数学必修一讲义

合集下载

高中数学必修一讲义(知识点带题目)

高中数学必修一讲义(知识点带题目)

第二章 复习题........................................................................... 36
第三章
3.1.
函数的应用
函数与方程
3.1.1.
方程的根与函数零点............................................................................................44
1
记号 名称
意义 (1)A A A 中的任一元素都属 于B
性质
示意图
A B
子集 (或
B A)
AB

A (3)若 A B 且 B C ,则 A C (4)若 A B 且 B A ,则 A B
(2) (1)

A(B)
B
A

真子集 (或 B A)

A B ,且 B 中至
二次函数
0
0
0
y ax 2 bx c (a 0)
的图象
O
O
L
=
O
一元二次方程
ax 2 bx c 0(a 0)
的根
b b2 4ac x1,2 2a
(其中 x1
x1 x2
x2 ) {x | x
b 2a
无实根
ax 2 bx c 0(a 0)
2.4.
其它函数及概念 2.4.1. 2.4.2. 2.4.3. 反函数概念.......................................................................................................... 29 对勾函数................................................................................................................30 三次函数................................................................................................................30

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

知识点3、集合间的基本关系知识梳理1、子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集图示(1)任何一个集合是它本身的子集,即A⊆A.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.3、真子集的概念(1)A⊂B且B⊂C,则A⊂C;(2)A⊆B且A≠B,则A⊂B常考题型题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A.1B.2 C.3 D.4①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.判断集合间关系的方法(1)用定义判断.首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.变式训练能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()A. B. C. D.题型二、有限集合子集的确定例2、(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}⊂≠M⊆{1,2,3,4,5}的集合M有________个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.变式训练非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.变式训练已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.课时小测1、给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有()A.0个B.1个C.2个D.3个2、已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆C C.A⊂≠B⊆C D.A=B⊆C3、已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4、集合A={x|0≤x<3且x∈N}的真子集的个数为________.5、已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.同步练习一、选择题1.已知集合A,B,若A不是B的子集,则下列命题中正确的是A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∉A2.如果{}|1A x x =>-,那么A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆ 3.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)∅⊆{0,1,2}. A .0 B .1 C .2 D .3 4.若集合{}|0A x x =≥,且B A ⊆,则集合B 可能是A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R 5.若2{|,}x x a a ⊂∅≤∈≠R ,则实数a 的取值范围是A .B .C .D . 6.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}2|0N x x x =+=关系的韦恩(Venn)图是A B C D7.设集合{1,2}M =,2{}N a =,那么 A .若1a =,则N M ⊆B .若N M ⊆,则1a =C .若1a =,则N M ⊆,反之也成立D .1a =和N M ⊆成立没有关系8.已知集合{}4,5,6P =,,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为A .32B .31C .30D .以上都不对二、填空题9.设P ={x |x <4},Q ={x |-2<x <2},则P Q .10.已知集合,,则满足条件的集合C 的个数为_____.三、解答题11.写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集. (0,)+∞[0,)+∞(,0]-∞(,0)-∞{}1,2,3Q =2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N A C B ⊆⊆12.已知集合{}{}2,4,6,8,9,1,2,3,5,8A B ==,又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减去2后,则变为B 的一个子集,求集合C .13.已知集合A ={x|2a −1<x <3a +1},集合B ={x|−1<x <4}.(1)若A ⊆B ,求实数a 的取值范围;(2)是否存在实数a ,使A =B ?若存在,求出a 的值;若不存在,说明理由.知识点4、集合的并集、交集知识梳理1、并集的概念、并集的性质(1)A ∪B =B ∪A ,即两个集合的并集满足交换律.(2)A ∪A =A ,即任何集合与其本身的并集等于这个集合本身. (3)A ∪∅=∅∪A =A ,即任何集合与空集的并集等于这个集合本身.(4)A ⊆(A ∪B),B ⊆ (A ∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A ⊆B ,则A ∪B =B ,反之也成立,即任何集合同它的子集的并集,等于这个集合本身. 3、交集的概念4、交集的性质(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩∅=∅∩A=∅,即任何集合与空集的交集等于空集.(4)A∩B⊆A,A∩B⊆B,即两个集合的交集是其中任一集合的子集.(5)若A⊆B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.常考题型题型一、并集的运算例1、(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8} D.{4,5,6,8} (2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2}变式训练若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个题型二、交集的运算例2、(1)若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B等于()A.{1,2} B.{0,1} C.{0,3} D.{3}(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.变式训练已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.题型三、交集、并集的性质及应用例3、已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式训练已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∩B=A,试求k的取值范围.课时小测1、设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2、已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=()A.空集B.{1}C.(1,1) D.{(1,1)}3、若集合A={x|-1<x<5},B={x|x≤-1,或x≥4},则A∪B=________,A∩B=________.4、已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.5、设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.知识点5、补集及综合应用知识梳理1、全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2、补集的概念及性质的补集,记作U=∅,U∅U U(U(U U常考题型题型一、补集的运算例1、(1)设全集U=R,集合A={x|2<x≤5},则U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则U A=________,U B=________.变式训练设全集U={1,3,5,7,9},A={1,|a-5|,9),U A={5,7},则a的值为________.题型二、集合的交、并、补的综合运算例2、已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(U A)∪B,A∩(U B),U(A∪B).变式训练已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求U(A∪B),U(A∩B),(U A)∩(U B),(U A)∪(U B).题型三、补集的综合应用例3、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⊂≠U P,求实数a的取值范围.变式训练已知集合A={x|x<a},B={x<-1,或x>0},若A∩(R B)=∅,求实数a的取值范围.课时小测2、已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1,或x >4},那么集合A ∩(U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3,或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3、已知集合A ={3,4,m },集合B ={3,4},若A B ={5},则实数m =________. 4、已知全集U =R ,M ={x |-1<x <1},U N ={x |0<x <2},那么集合M ∪N =________.5、设U =R ,已知集合A ={x|-5<x<5},B ={x|0≤x<7},求(1)A∩B ;(2)A ∪B ;(3)A ∪(U B);(4)B∩(U A);(5)(U A )∩(U B ).同步练习一、选择题1、已知集合{1,2,3,4,5,6}U =,{1,3,4}A =,则UA =A .{5,6}B .{1,2,3,4}C .{2,5,6}D .{2,3,4,5,6} 2、已知集合{}|1A x x =>,{|1}B x x =≤,则 A .AB ≠∅ B .A B =RC .B A ⊆D .A B ⊆3、若集合{}{}1,2,3,4,2A B x x ==∈≤N ,则AB 中的元素个数是A .4B .6C .2D .34、已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}5、设集合{},A a b =,集合{}1,5B a =+,若{}2A B =,则A B =A .{}1,2B .{}1,5C .{}2,5D .{}1,2,5 6、若集合AB BC =,则集合A,B,C 的关系下列表示正确的是。

高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)

高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)

