1 试述焊接残余变形的种类

合集下载

焊接残余变形

焊接残余变形
6
1 180 K=6 2
6 180
3
6
150
K=6 150
4
6
题2图
PDF created with pdfFactory Pro trial version
题3图
4. 横向收缩引起的挠曲变形 横向焊缝的中心与构件中心不重合时,焊缝的横向收缩也会引 起结构的挠曲变形
F----构件截面积,L----构件长度 因此,△L取决于F、L、∫fp εp · dF、 fp的大小:方法、焊接参数 εp的大小:材料性质
影响纵向收缩的因素:
1)规范: q / v↑, ∫fp↑,→Pf↑, △L 2)焊接方法: 不同的焊接方法,热源集中度不同,则HAZ大小不同, 也即 Fp不同 3)材料性质: α,λ↑, → ∫fp ↑, △L↑ α不锈钢>α低碳钢 λ铝>λ低碳钢
2.角焊缝
丁字接头和搭接接头角焊缝的横向收缩,其实质与堆焊类似,其数值 取决于加热该构件的那部分热量及板厚 线能量应取输入到横板上的热量:
q 2δ H • v 2δ H + δ V
δH──横板厚度 δV──立板厚度
立板越厚,横板上的热量越小,横向变形也越小。
PDF created with pdfFactory Pro trial version
1 M2 = ρ E⋅I
ε =
E I---构件抗弯刚度
∆B2 l
f
δ2
h
L-△B2
则 :P =
= ∫ σ ⋅ dF
F2
∆ B2 ⋅ E ∆ B2 ⋅ E ⋅ F2 ⋅ dF = l l F2

h δ M 2 = Pf ( − 1 ) 2 2 1 F ⋅ ∆ B2 h δ 1 ∆B2 ⋅ S 2 ( − )= 则: = 2 ρ I ⋅l 2 2 I ⋅l l ∆ B1 ⋅ S1 φ1 = = ρ I S1 = h1 ⋅ δ 1 ⋅ e 1 l f0 = ⋅ϕ ⋅ 2 2 f = 5 ⋅ φ ⋅ l + 4 ⋅ φ ⋅ l + 3φl + 2φ l + φl φ = φ1 + φ 2

焊接残余变形的基本形式

焊接残余变形的基本形式

焊接残余变形的基本形式
(一)收缩变形
这种变形又可具体分为纵向缩短和横向缩短,如图8—1a所示的两块对接钢板,经焊接后。

长度和宽度方向的尺寸都比原来变短。

这种变形是由于焊缝
的纵向收缩和横向收缩引起的。

(二)角变形
这种变形是由于焊缝横截面形状不对称或施焊层次不合理,致使焊缝在板厚度方向上横向收缩量不一致所产生的。

如图8—1b所示V形坡口对接焊后发生了角变形,主要是由于焊缝截面上宽下窄使焊缝的横向收缩量上大下小而引起的。

(三)弯曲变形
这种变形是由于焊件上焊缝布置不对称或焊件断面形状不对称,焊缝的纵向收缩所引起的。

如图8—1c所示,T型梁的焊缝位置位于梁的中心线下方,
焊后由于焊缝纵向收缩,造成了弯曲变形。

(四)波浪变形
薄板气焊时最容易产生波浪变形,如图8—1d所示。

其产生的原因是焊缝的纵向收缩和横向收缩共同作用的结果。

一方面由于焊缝的纵向收缩,使薄板边缘产生压应力,当压应力超过一定数值时,便在薄板边缘出现了波浪形的变形;另一方面由于焊缝的横向收缩引起角变形,这些角变形连贯起来就形成了波浪变形。

