,F=4kN,q=2 kN/m,试画杆件的轴力 图。
4.2 扭转轴
4.2.1 扭转的概念
4.2.2 轴的内力
工程上,轴所受到的外力偶矩或转矩(M)通常不 是直接给出的,而是预先给出轴所传递的功率(P)和 轴的转速(n)。对于等速转动的刚体,力偶作功的功 率等于该力偶矩与角速度(ω)的乘积,即
内力正负规定
① 剪力:当截面上的剪力对所取 的研究对象内部任一点产生顺时针 转向的矩时,为正剪力,反之为负 剪力。 ② 弯矩:当截面上的弯矩使所取梁段下边受拉、上 边受压时,为正弯矩,反之为负弯矩。
归纳:“左上右下,剪力为正;左顺右逆,弯矩为正”
【例 4-4】简支梁如图所示。试求横截面1-1,2-2 ,3-3上的剪力和弯矩。
4.3 平面弯曲梁
4.3.1 梁的平面弯曲
受力特点是:在通过杆轴线的平面内,受到力偶 或垂直于轴线的外力(常称为横向力)作用。其变 形特点是:杆的轴线被弯成一条曲线。这种变形称 为弯曲变形。
在外力作用下产生弯曲变形或以弯曲变形为主的 杆件,习惯 Nhomakorabea称为梁。
工程上常见的单跨静定梁一般可分为三类: ① 悬臂梁,即一端固定,一端自由的梁。 ② 简支梁,即一端为固定铰支座,另一端为可动
Mx 0 T Me 0
T Me
扭矩正负的规定
习惯上对扭矩的符号作如下规定:根据右手螺旋 法则,如四指指向与扭矩转向一致,大拇指伸出的 方向与截面外法线方向一致时,扭矩为正,反之为 负
【例4-3】已知传动轴的转速为n=300r/min,主动轮A 的输入功率PA=29kW,从动轮B,C,D的输出功率分 别为PB=7kW,PC=PD=11kW。试作轴的扭矩图。
第4章 静定结构的内力图
4.1 轴向拉(压)杆 4.2 扭转轴 4.3 平面弯曲梁 4.4 平面刚架 4.5 平面桁架
4.1 轴向拉(压)杆
4.1.1 轴向拉伸和压缩的概念
受力特点是:杆件承受外 力的作用线与杆件轴线重合 ;变形特点是:杆件沿轴线 方向伸长或缩短。这种变形 形式称为轴向拉伸或压缩, 简称拉伸或压缩。这类杆件 称为拉杆或压杆。
铰支座的梁。 ③ 外伸梁,即一端或两端伸出支座之外的简支梁
。
当外力作用线都位于梁的纵向对称平面内,梁的 轴线在纵向对称平面内被弯成一条光滑的平面曲线 ,这种弯曲变形称为平面弯曲.
4.3.2 梁的内力
内力计算 梁任一横截面m-m上的内力
1)求支座反力FA、FB. 2)用假想截面截开构件, 取左段或右段为研究对象 3)画出研究对象所受力(界 面处用内力代替)
复习
梁内力图的绘制
梁内力的正负规定 剪力:对所取隔离体内部任一
点产生顺时针转向的矩时,为正 剪力,反之为负剪力
弯矩:使所取梁段下边受拉、 上边受压时,为正弯矩,反之为 负弯矩
用截面法求构件内力可归纳为以下三个步骤:
① 截开 假想地沿待求内力所在截面将构件截开成 两部分。 ② 代替 取截开后的任一部分作为研究对象(隔离 体),并把弃去部分对留下部分的作用以截开面上的 内力代替。 ③ 平衡 列出研究对象的平衡方程,计算内力的大 小和方向。
❖ 轴力的正负
轴力的正负由杆件的变形确定。为保证无论取左 段还是右段作研究对象所求得的同一个截面上轴力 的正负号相同,对轴力的正负号规定如下:轴力的 方向与所在横截面的外法线方向一致时,轴力为正 ;反之为负。