专题1.5 集合的基本运算-重难点题型精讲1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质4.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.5.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.【题型1 并集的运算】【例1】(2022•河南模拟)已知集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1},则集合A∪B=()A.(2,3)B.(﹣2,2)C.(﹣2,+∞)D.(﹣∞,3)【变式1-1】(2022•东城区校级三模)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【变式1-2】(2022春•乐清市校级期中)设集合A={2,3},B={x|2<x<4},则A∪B=()A.{3}B.{2,3}C.(2,3)D.[2,4)【变式1-3】(2022春•平罗县校级期中)已知集合M={x|﹣1<x<1},N={x|0<x<2},则M∪N等于()A.(0,1)B.(−1,2)C.(−1,0)D.(1,2)【题型2 交集的运算】【例2】(2022•金东区校级模拟)设集合A={x|x≥2},B={x|﹣1<x<3},则A∩B=()A.{x|x≥2}B.{x|x<2}C.{x|2≤x<3}D.{x|﹣1≤x<2}【变式2-1】(2022•金凤区校级三模)已知集合A={x|1<x﹣1≤3},B={2,3,4},则A∩B=()A.{2,3,4}B.{3,4}C.{2,4}D.{2,3}【变式2-2】(2022•浙江学业考试)已知集合P={0,1,2},Q={1,2,3},则P∩Q=()A.{0}B.{0,3}C.{1,2}D.{0,1,2,3}【变式2-3】(2022•巴宜区校级二模)集合A={x∈Z|x<2},B={﹣1,0,1,2,3},则A∩B=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{0,1}D.{1}【题型3 由集合的并集、交集求参数】【例3】(2021秋•宜宾期末)已知集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.(1)若a=1,求A∪B;(2)若A∩B=A,求实数a的取值范围.【变式3-1】(2021秋•资阳期末)已知全集U=R,集合A={x|2a+1<x<2a+6},B={x|﹣4≤x≤2}.(1)若a=﹣1,求A∪B;(2)若A∩B≠∅,求实数a的取值范围.【变式3-2】(2021秋•伊州区校级期末)若集合A={x|2x﹣1⩾3},B={x|3x﹣2<m},C={x|x<5,x∈N}.(1)求A∩C;(2)若A∪B=R,求实数m的取值范围.【变式3-3】(2021秋•黑龙江期末)已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)当用m=5时,求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.【题型4 补集的运算】【例4】(2022•沈阳模拟)已知全集U={x∈N|﹣1<x≤3},A={1,2},∁U A=()A.{3}B.{0,3}C.{﹣1,3}D.{﹣1,0,3}【变式4-1】(2022•林州市校级开学)已知全集A={x|1≤x≤6},集合B={x|1<x<5},则∁A B=()A.{x|x≥5}B.{x|5<x≤6或x=1}C.{x|x≤1或x≥5}D.{x|5≤x≤6}∪{1}【变式4-2】(2022•乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M【变式4-3】(2022•北京)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},则∁U A=()A.(﹣2,1]B.(﹣3,﹣2)∪[1,3)C.[﹣2,1)D.(﹣3,﹣2]∪(1,3)【题型5 交集、并集、补集的综合运算】【例5】(2022•临沂三模)已知集合A=N,B={x|x≥3},A∩(∁R B)=()A.{﹣1,0}B.{1,2}C.{﹣1,0,1}D.{0,1,2}【变式5-1】(2022•柯桥区模拟)已知集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1},则∁R(A∪B)=()A.(﹣∞,0)B.[﹣1,0]C.[0,1]D.(1,+∞)【变式5-2】(2022•大通县三模)已知全集U={﹣1,0,1,2,3,4},集合A={x|x≤2,x∈N},B={﹣1,0,1,2},则A∪(∁U B)=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{0,1,2,3,4}【变式5-3】(2022•义乌市模拟)已知全集U=R,集合P={x|﹣2<x<1},Q={x|x⩾0},则P∩(∁U Q)=()A.(﹣2,0)B.(0,1)C.(﹣∞,0)∪(0,1)D.(﹣∞,1)【题型6 利用集合间的关系求参数】【例6】(2021秋•沈阳期末)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},U=R.(1)若A∪∁U B=U,求实数m的取值范围;(2)若A∩B≠∅,求实数m的取值范围.【变式6-1】(2021秋•湖州期末)已知集合A={x|﹣3≤x≤2},B={x|2m﹣1≤x≤m+3}.(1)当m=0时,求∁R(A∩B);(2)若A∪B=A,求实数m的取值范围.【变式6-2】(2021秋•海东市期末)已知集合A={x|a<x<2a},B={x|x≤﹣4或x≥3}.(1)当a=2时,求A∪(∁R B);(2)若A⊆∁R B,求a的取值范围.【变式6-3】(2021秋•玉溪期末)已知集合A={x|a﹣1≤x≤a+1},B={x|x−5x+3≤0}.(1)若a=﹣3,求A∪B;(2)在①A∩B=∅,②B∪(∁R A)=R,③A∪B=B,这三个条件中任选一个作为已知条件,求实数a 的取值范围.。

高一数学讲义

高一数学讲义

在一元二次方程 ax 2+ bx + c = 0 (a ≠ 0) 有两个实根 x 1, x 2 ,那么有 ⎨⎧x + x = ______x ⋅ x = ______ ⎩第一部分 初中知识点复习1.一元二次方程的根及其分布【知识梳理】1.根的判别式一元二次方程 ax 2 + bx + c = 0 (a ≠ 0) 根的情况由决定,我们把它叫做根的判别式,通常用符号_______表示. 一般地,方程 ax 2 + bx + c = 0 (a ≠ 0)(1)如果______________,则说明方程有个实数根(2)如果______________,则说明方程有个实数根(3)如果______________,则说明方程有个实数根2.根与系数关系(韦达定理)12 1 2拓展:【经典例题】例 1.讨论关于 x 的方程 (m - 1)x 2 + 2mx + (m - 2) = 0 的根的情况.x2;例2.若x1,x2分别是一元二次方程2x2+5x-3=0的两根,求下列式子的值:(1)|x1-x2|;(2)11x2+12(3)x3+x312例3.已知关于x的一元二次方程x2-2mx+m+2=0(1)若方程的两个根都是正数,求m的取值范围;(2)若方程的两个根一个大于0,另一个小于0,负根的绝对值小,求m的取值范围;(3)若方程的两个根一个大于1,另一个小于1,求m的取值范围.例4.若一元二次方程x2-4x+a=0的两个根,一个比3大,一个比3小,求a的取值范围.A.0<k≤14B.0<k≤14C.<k≤14D.k≤【过关练习】1.讨论关于x的方程ax2-(1+a)x+1=0的根的情况.2.若x,x是方程x2+2x-2018=0的两个根,试求下列各式的值:12(1)(x1-5)(x2-5)(2)x1-x2(3)11x+x123.若方程x2-11x+(30+k)=0有两个实数根,且两个实数根均大于5,则k的取值范围为()1144.已知关于x的一元二次方程2x2+4x+m-1=0有两个非零实数根,求满足下列条件时,m的取值范围:(1)两根都小于0;(2)一根大于0,一根小于0.2.一元二次不等式【知识梳理】“三个二次”之间的关系:假设相应的一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2且x1<x2,∆=b2-4ac,则一元二次不等式的解的各种情况如下表:∆>0∆=0∆<0二次函数f(x)=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根一元二次不等式ax2+bx+c>0(a>0)的解集一元二次不等式ax2+bx+c<0(a>0)的解集总结:解一元二次不等式的口诀:【经典例题】例1.解不等式:(1)x2+x-6>0(2)x2-8x+16<0(3)-2x2+3x+7≥0例2.解下列不等式:x2≥16x2≤25(2x−1)2≤9−4+x−x2<0(2−x)(x+3)>02x2+7x+3>0例3.解关于x的不等式:(m-1)x2+2mx+(m-2)>0(m∈R)【过关练习】1.解不等式:2x2+5x+3>0−x2+3x+10<02x2−x−1<03x2−x−42x2−7x−4>0(x−1)(3−x)<5−2x −1x2+3x−5>0−x2+8x−3>0x2−4x−5≤0 22.解关于x的不等式:x2-(a+a2)x+a3>0(a∈R)3.分式不等式【知识梳理】分式不等式的解题步骤:【经典例题】例1.解下列分式不等式x-1 x+2<03x7-2x≥0x-3x+7<2x-1 -x+2>12x-33x-4≤2-1<3x-1x+2<2例2.解下列高次不等式x-2x2+3x+2>0x2+xx2+x-6<x2+x2x-1<2(x-2)2(x-3)3(x+1)<0(x+3)(-2)(-4)>0x2-2x-1x-2<0x x【过关练习】1.解下列分式不等式x-3 2-x≥02x-1-x+2>12x-1x+3>1x-2 x+3≥2x32x≥22x-1x+3>12.解下列高次不等式2x2+3x-2 x2-2x-3≤0.x2-3x+2x2-2x-3≤0(x-2)2(x-3)3(x+1)<07x-5x2x2-5x+6<xxx2-3x-4(x-2)(+3)≤00<x-1x<1x⎪ -a < 0) .⎨0 (a4.绝对值不等式【知识梳理】一.绝对值的概念1.几何意义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值 2.代数意义:______的绝对值是他本身,________的绝对值是他的相反数,_______的绝对值是 0,⎧ a (a > 0)即 a = ⎪= 0)⎩二.绝对值不等式两个绝对值不等式: x < a (a > 0) ⇔ ________________ ;x > a (a > 0) ⇔ ________________【经典例题】例 1.化简(1) 2x - 1 + x - 3 (2) 5 x - 1 - 3 x - 3例 2.解下列不等式(1) x - 1 > 4(2) x - 1 + x - 3 > 4(3) x - 1 + 3 x - 3 > 4(4) 5 x - 1 - 3 x - 3 > 4例2.(1)解不等式:x+1+x+2<4(2)对任意的x,不等式x-a+x+2≥6恒成立,求实数a的范围【过关练习】1.化简下列各式(1)x-1+x-3(2)x-1+3x-32.解下列不等式(1)x+1-x-2≤2(2)3x-2+2x+1>9 3.(1)解不等式:x-1+x+2≥5(2)对任意的x,不等式x+a+x-2≥5恒成立,求实数a的范围第二讲集合(一)1.1.1集合的含义与表示知识点1.集合的概念:一般地,指定的某些对象的全体称为,简称“集”。