(五)扭曲变形
如图8—1e所示,这种变形产生的原因主要是因装配质量不好、工件搁置不当,焊接顺序和焊接方向不合理,致使焊缝纵向收缩和横向收缩不一致所造成的。

一般这种变形在气焊件中很少碰到。

综上所述,焊后焊缝的纵向收缩和横向收缩是引起各种焊接残余变形和焊接残余应力的重要原因。

同时还说明,焊缝的收缩能否转变成各种形式的变形还和焊缝在结构上的位置、焊接顺序和焊接方向以及结构的刚性大小等因素有直接的关系。

§ 6-2 焊接残余变形

§ 6-2 焊接残余变形
§ 6-2
焊接残余变形
一、焊接残余变形的分类
a) 收缩变形 b) 角变形 c) 弯曲变形 d) 波浪变形
e) 扭曲变形 f) 错边变形
纵向和横向收缩变形 Δx—纵向收缩变形 Δy—横向收缩变形
2. 弯曲变形
弯曲变形常见于焊接梁、柱、管道等焊件,对这类焊接结构的生产 造成较大的危害。 弯曲变形的大小以挠度f来度量,f是焊后焊件的中心 偏离原焊件中心轴的最大距离。
几种梁的截面形状
(3)结构抵抗扭曲的刚度
除了决定于结构的尺寸大小外, 最主要的是结构截面形状。
一般来说,短而粗的焊接结构, 刚度较大;细而长的构件,抗弯 刚度小。结构整体刚度总是比部件刚度大。因此,生产中常采用整体装 配后再进行焊接的方法来减少焊接变形。
3. 焊接结构的装配及焊接顺序
工字梁的装配顺序和焊接顺序 a) 工字梁的结构形式 b) 边装边焊顺序 c) 总装后再焊接顺序 1—下盖板 2—腹板 3—上盖板
双Y形坡口对接接头的角变形 a) 合理的焊接顺序 b) 不合理的焊接顺序
4. 其他因素
(1)结构材料的线膨胀系数
(2)焊接方法 (3)焊接参数 (4)焊接方向 (5)焊接坡口形式
三、控制焊接残余变形的措施
1. 采用合理的装配焊接顺序
(1)对称焊缝采用对称焊接法
圆筒体环形焊缝对称焊接顺序
(2)不对称焊缝先焊焊缝少的一侧
采用热平衡法防止焊接变形
四、残余变形的矫正
1. 机械矫正法
工字梁焊后变形的机械矫正 a) 拱曲焊件 b) 用拉紧器拉 c) 用压头压 d) 用千斤顶顶
2. 火焰矫正法
火焰矫正法的加热方式 a) 点状加热正 火焰加热的区域为一个点或多个点,加热点直径一般小于15mm。 (2)线状加热矫正

焊接残余变形的控制措施

焊接残余变形的控制措施

焊接残余变形的控制措施摘要焊接残余变形是焊后残存于结构中的变形,是焊接结构生产过程中常常出现的问题。

通过正确的施工,可以减少焊接残余变形。

关键词焊接残余应力残余变形措施1 前言在焊接结构生产过程中,焊接残余变形是经常出现的问题。

焊接残余应力和变形是形成各种焊接裂纹的重要因素,它在一定条件下还会严重影响焊件的强度、刚度、受压时的稳定性、加工精度和尺寸稳定性等等。

为此,采取相应措施以控制焊接变形是十分必要的。

2 焊接残余应力和残余变形的成因钢材在施焊过程中会在焊缝及附近区域内形成不均匀的温度场,焊缝及附近的温度最高可达1600℃以上,由焊缝临近区域向外,温度急剧下降。

不均匀温度场有导致不均匀膨胀的趋势,但施焊后的钢材已经连接成整体,低温区对高温区的变形产生约束,使高温区产生热塑压缩变形,未达到热塑温度的高温区则会产生热压应力,低温区则产生拉应力。

在冷却过程中,低温区先冷却,其收缩变形不受约束,而高温区冷却较慢,后冷却区域的收缩变形将受到先冷却区域的约束,因而使高温区产生拉应力,相反,低温区则产生相应的压应力。