数学必修1讲义

数学必修1讲义

第一章集合与函数概念一、集合有关概念1、集合得含义:一般地,我们把研究对象统称为元素,把一些元素组成得总体叫做集合(简称为集)。

2、集合得中元素得三个特性:(1)元素得确定性:对于一个给定得集合,集合中得元素就是确定得,任何一个对象或者就是或者不就是这个给定得集合得元素。

(2)元素得互异性:任何一个给定得集合中,任何两个元素都就是不同得对象,相同得对象归入一个集合时,仅算一个元素。

(3)元素得无序性:集合中得元素就是平等得,没有先后顺序,因此判定两个集合就是否一样,仅需比较它们得元素就是否一样,不需考查排列顺序就是否一样。

3、元素与集合得关系:2hf7sHC。

51kBEbP。

(1)如果 a 就是集合 A 得元素,就说 a 属于A,记作:(2)如果 a 不就是集合 A 得元素,就说 a 不属于A,记作:4、集合得表示:*用拉丁字母表示集合:A={我校得篮球队员},B={1,2,3,4,5}*常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R(1)列举法:把集合中得元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2} aypYuMZ。

0DeBxzM。

(2) 图示法:Venn图(3) 描述法(数学式子描述与语言描述):把集合中得元素得公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素得一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有得共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}90qy1aJ。

2fZxY1j。

5、集合得分类:(1)有限集含有有限个元素得集合(2)无限集含有无限个元素得集合(3)空集不含任何元素得集合例:{x|x2=-5}二、集合间得基本关系1、包含关系(1)子集:真子集或相等(2)真子集2、相等关系:元素相同两个结论:任何一个集合就是它本身得子集,即A A对于集合A,B,C,如果 A B, B C ,那么 A C3、空集结论:空集就是任何集合得子集,就是任何非空集合得真子集*集合子集公式:含n个元素得集合子集有2ⁿ个,真子集有2ⁿ-1个三、集合得基本运算1、并集2、交集*性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∩B=A, A∩B=BAUA=A, AUΦ=A,AUB=BUA ,AUB包含A, AUB包含B3、全集与补集*性质:CU(CUA)=A,(CUA)∩A=Φ,(CUA)∪A=U,(CuA)∩(CuB)= Cu(AUB),(CuA) U (CuB)= Cu(A∩B)al5t6aw。

人教版高中数学必修一基础精品讲义

人教版高中数学必修一基础精品讲义

学科教师辅导讲义体系搭建一、知识概念(一)元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(二)集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集(三)集合间的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x ∉A}(四)集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A ⇔B ⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A ⇔A ⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U (∁U A)=A.典例分析考点一:集合的含义与表示例1、判断下列各组对象能否组成一个集合:(1)9以内的正偶数;(2)篮球打得好的人;(3)2012年伦敦奥运会的所有参赛运动员;(4)高一(1)班所有高个子同学.例2、集合A 是含有两个不同实数a-3,2a-1的集合,求实数a 的取值范围.例3、已知集合A 由a+2,(a+1)2,a 2+3a+3三个元素构成,且1∈A,求实数a 的值.例4、用列举法表示下列集合(1){}2A x Z x =∈≤;(2)(){},4,,M x y x y x N y N **=+=∈∈例5、现有三个实数的集合,既可以表示为{,,1}b a a,也可以表示为2{,,0}a a b +,则20142014a b +=________考点二:集合间的基本关系例1、已知集合M 满足{1,2}⊆M {1,2,3,4,5},求所有满足条件的集合M.例2、已知集合{x 2,x+y,0}={x,y x,1},求x 2015+y 2015的值为________.例3、将下列两集合相等的组的序号填在横线上。

高中数学必修一全册讲义教师学生双用带答案一对一班课通用

高中数学必修一全册讲义教师学生双用带答案一对一班课通用

集合的含义与表示__________________________________________________________________________________ __________________________________________________________________________________1、 通过实例了解集合的含义,并掌握集合中元素的三个特性。

2、 掌握元素与集合的关系,并能用符号“∈”或“∉”来表示。

3、 掌握列举法和描述法,会选择不同的方法来表示集合,记住常用数集的符号。

一、集合与元素的概念:一般地,一定范围内某些确定的,不同的对象的全体构成一个集合,简称集。

集合中每一个对象称为该集合的元素。

如所有的三角形可以组成集合,每个三角形都是这个集合的元素;所有的直角三角形也可以组成集合,每个直角三角形都是集合的元素;由1,2,3,4组成的集合{1,2,3,4}。

1,2,3,4就是这个集合的元素 。

类似“与2非常接近的全体实数”,“高个子”这样模糊的说法就不能确定集合。

特别提醒:1、集合是一个“整体”。

一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象。

2、集合具有两个方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件。

3、集合通常用大写的字母表示,如A B C 、、、……;元素通常用小写的字母表示,如a b c d 、、、……。

二、集合中元素的特性:1、确定性:设A 是一个给定的集合,x 是某一具体的对象,则x 或者是A 的元素,或者不是A 的元素,二者必居其一,不能模棱两可.2、互异性: 对于一个给定的集合,它的任意两个元素是不能相同的。

集合中相同的元素只能算是一个。

如方程0122=+-x x 有两个重根121==x x ,其解集只能记为{}1,而不能记为{}1,1。

3、无序性:集合中的元素是不分顺序的.如{},a b 和{},b a 表示同一个集合.特别提醒:集合和点的坐标是不同的概念,在平面直角坐标系中,点(l ,0)和点(0,l )表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合。