在无外界约束的情况下,焊件内的拉应力和压应力自相平衡。

这种应力称为焊接残余应力,它是一组自相平衡的内应力。

随焊接残余应力的产生,同时也会出现不同方向的不均匀收缩变形,称为焊接残余变形。

如图2—1所示。

3 焊接残余变形的种类及影响变形的因素3.1焊接残余变形的种类常见的焊接残余变形有以下几种:3.1.1收缩变形:分纵向收缩和横向收缩两种,如图3—1所示。

3.1.2弯曲变形:构件焊后发生弯曲变形,如图3—2所示。

3.1.3角变形:焊后构件的平面绕焊缝产生的角位移,常见如图3—3所示。

3.1.4扭曲变形:绕构件轴线扭曲,如图3—4所示。

3.1.5波浪变形:焊后构件呈波浪形,如图3—5所示。

3.1.6错边变形:在焊接过程中,两焊接件的热膨胀不一致,可能引起长度方向上的错边和厚度方向上的错边,如图3—6所示。

焊接结构

焊接结构

四、角变形
1. 堆焊 2. 对接引起的角变形 3.角焊缝引起的角变形
思考题:
1、什么叫焊接角变形?平板堆焊时产生角变 形的原因、影响因素及分布特点是什么?
2、影响平板对接角变形的因素有哪些?如何 影响?
五、波浪变形
1.由失稳引起的波浪变形 细长杆受压时产生失稳的条件:
σ cr
=
π 2 ⋅E⋅I ( μl ) 2
六、焊接错边
1. 形成原因 a.待焊接头两侧的散热能力不同;
b.接头两侧刚度不同 封头刚度大,变形小 筒身刚度小,变形大
错边(径向)
2. 错边的影响:对接接头,厚度方向错边 正常:
σ= P B ⋅δ
错边时, 附加弯矩:M = P ⋅ Δ
附加应力:
σ弯
=M W
=
P⋅Δ
l ⋅δ 2
Hale Waihona Puke =σ⋅6⋅Δδ6
B
则如:果σ: 弯Δ== σδ6 , 总应力=2σ
P
P
材料塑性很好时(如低碳钢),应力不会超过δ σs,σ=△σ s时产生
塑变,截面应力逐渐均匀化。
材料塑性不太好时(高强钢或应力集中处),应力会超过σs, 从而 在高应力区首先形成裂纹而断裂。
七、螺旋形变形 形成原因: 1.角变形沿长度方向不均匀分布;
φ2 =
l
ρ
=
ΔB2 ⋅ S2 I
f2
=
1 2
⋅ϕ
2

l 2
φ ρ
12φ
φ
φf
φ ρ
h1 f
L=1
b. 筋板与腹板间的焊缝引起的挠曲:
δ1
类似分析可得:
φ1 =
l
ρ

焊接残余变形

焊接残余变形
焊接残余变形
焊接残余变形



焊接残余变形的分类 研究焊接残余变形的意义 引起变形的原因 预防焊接变形的措施 矫正焊接变形的方法
焊接残余变形的分类
1、纵向收缩变形:结构焊后在焊缝方向发生的收缩。 2、横向收缩变形:结构焊后在垂直焊缝方向发生的 收缩。 3、饶曲变形:焊件焊后发生饶曲,饶曲是由焊缝纵 向收缩引起和焊缝横向收缩共同引起的。 4、角变形:焊后构件的平面围绕焊缝产生的角拉移。 5、波浪变形:焊后构件呈波浪形状,这种变形在薄 板焊接中最容易发生。 6、错边变形:在焊接过程中,两焊接件的膨胀系数 不一致。可能引起长度方向的错边和厚度方向 上的错位。 7、螺旋变形:焊后结构件上呈现扭曲。
矫正焊接变形的方法
(1) 机械矫正方法: 利用外力使机构件产生于焊接变形向相反的 塑性变形使两者相互抵消,当薄板结构的焊缝比 较规则时,采用滚压法消除焊接变形效率高,质 量好,具有极大的优越性。 (2) 火焰加热矫正法: 利用热量相对集中的火源对变形结构件反弹 或突出的部分加热至红,然后用冷水冷却使其晶 体结构紧密,从而消除了延伸出的部分,并与机 械矫形方法同时用来达到矫正的效果。
预防焊接变形的措施
(1)设计措施
1. 合理的选择焊缝的尺寸和形式; 2. 尽可能减少不必要的形法:这是生产中最常见常用 的方法,事先估计好结构变形的尺寸和方 向,然后在装配时给予反方向的变形和焊 接变形抵消,使焊后结构件保持设计要求。 2. 刚性固定法:用焊接夹具来限制焊 接变形,这种方法在一定程度上可以减少 焊接变形,但不可消除焊接变形。 3. 合理的选择焊接方法和规范:先用 焊接能源相对集中焊接线能量小的焊接方 法。 4. 选择合理的装配焊接顺序。
引起变形的原因
在焊接中焊缝以及附近的金属由于在高温下的自由变 形受到阻碍,产生了压缩塑性变形,这个区域称之塑性变 形区(长度,截面积)与焊接参数,焊接方法,焊接顺序, 以及材料的物理参数有关,在诸多工艺因素中,焊接线能 量是主要的。在一般情况下焊接变形与焊接线能量成正比。 同样截面的焊缝可以一次焊成,也可以分几次焊成, 多层焊每次所用的线能量比单层焊小的多。因此每层焊缝 所产生的塑性变形区的面积比单层焊小,但多层焊所引起 的变形量,并不等于各层焊缝的总和。因为各层所产生的 塑性变形区的面积相互叠加的。 从以上分析可以看出多层焊所引起的纵向收缩比单 层焊小,变形也就更小。