高中数学必修一讲义整合

高中数学必修一讲义整合

1.1集合热门考点01 集合的基本概念元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ∉. (3)集合的表示方法:列举法、描述法、区间法、图示法. (4)常见数集及其符号表示【典例1】集合M 是由大于2-且小于1的实数构成的,则下列关系式正确的是( ).MB.0M ∉C.1M ∈D.π2M -∈ 【典例2】(全国高考真题(文))已知集合,则集合中的元素个数为( )A .5B .4C .3D .2【特别提醒】1.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2.集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.热门考点02 集合间的基本关系集合间的基本关系(1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,也说集合A 是集合B 的子集.记为或.(2)真子集:对于两个集合A 与B ,如果,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集.记为A B ⊂≠.(3)空集是任何集合的子集, 空集是任何非空集合的真子集.(4)若一个集合含有n 个元素,则子集个数为2n 个,真子集个数为21n -. 【典例3】(2010·陕西省高考真题(理))已知全集,集合,,则集合中元素的个数为( )A .1B .2C .3D .4【例4】(2019·济南市历城第二中学高一月考)集合{}24,A x x x R ==∈,集合{}4,B x kx x R ==∈,若B A ⊆,则实数k =_________.【特别提醒】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.提醒:空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.热门考点03 集合的基本运算(1)三种基本运算的概念及表示A B ⊆B A ⊇A B ⊆2{|320}A x x x =-+={|2}B x x a a A ==∈,()UA B(2)三种运算的常见性质, , ,,,.,,., , ,.【典例5】(2018·全国高考真题(理))已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【典例6】(2019·北京高考真题(文))已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =( ) A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)【典例7】(2020届浙江省嘉兴市高三5月模拟)已知全集{1,2,3,4,5,6,7,8}U =,{}1,2,3A =,B ={4,5,6},则()()U U A B ⋂等于( )A .{}1,2,3B .{}4,5,6C .{1,2,3,4,5,6}D .{}7,8【典例8】已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)【总结提升】A A A = A ∅=∅ AB B A = A A A = A A ∅= A B BA =(C A)A U U C =U C U =∅U C U ∅=AB A A B =⇔⊆A B A B A =⇔⊆()U U UC A B C A C B =()U U U C A B C A C B =1.解决集合的基本运算问题一般应注意以下几点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.(3)注意数形结合思想的应用.集合运算常用的数形结合形式有数轴和Venn图.2.根据集合运算结果求参数,主要有以下两种形式:(1)用列举法表示的集合,直接依据交、并、补的定义求解,重点注意公共元素;(2)由描述法表示的集合,一般先要对集合化简,再依据数轴确定集合的运算情况,用区间法要注意端点值的情况.热门考点04 集合中的“新定义”问题【典例9】(2015·湖北高考真题(理))已知集合,,定义集合,则中元素的个数为()A.77 B.49 C.45 D.30【总结提升】解决集合新定义问题的着手点(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错误选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.第02讲 常用逻辑用语1.充分条件、必要条件与充要条件的概念p ⇒q 且q ppq 且q ⇒p pq 且qp2.全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示. 3.全称命题和存在性命题(命题p 的否定记为⌝p ,读作“非p ”)[方法技巧]1.区别A 是B 的充分不必要条件(A ⇒B 且B A ),与A 的充分不必要条件是B (B ⇒A 且AB )两者的不同.2.A 是B 的充分不必要条件⇔綈B 是綈A 的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.一、 经典例题考点一 充分条件与必要条件的判断【例1-2】(2019·上海市七宝中学高一月考)已知函数()f x 定义域是R ,那么“()f x 是增函数”是“不等式()(0.001)f x f x <+恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】函数()f x 为R 上的增函数⇒不等式()(0.001)f x f x <+恒成立,反之不成立,∴“()f x 是增函数”是“不等式()(0.001)f x f x <+恒成立”的充分不必要条件.故选:A规律方法 充要条件的两种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据使p ,q 成立的对象的集合之间的包含关系进行判断. 考点二 全称量词与存在量词【例2-1】(2019·江苏省高二期中)命题“[]1,3x ∀∈-,2320x x -+≤”的否定为( ) A .[]01,3x ∃∈-,200320x x -+>B .[]1,3x ∀∉-,2320x x -+>C .[]1,3x ∀∈-,2320x x -+>D .[]01,3x ∃∉-,200320x x -+>【答案】A【解析】因为全称命题的否定是特称命题,所以命题“[]1,3x ∀∈-,2320x x -+≤”的否定为“[]01,3x ∃∈-,200320x x -+>”.故选A .【例2-2】(2019·辽宁省高二期中(理))设命题:p x R ∃∈,22x x > ,则p ⌝为( ) A .x R ∀∈, 22x x > B .x R ∃∈,22x x < C .x R ∀∈,22x x ≤ D .x R ∃∈,22x x ≤【答案】C【解析】命题是特称命题,则命题的否定是全称命题, 即x R ∀∈,22x x ≤.规律方法 1.全称命题与存在性命题的否定与命题的否定有一定的区别,否定全称命题和存在性命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决. 考点三 充分条件、必要条件的应用【例3-1】(2020·山东省高二期末)已知命题:p 关于x 的不等式()()21120k x k x ---+>的解集为R ,:2q x ∃>,2272x k x -<-,试判断“p 为真命题”与“q ⌝为真命题”的充分必要关系.【答案】充分不必要【解析】若p 为真命题:当1k =时,对于任意x ∈R ,则有20>恒成立;当1k ≠时,根据题意,有()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩,解得19k <<. 所以19k ≤<;若q ⌝为真命题:2x ∀>,2272x k x -≥-.()()()22228212712288222x x x x x x x -+-+-==-++≥---,当且仅当22x =+时,等号成立,所以8k ≤+ {}19k k ≤< {8k k ≤+,所以,“p 为真命题”是“q ⌝为真命题”的充分不必要条件.【例3-2】(2019·浙江省宁波市鄞州中学高二月考)已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (Ⅰ)求实数m 的取值集合M ;(Ⅰ)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围. 【答案】(1)(2)或.【解析】(1)方程在有解,转化为函数在上的值域,实数m 的取值集合M 可求;(2)x N ∈是x M ∈的必要条件,分、、三种情况讨论即可求a 的取值范围.(1) 由题意知,方程20x x m --=在上有解,即m 的取值范围就为函数在上的值域,易得1|24M m m ⎧⎫=-≤<⎨⎬⎩⎭7分 (2) 因为x N ∈是x M ∈的必要条件,所以8分当时,解集为空集,不满足题意 9分 当时,,此时集合则,解得12分当时,,此时集合则11{,4422a a a <-⇒<--≥15分 综上9144a a ><-或16分 规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件. [思维升华]1.充分条件、必要条件、充要条件的判断方法 (1)定义法(2)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}; ①若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件;②若BA⊂≠,则p是q的充分不必要条件,q是p的必要不充分条件;③若A=B,则p是q的充要条件.2.要写一个命题的否定,需先分清其是全称命题还是存在性命题,再对照否定结构去写,否定的规律是“改量词,否结论”.[易错防范]1.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.2.注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定.第 03 讲:一元二次不等式及简单不等式(其他不等式:高次)二、基础知识回顾1、 一元二次不等式与相应的二次函数及一元二次方程的关系2、由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法(1).一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0,b 2-4ac <0.3、.简单分式不等式(1)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0. (2)f (x )g (x )>0⇔f (x )g (x )>0.方法总结:(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(3)若f (x )>0在集合A 中恒成立,即集合A 是不等式f (x )>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).(4)转化为函数值域问题,即已知函数f (x )的值域为[m ,n ],则f (x )≥a 恒成立⇒f (x )min ≥a ,即m ≥a ;f (x )≤a 恒成立⇒f (x )max ≤a ,即n ≤a .基本不等式及应用1、基本不等式ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为个正数的算术平均数不小于它们的几何平均数. 3、利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24 4、基本不等式的两种常用变形形式(1)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ,当且仅当a =b 时取等号).(2)a +b ≥2ab (a >0,b >0,当且仅当a =b 时取等号). 5、几个重要的结论 (1)a 2+b 22≥⎝⎛⎭⎫a +b 22. (2)b a +ab ≥2(ab >0). (3)ab ≤a +b2≤a 2+b 22(a >0,b >0).方法总结:1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形。

高一数学必修一全套讲义(含答案)

高一数学必修一全套讲义(含答案)