焊接残余变形

焊接残余变形

第三节焊接残余变形一、焊接残余变形的分类1.纵向和横向收缩变形a)纵向收缩:焊件在焊后沿焊缝长度方向上的收缩。

纵向收缩变形随焊缝长度、焊缝熔敷金属截面积的增加而增加。

b)横向收缩:焊件在焊后沿焊缝宽度方向上的收缩。

横向收缩变形随焊接热输入、焊缝宽度、焊脚尺寸的增加而增加。

2.角变形是焊接时,由于焊缝区沿厚度方向产生的横向收缩不均匀引起的弯曲变形。

角变形的大小与焊接方法、焊接道数及坡口形式有关。

3.弯曲变形是结构上焊缝分布不时称,焊缝收缩引起的变形,用挠度f 表示。

挠度是指焊件的中心轴线偏离原中心轴线的最大距离。

4.扭曲变形是焊件的施焊顺序不合理、组装不良或纵向有错边,焊接时角变形量长度方向不均匀,焊缝的纵向和横向收缩没有限一定的规律,引起的变形。

.5.波浪变形由于结构件的刚性较小,在焊缝的纵向和横向收缩共同作用下造成较大的压应力而引起波浪变形。

二、控制焊接残余变形的工艺措施1.设计方面在保证构件有足够承载能力的前提下,尽量减少焊缝尺寸,焊缝的数量,合理安排焊缝的位置,焊缝尽可能对称分布避免局部焊缝过分集中。

2.工艺方面选择合理的组装焊接顺序a)大型复杂的焊接结构,在条件允许的情况下,分成若干个分别焊接,然后将各单元总体拼装成整体后再进行整体焊接。

b)对称结构上的对称焊缝,这样可以使两侧产生的焊接变形相互抵消。

c)非对称布置的焊缝。

3.反变形法焊前使焊件具有一个与焊后变形方向相反、大小相当的变形,以便恰好能抵消焊接后产生的变形。

这种方法的关键在于反变形量大小的设置,反变形量的大小应依据在自由状态下施焊测得的焊接变形,并结合弹性变形作适当的调整。

.4.刚性固定法焊前对焊件要用外加刚性拘束,使其在不能自由变形的条件下焊接,强制焊接在焊接时不能自由变形,这样可减小焊接变形。

应指出,当外加刚性拘束去除后,由于残余应力的作用,焊件上会残留一定的变形,但比起自由变形来小得多,另外采用刚性固定法,使焊接接头中产生较大的残余应力,对于一些焊后容易裂的材料应慎用。

焊接变形分类

焊接变形分类

焊接变形分类
1. 收缩变形啊,就好比你把一块橡皮泥捏成一个形状后,它会变小一点,对不?比如焊接一块钢板,冷却后它就会变短变窄呢!
2. 角变形可有意思啦,就像一张纸被折了一下,两边就翘起来啦!比如说焊接一个角钢,两边不就会向两边弯嘛!
3. 弯曲变形呢,哎呀,这不就像一根小木棍被压弯了似的嘛!像那长长的钢梁焊接后可能就会中间向下弯哟!
4. 波浪变形呀,就如同水面上的波浪起伏一样嘞!你想想焊接薄金属板时,不就可能出现这样高低起伏的情况嘛!
5. 扭曲变形,这可真让人头疼呀!就像拧麻花一样扭起来啦!像个复杂的焊件可能一不小心就变成扭曲的啦!
6. 错边变形,这就像是两块积木没对齐一样呢!焊接不同厚度的焊件时就容易出现这种情况呀!
总之啊,焊接变形的分类可真是不少,每一种都得小心应对,不然就会出问题啦!。

残余变形焊接残余变形的种类

残余变形焊接残余变形的种类

1 机械加工质量包括机械加工精度和机械加工表面质量。

(1)试切法:单件小批量生产(2)调整2 工件在加工时四种获得尺寸精度的方法:法(3)定尺寸刀具法(4)自动控制法3 机床的几何误差:机床的制造误差、磨损和安装误差。

其中对加工程度影响较大的是:主轴回转误差、导轨误差和传动链误差。

主轴的回转误差:机床主轴部件结构有滑动轴承和滚动轴承两大类。

主轴用滑动轴承结构中:主轴以主轴颈在轴承内回转。

主轴轴颈误差将直接传给工件,造成工件的圆度误差,而轴承孔误差则对加工精度的影响较小。

主轴用滚动轴承的结构中:主轴的回转精度取决与滚动轴承的精度和滚动轴承配合件的精度。

提高主轴回转精度的途径:1设计和制造高回转精度的主轴部件(2)使回转精度不依赖于机床主轴4 刀具与夹具误差。

调整误差:由于调整不准确带来的误差。

(1)内部热源:切削热(对加工精度的影响尤为直接)和摩擦5 工艺系?车娜仍矗?热(2)外部热源:环境温度和热辐射(1)6 产生内应力的原因:毛坯制造中产生的内应力(2)切削加工引起的内应力(3)冷校直引起的内应力(1)合力设计零件结构(2)采取时效处理(3)合理安减少或消除内应力措施:排工艺过程(1)系统误差:常值系统误差和规律性变化的系统误差(2)偶然误差7 加工误差:(随机误差)8 机械加工中的振动:(1)自由振动:迅速衰减,一般对切削过程没有什么影响。

(2)强迫振动:外界周期性干扰力的作用而引起的不衰减振动,其振源可分为机内振源和机外振源。

特点:系统的振动频率等于外界周期性干扰力的频率b、a、当外界周期性干扰力的频率等于或接近系统的固有频率时,将出现共振现象。

减小途径:a、减小和消除振源的激振力b、隔振c、提高工艺系统的刚度和阻尼。

(3)自激振动:振动过程本身引起切削力的周期性变化而产生的振动,由周期性变化的切削力加强和维持振动,使振动系统补充了由阻尼作用消耗的能量。

特点:a、是一种不衰减的振动 b 其振动频率等于或接近与系统的固有频率c、停止切削或磨削过程,即使机床仍空运转,自激振动也就停止。

焊接残余变形

焊接残余变形

焊接残余变形一、焊接残余变形的分类1.纵向和横向收缩变形a)纵向收缩:焊件在焊后沿焊缝长度方向上的收缩。

纵向收缩变形随焊缝长度、焊缝熔敷金属截面积的增加而增加。

b)横向收缩:焊件在焊后沿焊缝宽度方向上的收缩。

横向收缩变形随焊接热输入、焊缝宽度、焊脚尺寸的增加而增加。

2.角变形是焊接时,由于焊缝区沿厚度方向产生的横向收缩不均匀引起的弯曲变形。

角变形的大小与焊接方法、焊接道数及坡口形式有关。

3.弯曲变形是结构上焊缝分布不时称,焊缝收缩引起的变形,用挠度f表示。

挠度是指焊件的中心轴线偏离原中心轴线的最大距离。

4.扭曲变形是焊件的施焊顺序不合理、组装不良或纵向有错边,焊接时角变形量长度方向不均匀,焊缝的纵向和横向收缩没有限一定的规律,引起的变形。

5.波浪变形由于结构件的刚性较小,在焊缝的纵向和横向收缩共同作用下造成较大的压应力而引起波浪变形。

二、控制焊接残余变形的工艺措施1.设计方面在保证构件有足够承载能力的前提下,尽量减少焊缝尺寸,焊缝的数量,合理安排焊缝的位置,焊缝尽可能对称分布避免局部焊缝过分集中。

2.工艺方面选择合理的组装焊接顺序a)大型复杂的焊接结构,在条件允许的情况下,分成若干个分别焊接,然后将各单元总体拼装成整体后再进行整体焊接。

b)对称结构上的对称焊缝,这样可以使两侧产生的焊接变形相互抵消。

c)非对称布置的焊缝。

3.反变形法焊前使焊件具有一个与焊后变形方向相反、大小相当的变形,以便恰好能抵消焊接后产生的变形。

这种方法的关键在于反变形量大小的设置,反变形量的大小应依据在自由状态下施焊测得的焊接变形,并结合弹性变形作适当的调整。

4.刚性固定法焊前对焊件要用外加刚性拘束,使其在不能自由变形的条件下焊接,强制焊接在焊接时不能自由变形,这样可减小焊接变形。

应指出,当外加刚性拘束去除后,由于残余应力的作用,焊件上会残留一定的变形,但比起自由变形来小得多,另外采用刚性固定法,使焊接接头中产生较大的残余应力,对于一些焊后容易裂的材料应慎用。

焊接变形产生的原因及分类

焊接变形产生的原因及分类

焊接变形产生的原因及分类
    由于焊接接头形式,工件的厚度和形状、焊缝的长度及其位置不同,焊接时会出现各种形式不同的变形。

大体上可分为:纵向变形、横向变形、弯曲变形、角变形、波浪变形、扭曲变形等。

由于焊接接头形式,工件的厚度和形状、焊缝的长度及其位置不同,焊接时会出现各种形式不同的变形。

大体上可分为:纵向变形、横向变形、弯曲变形、角变形、波浪变形、扭曲变形等。

焊接变形和应力的形成焊接变形和应力是由诸多因素同事作用造成的。

其中最主要的因素有:焊接上温度分布不均匀;熔敷金属的收缩;焊接接头金属组织转变及工件的刚性约束等。

焊件上的温度分布不均匀由于电弧的作用,焊件局部被加热到熔化温度,焊缝与母材之间形成了很大的温度梯度。

按热胀冷缩的原理,物体受热要伸长,不同的温度其伸长量不同,接头的高温区域要求伸长量大而受阻,形成了压应力;而温度较低的区域伸长量小的部分因抵抗高温区的伸长,形成了拉应力。