§1.1 集合1.1.1 集合的含义与表示 第1课时 集合的含义一、基础过关1. 下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数2. 集合A 中只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A 3. 由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( )A .2个元素B .3个元素C .4个元素D .5个元素4. 由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数; ②本班中成绩好的同学; ③高一数学课本中所有的简单题; ④平方后等于自身的数.5. 如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________. 6. 判断下列说法是否正确?并说明理由.(1)参加2012年伦敦奥运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合; (3)1,0.5,32,12组成的集合含有四个元素;(4)某校的年轻教师.7.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .二、能力提升8.已知集合S中三个元素a,b,c是△ABC的三边长,那么△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.11.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q 中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?三、探究与拓展12.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.第2课时 集合的表示一、基础过关1. 集合{x ∈N +|x -3<2}用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5} 2. 集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合3. 将集合⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是 ( )A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3)4. 若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .25. 用列举法表示下列集合:(1)A ={x ∈N ||x |≤2}=________; (2)B ={x ∈Z ||x |≤2}=________;(3)C ={(x ,y )|x 2+y 2=4,x ∈Z ,y ∈Z }=______. 6. 下列各组集合中,满足P =Q 的有________.(填序号)①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }. 7. 用适当的方法表示下列集合.(1)方程x (x 2+2x +1)=0的解集;(2)在自然数集内,小于1 000的奇数构成的集合; (3)不等式x -2>6的解的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.8. 已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理 由.二、能力提升9.下列集合中,不同于另外三个集合的是() A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}10.集合M={(x,y)|xy<0,x∈R,y∈R}是() A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集11.下列各组中的两个集合M和N,表示同一集合的是______.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.12.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.三、探究与拓展13.定义集合运算A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和是多少?1.1.2集合间的基本关系一、基础过关1.下列集合中,结果是空集的是() A.{x∈R|x2-1=0} B.{x|x>6或x<1}C.{(x,y)|x2+y2=0} D.{x|x>6且x<1}2.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是() A.P=Q B.P QC.P Q D.P∩Q=∅3.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.34.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()5.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)6.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.7.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.8.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.二、能力提升9.适合条件{1}⊆A{1,2,3,4,5}的集合A的个数是() A.15个B.16个C.31个D.32个10.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M D.P=M S11.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.三、探究与拓展13.已知集合A={x||x-a|=4},B={1,2,b}.问是否存在实数a,使得对于任意实数b(b≠1,b≠2)都有A⊆B.若存在,求出对应的a值;若不存在,说明理由.1.1.3集合的基本运算第1课时并集与交集一、基础过关1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于() A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于() A.{x|x<1} B.{x|-1≤x≤2}C.{x|-1≤x≤1} D.{x|-1≤x<1}3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是()A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}5.设集合M={-1,0,1},N={x|x2≤x},则M∩N等于() A.{0} B.{0,1}C.{-1,1} D.{-1,0,1}6.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.7.设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求A∪B.8.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.二、能力提升9.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于() A.0或 3 B.0或3 C.1或 3 D.1或310.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.11.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a =________,b=________.12.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.三、探究与拓展13.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分别根据下列条件求实数a的取值范围.(1)A∩B=∅;(2)A⊆(A∩B).第2课时补集及综合应用一、基础过关1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为() A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}3.设集合A={x|1<x<4},集合B={x|-1≤x≤3},则A∩(∁R B)等于() A.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是() A.A=∁U P B.A=PC.A P D.A P5.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.6.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________,∁U B=________,∁B A=________.7.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.8.(1)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},求N∩(∁U M);(2)设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},求M∪N.二、能力提升9.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)10.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)等于()A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}11.已知全集U,A B,则∁U A与∁U B的关系是____________________.12.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.三、探究与拓展13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?§1.2 函数及其表示1.2.1 函数的概念一、基础过关 1. 下列对应:①M =R ,N =N +,对应关系f :“对集合M 中的元素,取绝对值与N 中的元素对应”; ②M ={1,-1,2,-2},N ={1,4},对应关系f :x →y =x 2,x ∈M ,y ∈N ;③M ={三角形},N ={x |x >0},对应关系f :“对M 中的三角形求面积与N 中元素对应”. 是集合M 到集合N 上的函数的有( )A .1个B .2个C .3个D .0个 2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23. 函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 4. 函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]5. 已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. 6. 若A ={x |y =x +1},B ={y |y =x 2+1},则A ∩B =________ 7. 判断下列对应是否为集合A 到集合B 的函数.(1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ;(4)A ={x |-1≤x ≤1},B ={0},f :x →y =0. 8. 已知函数f (1-x1+x )=x ,求f (2)的值.二、能力提升9. 设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有 ( )A .①②③④B .①②③C .②③D .② 10.下列函数中,不满足...f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x11.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远? (4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?三、探究与拓展13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.2.2 函数的表示法 第1课时 函数的表示法一、基础过关1. 一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x (x >0)B .y =100x (x >0)C .y =50x(x >0)D .y =100x(x >0)2. 一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0B .1C .2D .33. 已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0)B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)4. 已知在x 克a %的盐水中,加入y 克b %(a ≠b )的盐水,浓度变为c %,将y 表示成x 的函数关系式为( )A .y =c -ac -b xB .y =c -ab -cxC .y =c -bc -axD .y =b -cc -ax5. 如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f {f [f (2)]}=________.6. 已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 7. 已知f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.求f (x )的解析式.8. 已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根的平方和为10,图象过(0,3)点,求f (x )的解析式.二、能力提升9. 如果f (1x )=x 1-x,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 10.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]11.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.12.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.三、探究与拓展13.已知函数y=1a x+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的值.第2课时 分段函数及映射一、基础过关1. 已知函数f (x )=⎩⎪⎨⎪⎧2x , x >0,x +1, x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3或-1B .-1C .1D .-3 2. 已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6),f (x +2) (x <6),则f (3)为( )A .2B .3C .4D .53. 某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( )A .13立方米B .14立方米C .18立方米D .26立方米4. 已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列不能表示从P 到Q 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x5. 下列对应关系f 中,构成从集合P 到S 的映射的是( )A .P =R ,S =(-∞,0),x ∈P ,y ∈S ,f ∶x →y =|x |B .P =N ,S =N +,x ∈P ,y ∈S ,f ∶y =x 2C .P ={有理数},S ={数轴上的点},x ∈P ,f ∶x →数轴上表示x 的点D .P =R ,S ={y |y >0},x ∈P ,y ∈S ,f ∶x →y =1x26. 设A =Z ,B ={x |x =2n +1,n ∈Z },C =R ,且从A 到B 的映射是x →2x -1,从B 到C 的映射是y →12y +1,则经过两次映射,A 中元素1在C 中的象为________. 7. 化简f (x )=x +|x |x ,并作图求值域.8. 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1)1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的定义域和值域.二、能力提升9. 已知函数y =⎩⎪⎨⎪⎧x 2+1(x ≤0),-2x (x >0),使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-5210.已知函数f (x )的图象如下图所示,则f (x )的解析式是________.11.设f (x )=⎩⎪⎨⎪⎧2x +2, -1≤x <0,-12x , 0<x <2,3, x ≥2,则f {f [f (-34)]}的值为___________________,f (x )的定义域是____________.12. 如图,动点P 从边长为4的正方形ABCD 的顶点B 开始,顺次经C 、D 、A 绕边界运动,用x 表示点P 的行程,y 表示△APB 的面积,求函数y =f (x ) 的解析式.三、探究与拓展13.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.当0≤x ≤200时,求函数v (x )的表达式.§1.3 函数的基本性质1.3.1 单调性与最大(小)值 第1课时 函数的单调性一、基础过关1. 下列函数中,在(-∞,0]内为增函数的是( )A .y =x 2-2B .y =3xC .y =1+2xD .y =-(x +2)22. 已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)3. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤04. 如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中不正确的是( )A.f (x 1)-f (x 2)x 1-x 2>0 B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f (x 1)-f (x 2)>05. 设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.6. 函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=______________. 7. 画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.8. 已知f (x )=x 2-1,试判断f (x )在[1,+∞)上的单调性,并证明.二、能力提升9. 已知函数f (x )的图象是不间断的曲线,f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( )A .至少有一个根B .至多有一个根C .无实根D .必有唯一的实根10.若定义在R 上的二次函数f (x )=ax 2-4ax +b 在区间[0,2]上是增函数,且f (m )≥f (0),则实数m 的取值范围是( )A .0≤m ≤4B .0≤m ≤2C .m ≤0D .m ≤0或m ≥411.函数f (x )=ax +1x +2(a 为常数)在(-2,2)内为增函数,则实数a 的取值范围是________.12.求证:函数f (x )=-x 3+1在(-∞,+∞)上是减函数.三、探究与拓展13.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,求实数a 的取值范围.第2课时 函数的最大(小)值一、基础过关1. 函数f (x )=1x在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 2. 函数y =x +2x -1( )A .有最小值12,无最大值B .有最大值12,无最小值C .有最小值12,有最大值2D .无最大值,也无最小值3. 函数f (x )=⎩⎪⎨⎪⎧2x +6, x ∈[1,2]x +7, x ∈[-1,1],则f (x )的最大值、最小值为( )A .10,6B .10,8C .8,6D .以上都不对 4. 函数y =|x -3|-|x +1|的( )A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值 5. 函数f (x )=11-x (1-x )的最大值是( )A.45B.54C.34D.436. 函数y =-x 2+6x +9在区间[a ,b ](a <b <3)上有最大值9,最小值-7,则a =______,b =________. 7. 已知函数f (x )=x 2-x +1,求f (x )在区间[-1,1]上的最大值和最小值.8. 已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.二、能力提升9. 函数f (x )=x 2-4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,+∞)B .[2,4]C .(-∞,2]D .[0,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中x为销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元11.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 12.已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.三、探究与拓展13.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.1.3.2 奇偶性 第1课时 奇偶性的概念一、基础过关 1. 下列说法正确的是( )A .如果一个函数的定义域关于坐标原点对称,则这个函数为奇函数B .如果一个函数为偶函数,则它的定义域关于坐标原点对称C .如果一个函数的定义域关于坐标原点对称,则这个函数为偶函数D .如果一个函数的图象关于y 轴对称,则这个函数为奇函数 2. f (x )是定义在R 上的奇函数,下列结论中,不正确的是( )A .f (-x )+f (x )=0B .f (-x )-f (x )=-2f (x )C .f (x )·f (-x )≤0 D.f (x )f (-x )=-13. 下列函数中,在其定义域内既是奇函数又是增函数的是( )A .y =-x 2+5(x ∈R )B .y =-xC .y =x 3(x ∈R )D .y =-1x (x ∈R ,x ≠0)4. 已知y =f (x ),x ∈(-a ,a ),F (x )=f (x )+f (-x ),则F (x )是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 5. 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集是______.6. 若函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x ≥0)g (x )(x <0)为奇函数,则f (g (-1))=________.7. 判断下列函数的奇偶性:(1)f (x )=3,x ∈R ;(2)f (x )=5x 4-4x 2+7,x ∈[-3,3]; (3)f (x )=|2x -1|-|2x +1|; (4)f (x )=⎩⎪⎨⎪⎧1-x 2, x >0,0, x =0,x 2-1, x <0.8. 已知函数f (x )=ax 2+1bx +c (a ,b ,c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a ,b ,c 的值.二、能力提升9. 给出函数f (x )=|x 3+1|+|x 3-1|,则下列坐标表示的点一定在函数y =f (x )的图象上的是( )A .(a ,-f (a ))B .(a ,f (-a ))C .(-a ,-f (a ))D .(-a ,-f (-a ))10.