冷却过程中,熔化金属的体积要收缩,而接头以外的母材则限制了它的收缩便在焊缝区形成了拉伸应力,而母材临近焊缝区承受了压缩应力。

焊缝及临近焊缝区在高温时几乎丧失了屈服强度,在应力作用下便会产生塑性变形,冷却后焊件内便形成了残余应力和残余变形。

熔敷金属的收缩焊缝金属在凝固及随后冷却过程中体积要收缩。

在焊件内引起变形与应力,其变形和应力的大小取决于熔敷金属对的收缩量,而熔敷金属的收缩量又取决于熔化金属的数量。

如V型坡口的角变形,就是由于焊缝上部的熔敷金属的数量多,收缩量大,而焊缝下部的截面小,熔敷金属的数量小,收缩量也小,上下收缩的不一致造成的。

焊接变形的主要形式

焊接变形的主要形式

焊接变形的主要形式
焊接变形是由于热输入和冷却引起的,在焊接过程中,焊缝和母材受到热变形和冷却收缩的影响,从而导致材料的形状发生变化。

主要的焊接变形形式包括以下几种:
1.线形变形(拉伸或收缩):这是焊接最常见的变形形式。

焊接过程中,热输入会使焊缝和母材变热膨胀,当冷却时,会产生线形拉伸或收缩。

这种变形可以导致焊接材料的长度增加或减少。

2.弯曲变形:弯曲变形是由于不均匀的热输入引起的,其中焊接接头的一侧受到更多的热影响,从而导致焊缝区域的弯曲。

3.翘曲变形:翘曲变形是焊接材料的一侧受到较多的热输入,使其膨胀,而另一侧受到较少的热输入,导致焊接材料呈现弯曲或翘曲的形状。

4.转动变形:在角接头的焊接中,热输入可能导致角度的变化,从而使工件在角度上发生旋转。

5.板材变形:焊接过程中,大型板材可能会因为不均匀的热输入而导致板材整体发生变形,如扭曲和翘曲。

6.螺旋扭曲变形:这种变形通常发生在长焊缝上,焊接后,焊缝可能呈现螺旋形的扭曲。

为减少焊接变形,可以采取以下措施:
使用适当的夹具和支撑结构,以固定工件的位置。

控制焊接参数,如焊接电流、电压和焊接速度,以减少热输入。

使用预热和后热处理来减少热应力。

采用适当的焊接序列,以平衡热输入。

使用应力释放切口或减小焊缝的尺寸。

注意,不同类型的焊接工艺和焊接材料可能会产生不同类型的变形,因此需要根据具体情况采取相应的措施来减少变形。

焊接变形种类及预防措施

焊接变形种类及预防措施

控制焊接残余应力的工艺措施1.采用合理的焊接顺序和方向●先焊接收缩量较大的焊缝,使焊缝能较自由的收缩。

●焊缝交叉时,先焊错开的短焊缝,后焊直通长焊缝,使焊缝有较大的横向收缩余地。

●先焊在工作时受力较大的焊缝,使内应力合理分布。

2.降低焊缝的拘束度在焊接镶块的封闭焊缝或其它拘束度大的焊缝时,可采用反变形法降低焊件的局部刚度,从而减小焊缝的拘束度。

3.锤击焊缝可用头部带小圆弧的工具锤击焊缝,使焊缝得到延展,降低内应力,锤击应保持均匀适度,避免锤击过分,以防止产生裂缝。

一般不锤击第一层和表面层。

4.局部加热造成反变形在焊接结构的适当部位加热使之伸长,使它产生一个与焊缝收缩方向相反的变形。

在加热区冷却收缩时,焊缝就可能比较自由地收缩,从而减少内应力。

5.采用线能量小的工艺措施和焊接方法,或强制冷却措施。

6.预拉伸补偿焊缝收缩(机械拉伸或加热拉伸)。

焊后降低或消除残余应力的方法有用机械力或冲击能的办法和热处理方法。

具体工艺措施略。

控制焊接变形的工艺措施1.反措施当构件刚度过大(如大型箱形梁等),采用上述强制反变形有困难时,可以先将梁的腹板在下料拼板时作成上挠的,然后再进行装配焊接(如桥式起重机箱形大梁)。