已知定义在R 上的奇函数f (x )满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a -a 2),则实数a 的取值范围是________. 11.已知函数f (x )=1-2x.(1)若g (x )=f (x )-a 为奇函数,求a 的值;(2)试判断f (x )在(0,+∞)内的单调性,并用定义证明.12.已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x (x >0)0 (x =0)x 2+mx (x <0).(1)求实数m 的值,并画出y =f (x )的图象;(2)若函数f (x )在区间[-1,a -2]上单调递增,试确定a 的取值范围.三、探究与拓展13.已知函数f (x )=x 2+ax(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.第2课时 奇偶性的应用一、基础过关1. 下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y 轴对称;④没有一个函数既是奇函数,又是偶函数. 其中正确命题的个数是( )A .1B .2C .3D .42. 已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( )A .是增函数B .不是单调函数C .是减函数D .不能确定3. 定义在R 上的函数f (x )在(-∞,2)上是增函数,且f (x +2)的图象关于y 轴对称,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)4. 设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5. 已知定义在R 上的奇函数f (x ),当x >0时,f (x )=x 2+|x |-1,那么x <0时,f (x )=________.6. 设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________. 7. 设函数f (x )在R 上是偶函数,在区间(-∞,0)上递增,且f (2a 2+a +1)<f (2a 2-2a +3),求a 的取值范围.8. 已知函数f (x )是定义在R 上的单调函数,满足f (-3)=2,且对任意的实数a ∈R 有f (-a )+f (a )=0恒成立.(1)试判断f (x )在R 上的单调性,并说明理由. (2)解关于x 的不等式f (2-xx )<2.二、能力提升9. 已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (x )<f (1)的x 的取值范围是( )A .(-1,1)B .(-1,0)C .(0,1)D .[-1,1)10.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)11.y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是________________.12.已知函数f (x )=ax +1x2(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[3,+∞)上为增函数,求a 的取值范围.三、探究与拓展13.已知函数f (x )=ax 2+bx +1(a ,b 为常数),x ∈R .F (x )=⎩⎪⎨⎪⎧f (x ) (x >0)-f (x ) (x <0).(1)若f (-1)=0,且函数f (x )的值域为[0,+∞),求F (x )的表达式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围; (3)设m ·n <0,m +n >0,a >0,且f (x )为偶函数,判断F (m )+F (n )能否大于零?章末检测一、选择题1. 若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅2. 已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是( )A .a ≤ 3B .-3≤a ≤ 3C .0<a ≤ 3D .-3≤a <03. 若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .24. 若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -45. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩(∁I M )=∅,则M ∪N 等于( )A .MB .NC .ID .∅6. 已知函数f :A →B (A 、B 为非空数集),定义域为M ,值域为N ,则A 、B 、M 、N 的关系是( )A .M =A ,N =B B .M ⊆A ,N =BC .M =A ,N ⊆BD .M ⊆A ,N ⊆B 7. 下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |8. 已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于 ( )A.12B .-12C .1D .-1 9. 设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( )A .24B .21C .18D .16 10.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( )A .增函数B .减函数C .有增有减D .增减性不确定11.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-412. 在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系的图象可表示为( )二、填空题13.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=______. 14.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.15.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥ba ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________.16.用描述法表示如图中阴影部分的点(含边界)的坐标的集合(不含虚线)为________.三、解答题17.设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .18.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.19.函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值3,求a的值.20.已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.21.某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).(1)分别将A 、B 两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.已知函数y =x +tx有如下性质:如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.参考答案第1课时 集合的含义1. C 2.C 3.A 4.①④ 5.x ≠0,1,2,1±52.6. 解 (1)正确.因为参加2012年伦敦奥运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一个元素,故这个集合含有三个元素.(4)不正确.因为年轻没有明确的标准.7. 解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去. 当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.8. D 9.B 10.211.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11,共8个. 12.证明 (1)若a ∈A ,则11-a ∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a , 即a 2-a +1=0,方程无解. ∴a ≠11-a,∴集合A 不可能是单元素集.第2课时 集合的表示1. B 2.D 3.B 4.C 5.(1){0,1,2} (2){-2,-1,0,1,2} (3){(2,0),(-2,0),(0,2),(0,-2)} 6.②7. 解 (1)∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};(2){x |x =2n +1,且x <1 000,n ∈N }; (3){x |x >8}; (4){1,2,3,4,5,6}.8. 解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}. 9. C 10.D 11.④12.解 (1)当k =0时,原方程变为-8x +16=0,x =2.此时集合A ={2}.(2)当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根.只需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A ={4},满足题意. 综上所述,实数k 的值为0或1.当k =0时,A ={2}; 当k =1时,A ={4}.13.解 当x =1或2,y =0时,z =0;当x =1,y =2时,z =2;当x =2,y =2时,z =4.所以A *B ={0,2,4},所以元素之和为0+2+4=6.1.1.2 集合间的基本关系1. D 2.B 3.B 4.B 5.①② 6.a ≥27. 解 A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A .①若B =∅,则m +1>2m -1,解得m <2,此时有B ⊆A ; ②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A ,得⎩⎨⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.8. 解 A ={-3,2}.对于x 2+x +a =0,①当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;②当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;③当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2},∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6.9. A 10.C 11.612.解 ①当a =0时,A =∅,满足A ⊆B .②当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a≥-1,2a ≤1,∴a ≥2.③当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.13.解 不存在.理由如下:要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又因A ={a -4,a+4},所以⎩⎪⎨⎪⎧ a -4=1,a +4=2,或⎩⎪⎨⎪⎧a +4=1,a -4=2.这两个方程组均无解,故这样的实数不存在. 第1课时 并集与交集1. A 2.D 3.D 4.D 5.B 6.17. 解 ∵A ∩B ={9},∴9∈A ,所以a 2=9或2a -1=9,解得a =±3或a =5.当a =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素违背了互异性,舍去.当a =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-7,-4,-8,4,9}.当a =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9},与A ∩B ={9}矛盾,故舍去.综上所述,A ∪B ={-7,-4,-8,4,9}. 8. 解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a ∈A ,即有-1a =-2,得a =12.综上,a =0或a =12.9. B 10.0或1 11.-1 212.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 13.解 (1)若A =∅,则A ∩B =∅成立.此时2a +1>3a -5,即a <6.若A ≠∅,如图所示, 则⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1≥-1,3a -5≤16,解得6≤a ≤7.综上,满足条件A ∩B =∅的实数a 的取值范围是{a |a ≤7}. (2)因为A ⊆(A ∩B ),且(A ∩B )⊆A ,所以A ∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -5,3a -5<-1或⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16.由⎩⎪⎨⎪⎧ 2a +1≤3a -5,3a -5<-1解得a ∈∅;由⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16解得a >152.综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是{a |a <6或a >152}.第2课时 补集及综合应用1. D 2.C 3.B 4.B 5.-3 6.{0,1,3,5,7,8} {7,8} {0,1,3,5} 7. 解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧ a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.8. 解 (1)∵U ={1,2,3,4,5},M ={1,4},∴∁U M ={2,3,5}.又∵N ={1,3,5},∴N ∩(∁U M )={3,5}.(2)∵M ={m ∈Z |-3<m <2},∴M ={-2,-1,0,1};∵N ={n ∈Z |-1≤n ≤3},∴N ={-1,0,1,2,3},∴M ∪N ={-2,-1,0,1,2,3}. 9. C 10.B 11.(∁U B )(∁U A )12.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x .①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3}, U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3}, B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}.13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.1.2.1 函数的概念1. A 2.D 3.D 4.B 5.{-1,1,3,5,7} 6.[1,+∞) 7. 解 (1)A 中的元素0在B 中没有对应元素,故不是集合A 到集合B 的函数.(2)对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.(3)集合A 中的负整数没有平方根,故在集合B 中没有对应的元素,故不是集合A 到集合B 的函数. (4)对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数. 8. 解 由1-x 1+x =2,解得x =-13,所以f (2)=-13.9. C 10.C 11.[0,13]12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米.(2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时. (6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h2=h 2+2h (m 2).(2)定义域为{h |0<h <1.8}.值域由二次函数A =h 2+2h (0<h <1.8)求得.由函数A =h 2+2h =(h +1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A <6.84.故值域为{A |0<A <6.84}.(3)由于A =(h +1)2-1,对称轴为直线h =-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h <1.8,∴A =h 2+2h 的图象仅是抛物线的一部分,如图所示.第1课时 函数的表示法1. C 2.B 3.B 4.B 5.2 6.f (x )=2x +83或f (x )=-2x -87. 解 设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2.∴⎩⎪⎨⎪⎧a =1,b =-1.又f (0)=3,∴c =3,∴f (x )=x 2-x +3. 8. 解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎪⎨⎪⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.①又图象过(0,3)点,所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a =10. 即b 2-2ac =10a 2.③ 由①②③得a =1,b =-4,c =3. 所以f (x )=x 2-4x +3. 9. B 10.B 11.f (x )=-x 2+23x(x ≠0)12.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0,所以f (3)<f (0)<f (1). (2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].13.解 要使函数y =1a x +1(a <0且a 为常数)在区间(-∞,1]上有意义,必须有1ax +1≥0,a <0,∴x ≤-a ,即函数的定义域为(-∞,-a ], ∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-a ],∴-a ≥1,即a ≤-1,∴a 的取值范围是(-∞,-1].第2课时 分段函数及映射1. D 2.A 3.A 4.C 5.C 6.137. 解 f (x )=x +|x |x=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0.其图象如图所示.由图象可知,f (x )的值域为(-∞,-1)∪(1,+∞). 8. 解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].9. A 10.f (x )=⎩⎪⎨⎪⎧x +1, -1≤x <0,-x , 0≤x ≤111.32 {x |x ≥-1且x ≠0}12.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎪⎨⎪⎧2x , 0≤x ≤4,8, 4<x ≤8,24-2x , 8<x ≤12.13.解 由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b .由已知⎩⎪⎨⎪⎧200a +b =020a +b =60,解得⎩⎨⎧a =-13b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x ≤2013(200-x ), 20<x ≤200.第1课时 函数的单调性1. C 2.C 3.D 4.C 5.m >0 6.-3 7. 解 y =-x 2+2|x |+3=⎩⎪⎨⎪⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3 (x <0)=⎩⎪⎨⎪⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x <0).函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y =-x 2+2|x |+3的单调增区间是(-∞,-1]和[0,1],单调减区间是[-1,0]和[1,+∞). 8. 解 函数f (x )=x 2-1在[1,+∞)上是增函数.证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2, 则f (x 2)-f (x 1)=x 22-1-x 21-1=x 22-x 21x 22-1+x 21-1=(x 2-x 1)(x 2+x 1)x 22-1+x 21-1.∵1≤x 1<x 2,∴x 2+x 1>0,x 2-x 1>0,x 22-1+x 21-1>0.∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故函数f (x )在[1,+∞)上是增函数. 9. D 10.A 11.a >1212.证明 设x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=(-x 31+1)-(-x 32+1)=x 32-x 31=(x 2-x 1)(x 21+x 1x 2+x 22).∵x 1<x 2,∴x 2-x 1>0,又∵x 21+x 1x 2+x 22=(x 1+x 22)2+34x 22且(x 1+x 22)2≥0与34x 22≥0. 其中两等号不能同时取得(否则x 1=x 2=0与x 1<x 2矛盾),∴x 21+x 1x 2+x 22>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),又∵x 1<x 2, ∴f (x )=-x 3+1在(-∞,+∞)上为减函数.13.解 设2<x 1<x 2,由已知条件f (x 1)-f (x 2)=x 21+a x 1-x 22+ax 2=(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)x 1x 2-a x 1x 2<0恒成立.由于x 1-x 2<0,x 1x 2>0,即当2<x 1<x 2时,x 1x 2>a 恒成立.又x 1x 2>4,则0<a ≤4.1. A 2.A 3.A 4.C 5.D 6.-2 07. 解 ∵f (x )=x 2-x +1=(x -12)2+34,又∵12∈[-1,1],∴当x =12时,函数f (x )有最小值,当x =-1时,f (x )有最大值,即f (x )min =f (12)=34,f (x )max =f (-1)=3.8. 解 (1)∵f (x )=x 2-2x +2=(x -1)2+1,x ∈[12,3],∴f (x )的最小值是f (1)=1,又f (12)=54,f (3)=5,所以f (x )在区间[12,3]上的最大值是5,最小值是1.(2)∵g (x )=f (x )-mx =x 2-(m +2)x +2,∴m +22≤2或m +22≥4, 即m ≤2或m ≥6.故m 的取值范围是(-∞,2]∪[6,+∞). 9. B 10.C 11.(-∞,-5]12.(1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增函数.(2)解 ∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.∴a =25.13.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,∴c =1,∴f (x )=ax 2+bx +1.∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +1. (2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立. 令g (x )=x 2-3x +1-m =(x -32)2-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数,∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.。

高中数学必修一讲义详细

高中数学必修一讲义详细

数学必修1知识讲解讲义目录第一讲集合的概念 (1)第二讲集合的关系与运算 (6)第三讲映射与函数 (11)第四讲函数的表示方法——解析式法 (16)第五讲函数单调性 (20)第六讲函数奇偶性 (27)第七讲指数与指数幂的运算 (36)第八讲指数函数 (42)第九讲对数函数 (50)第十讲对数与对数运算 (56)第十一讲幂函数 (61)第十二讲方程的根与函数的零点 (66)第十三讲用二分法求方程的近似解 (71)第十四讲几类不同增长的函数模型 (76)第十五讲函数的图像 (86)第十六讲函数的综合应用 (94)第十七讲二次函数性质与函数的图像 (112)第一讲 集合的概念一. 知识思维导图二. 知识要点解读(一)集合的概念1. 含义:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set)(简称为集)。

(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大括号{ }或大写的拉丁字母表示,如A 、B 、C 、……元素通常用小写的拉丁字母表示,如a 、b 、c 、……2. 元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A要注意“∈”的方向,不能把a ∈A 颠倒过来写.3. 集合中元素的三个特性: 集合集合的概念集合及元素集合的分类及表示集合的关系包含子集真子集集合的运算交集并集补集集合的应用(1)元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

高中数学必修一全套ppt课件讲义

高中数学必修一全套ppt课件讲义
2020/11/29
• 解析: A中难题标准不明确,不满足确定性,不能构成集合;B 中“平面直角坐标系中,坐标轴上的一些点”,元素不明确,故不能 组成一个集合;C中的对象都是确定的而且是不同的,因而能构成 集合;D中的对象高楼标准不明确,不满足确定性,故不能构成集 合.
• 答案: C
2020/11/29
是( )
①π∈R ②- 5∉Q ③0∉N ④|-3|∈N*
⑤4∈{N}
A.1
B.2
C.3
D.4
2020/11/29
解答本题要先弄清“∈”和“∉”的区别与 联系及特定的数集符号的含义,再进行判断.
2020/11/29
[解题过程] 从各数值特征及各符号含义切入 判断,因为 π 是实数,- 5是无理数,所以① ②正确;0 是自然数,所以③不正确;|-3|=3 ∈N*,所以④正确;集合{N}中只有一个元素, 就是自然数集 N,它以集合为元素,所以 4 不 在该集合中,故⑤不正确,故选 C. 答案: C
集合是相等的.
一样
(3)集合与元素的表示
通常用_____________ 通 常 用 _ _ _ __ _ __ _ _ __ _ _ a ,b , c , …表 示集 合中 的元 素.
小写拉丁字母
2020/11/29
2.元素与集合的关系
关系
文字语言
符号
属于
a属于集合A _a_∈__A_
2020/11/29
集合的确定
判断下列说法是否正确?并说明理由. (1)2012 年英国伦敦奥运会所有参赛选手构成一个集 合; (2)未来世界的高科技产品构成一个集合; (3) 3的近似值的全体构成一个集合; (4)全校身高超过 170 cm 的部分女生构成一个集合.