在薄板上焊接骨架时,对薄板采用加热(SH法)、机械预拉伸(SS法)、或者两者同时使用(SSH法)使其伸长,然后再薄板上装配焊接骨架,薄板预拉伸和加热后再冷却所产生的拉应力可以有效地降低焊接应力防止失稳波浪变形。

在薄板对接时也可采用在焊缝两侧一定距离处适当宽度上加热,使焊缝得到拉伸,从而减少压缩塑性变形,降低残余内应力,而消除波浪变形,此法即为低应力无变形法(LSND法)。

2.刚性固定法对防止弯曲变形的效果远不如反变形法。

但对角变形和波浪变形较有效。

例如法兰面的角变形。

焊接薄板时为防止波浪变形,在焊缝两侧紧压固定,加压位置应尽量接近焊缝并保持压力均匀。

为此,可采用带一定挠度的压块或者采用琴键式的多点压块。

3.选用合理的焊接方法和规范选用能量比较集中的焊接方法,如CO2保护焊、等离子弧焊代替气焊和手工电弧焊进行薄板焊接可减少变形量。

工程技术知识:建筑工程钢结构焊接变形的种类

工程技术知识:建筑工程钢结构焊接变形的种类

工程技术知识:建筑工程钢结构焊接变形的
种类
焊接变形可分为线性缩短、角变形、弯曲变形、扭曲变形、波浪形失稳变形等。

线性缩短:是指焊件收缩引起的长度缩短和宽度变窄的变形,分为纵向缩短和横向缩短。

角变形:是由于焊缝截面形状在厚度方向上不对称所引起的,在厚度方向上产生的变形。

波浪变形:大面积薄板拼焊时,在内应力作用下产生失稳而使板面产生翘曲成为波浪形变形。

扭曲变形:焊后构件的角变形沿构件纵轴方向数值不同及构件翼缘与腹板的纵向收缩不一致,综合而形成的变形形态。

扭曲变形一旦产生则难以矫正。

主要由于装配质量不好,工件搁置不正,焊接顺序
和方向安排不当造成的,在施工中特别要引起注意。

构件和结构的变形使其外形不符合设计图纸和验收要求不仅影响后装配工序的正常进行,而且还有可能降低结构的承载能力。

如已产生角变形的对接和搭接构件在受拉时将引起附加弯矩,其附加应力严重时可导致结构的超载破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 试述焊接残余变形的种类。

焊接过程中焊件产生的变形称为焊接变形。

焊后,焊件残留的变形称为焊接残余变形。

焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。

2 焊件在什么情况下会产生纵向收缩变形?
焊件焊后沿平行于焊缝长度方向上产生的收缩变形称为纵向收缩变形。

当焊缝位于焊件的中性轴上或数条焊缝分布在相对中性轴的对称位置上,焊后焊件将产生纵向收缩变形,其焊缝位置见表1。

焊缝的纵向收缩变形量随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减少,其近似值见表2。

表2 焊缝纵向收缩变形量的近似值(mm/m)
注:表中所表示的数据是在宽度大约为15倍板厚的焊缝区域中的纵向收缩变形量,适用于中等厚度的低碳钢板。

3 试述焊缝的横向收缩变形量及其计算。

焊件焊后在垂直于焊缝方向上发生的收缩变形称为横向收缩变形,横向收缩变形量随板厚的增加而增加。

低碳钢对接接头、T形接头和搭接接头的横向收缩变形量,见表3、表4。

对接接头横向收缩变形量的近似计算公式,见表5。

当两板自由对接、焊缝不长、横向没有约束时,横向收缩变形量要比纵向的大得多。

4 焊件在什么情况下会产生弯曲变形?
如果焊件上的焊缝不位于焊件的中性轴上,并且相对于中性轴不对称(上下、左右),则焊后焊件将会产生弯曲变形。

如果焊缝集中在中性轴下方(或下方焊缝较多)则焊件焊后将产生上拱弯曲变形;相反如果焊缝集中在中性轴上方(或上方焊缝较多),则焊件焊后将产生下凹弯曲变形。

又如果焊件相对焊件中性轴左、右不对称,则焊后将产生旁弯,焊件产生弯曲变形的焊缝位置,见表6。

5 试述焊件产生角变形的原因及其数值。

焊接时,由于焊接区沿板材厚度方向不均匀的横向收缩而引起的回转变形称为角变形见图1b。

产生角变形的原因是,焊缝的截面总是上宽下窄,因而横向收缩量在焊缝的厚度方向上分布不均匀,上面大、下面小,结果就形成了焊件的平面偏转,两侧向上翘起一个角度。

电渣焊缝由于焊缝厚度均匀,所以焊后焊件基本上不产生角变形。

有色金属和薄板,由于焊接过程中熔池承托不住焊件的重量,使两侧板下垂,结果会引起相反方向的角变形。

低碳钢对接接头在自由状态下,焊后角变形的实验值,见表7。

6 试述波浪变形和扭曲变形产生的原因。

⑴波浪变形焊后构件产生形似波浪的变形称为波浪变形。

薄板对接焊后,存在于板中的内应力,在焊缝附近是拉应力,离开焊缝较远的两侧区域为压应力,如压应力较大,平板失去稳定就产生波浪变形,见图1d。

此外,当焊件上的几条角焊缝靠得很近时,由每角焊缝所引起的角变形连贯在一起也会形成波浪变形,见图2。

波浪变形通常产生在薄板结构中。

⑵扭曲变形构件焊后两端绕中性轴相反方向扭转一角度称为扭曲变形,见图1e。

如果构件的角变形沿长度上分布不均匀和纵向有错边,则往往会产生扭曲变形。

如图3a 所示工字梁的四条角焊缝在定位焊后不采用适当夹具,按图3b 所示的焊接方向(相邻焊缝反向)进行焊
接,这时角变形沿着焊缝长度逐渐增大,使构件扭转,即构件扭转,即产生扭曲变形。

1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。

例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。

若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。

图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1的位置几
8 如何利用合理的焊接顺序来控制焊接残余变形?
⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。

如图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。

如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。

但对称焊接不能完全消除变形,因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。

⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变形。

9 如何利用合理的焊接方向来控制焊接残余变形?
为控制焊接残余变形而采用的焊接方向,有以下几种:
⑴长焊缝同方向焊接如T形梁、工字梁等焊接结构,具有互相平行的长焊缝,施焊时,应采用同方向焊接,可以有效地控制扭曲变形,见图6a。

⑵逆向分段退焊法同一条或同一直线的若干条焊缝,采用自中间向两侧分段退焊的方法,可以有效地控制残余变形,见图6b。

⑶跳焊法如构件上有数量较多又互相隔开的焊缝时,可采用适当的跳焊,使构件上的热量分布趋于均匀,能减少焊接残余变形,见图6c。

10 如何利用反变形法来控制焊接残余变形?
为了抵消焊接残余变形,焊前先将焊件向与焊接残余变形相反的方向进行人为的变形,这种方法称为反变形法。

例如,为了防止对接接头产生的角变形,可以预先将对接处垫高,形成反向角变形见图7a。

为了防止工字梁翼板焊后产生角变形,可以将翼板预先反向压弯见图7b。

在薄壳结构上,有时需在壳体上焊接支承座之类的零件,焊后壳体往往发生塌陷,为此,可以在焊前将支承座周围的壳壁向外顶出,然后再进行焊接见图7c。

采用反变形法控制焊接残余变形,焊前必需较精确地掌握焊接残余变形量,通常用来控制构件焊后产生的弯曲变形和角变形,如反变形量留得适当,可以基本抵消这两种变形。

11 如何利用刚性固定法来控制焊接残余变形?
焊前对焊件采用外加刚性拘束,强制焊件在焊接时不能自由变形,这种防止焊接残余变形的方法称为刚性固定法。

采用压铁防止薄板焊后的波浪变形见图8。

刚性固定法简单易行,适用面广,不足之处是焊后当外加刚性拘束卸掉后,焊件上仍会残留一些变形,不能完全消除,不过要比没有拘束时小得多。

另外,刚性固定法将使焊接接头中产生较大的焊接应力,所以对于一些抗裂性较差的材料应该慎用。

12 如何利用散热法和自重法来控制焊接残余变形?
⑴散热法焊接时用强迫冷却的方法将焊接区的热量散走,减少受热面积从而达到减少变形的目的,这种方法称为散热法,利用散热法减少薄板的焊接变形见图9。

图9b是将焊件浸入水中进行焊接(常用于小容器焊接)。

图9c是用水冷铜块进行冷却。

散热法不适用于焊接淬硬性较高的材料。

⑵自重法利用焊件本身的质量在焊接过程中产生的变形来抵消焊接残余变形的。

相关文档
最新文档