高中数学必修一全册ppt课件讲义

高中数学必修一全册ppt课件讲义

两个是相同的,其组成的集合中元素有3个,分别是b,o,k.
类型 二
元素和集合的关系
【典型例题】
1.(2013·临沂高一检测)下列所给关系中正确的个数是(
①π ∈R;② 3 ∉Q;③0∈N*;④|-4|∉N*. A.1 B.2 C.3 D.4
)
2.设直线y=2x+3上的点集为P,点(2,7)与点集P的关系为 (2,7)_________P(填“∈”或“∉”).
【解题探究】1.常用数集有哪些?分别是指哪些数组成的集 合? 2.判断一个元素是否是某个集合的元素的关键是什么? 探究提示: 1.常用的数集有“N”,表示非负整数集;“N*”或“N+”, 表示正整数集;“Z”,表示整数集;“Q”,表示有理数集; “R”,表示实数集. 2.判断一个元素是否属于某个集合,关键是看这个元素是否 具有这个集合中元素的特征,若具备就是,否则不是 .
3.集合中元素的特性:______ 无序性 互异性 和_______. 确定性、______
4.元素与集合的关系
aA
aA
判断:(正确的打“√”,错误的打“×”)
(1)在一个集合中可以找到两个相同的元素.(
(2)漂亮的花组成集合.( )
)
(3)本班所有的姓氏组成集合.(
)
)
(4)由3个不同的元素进行排序可以构成6个不同的集合.(
符号
N ___
N *或N + ________
Z __
Q __
R __
思考:N与N+(或N*)有何区别?
提示:N+是所有正整数组成的集合,而N是由0和所有的正整
数组成的集合,所以N比N+(或N*)多一个元素0.
【知识点拨】 1.对集合相关概念的理解 (1)集合的含义:集合是数学中不加定义的原始概念,我们只 对它进行描述性说明,其本质是某些确定元素组成的总体 . (2)元素:集合中的“元素”所指的范围非常广泛,现实生活 中我们看到的、听到的、所触摸到的、所能想到的各种各样 的事物或一些抽象符号等,都可以看作集合的元素 .

数学必修1讲义

数学必修1讲义

高一数学第一章集合一、集合有关概念1.集合的含义:2.集合的中元素的三个特性:3.集合的表示:A={…}有法和法。

如:A={我校的篮球队员},B={太平洋,大西洋},C={x?R|x-3>2}★注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R4、集合的分类:(1)有限集含有个元素的集合;(2)无限集含有个元素的集合;(3)空集元素的集合。

例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能:(1)A是B的一部分,;(2)A与B是同一集合。

另外规定:空集是的子集。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA真子集:如果那就说集合A是集合B的真子集,记作AB(或BA)规定:空集是任何非空集合的真子集。

有n个元素的集合,含有个子集,个真子集性质:如果A?B,B?C,那么AC;如果A?B同时B?A那么AB 2.“相等”关系:A=B如:(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”三、集合的运算运算类型交集并集补集定义由的元素所组成的集合,叫做A,B的交集.记作A B即A B={x|x∈A,且x∈B}.由的元素所组成的集合,叫做A,B的并集.记作:A B即A B={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中A的补集(或余集)记作ACS,即CSA=},|{AxSxx∉∈且韦恩图示SAS性质 A A=AA Φ=ΦA B=B AA B ⊆AA B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B =C u (A B ) A (C u A)= A (C u A)=.记住这个结论:B B A A B A B A =⇔=⇔⊆例1:设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求例2:若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,求m 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 集合集合的有关概念⑴某些指定的对象集在一起就成为一个集合,这些研究对象叫做元素。

⑵集合中元素的特性:⎪⎩⎪⎨⎧的元素顺序无关无序性:集合与组成它元素是互不相同的互异性:集合中任两个必须是确定的确定性:集合中的元素注意:这三条性质对于研究集合有着很重要的意义, 经常会渗透到集合的各种题目中,同学们应当重视。

⑶元素与集合的关系:①如果a 是集合A 的元素,就说a 属于A ,记作:A a ∈②如果a 不是集合A 的元素,就说a 不属于A ,记作:A a ∉(注意:属于或不属于(∉∈,)一定是用在表示元素与集合间的关系上)⑷集合的分类:集合的种类通常分为:有限集(集合含有有限个元素)、无限集(集合含有无限个元素)、空集(不含任何元素的集合,用记号∅表示) ⑸集合的表示: ①集合的表示方法:列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来的表示方法。

例:{}2,1=A 描述法:在花括号内先写上表示这个集合一般元素的符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

例:{}4>=x x B (如果元素的取值范围是全体实数,范围可省略不写)。

图示法(即维恩图法):用平面内一条封闭曲线的内部表示一个集合。

②特定集合的表示:自然数集(非负整数集)记作N ;正整数集记作()+N N*;整数集记作Z ;有理数集记作Q ;实数集记作R 。

(这些特定集合外面不用加{})高考要求:理解集合的概念,了解属于关系的意义,掌握相关的术语符号,会表示一些简单集合。

例题讲解:夯实基础一、判断下列语句是否正确1)大于5的自然数集可以构成一个集合。

正确{}5>∈x N x 2)由1,2,3,2,1构成一个集合,这个集合共有5个元素。

错误 3)所有的偶数构成的集合是无限集。

正确4)集合{}{}b a c B c b a A ,,,,,==则集合A 和集合B 是两个不同的集合。

错误 二、用符号∈或∉填空。

1)N __0 2)Z _____14.3 3)Q______π4)若{}x x x A 22==,则A _____2-5)若{}0322=--=x xx B ,则B _____3三、用适当的方法表示下列集合 1)一次函数12+=x y 与421+-=x y 的交点组成的集合。

⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛517,56 ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛517,56⎭⎬⎫⎩⎨⎧517,56区别是什么? 2)绝对值等于3的全体实数构成的集合。

{}3,3-3)大于0的偶数。

{}*,2N n n x x ∈={},...8,6,4,2能力提升 1)集合(){}N y x y x y x A ∈=+=,,72,,用列举法表示集合A 。

,005322x y N x y N N ∈∴≥≥∉∈∴解: 当x=1 y=3 当x=3 y=2x=2 y= x=4 y= x=5 y=1{(1,3),(3,2),(5,1)}2)集合{}0122=++=x axx A 中只有一个元素,求a 的值。

21221044a 1=0a=1x ≠++=∆=-⨯⨯∴解:当a=0 方程:2x+1=0 x=-合题意当a 0 ax 当 3)用描述法可将集合{} ,11,9,7,5,3,1---表示成________________________。

n+1{x x n *}N =∈解:(-1)(2-1),n知识要点二:集合与集合之间的关系 ⑴子集①一般地,如果集合A 中的任何元素都是集合B 中的元素,那么集合A 叫做集合B 的子集 记作B A ⊆(A 包含于B )或A B ⊇(B 包含A )即:对任意B x A x ∈⇒∈,则B A ⊆。

显然A A ⊆,对于任一集合A ,规定A ⊆φ。

⑵真子集:如果集合B A ⊆,但存在元素A x B x ∉∈,,我们称集合A 是集合B 的真子集,记作AB 。

⊂集合是任意非空集合的真子集。

⑵集合的相等集合,A B 如果B A ⊆,同时B A ⊆,则称A B =。

⑶严格区分,正确使用“,,,,∈∉⊆⊄”等符号。

前两个是用在元素与集合的关系上,后三个是用在集合与集合的关系上,一定注意区分。

集合关系与其特征性质之间的关系一般地,设(){}(){},A x p x B x q x ==,如果B A ⊆,则B x A x ∈⇒∈,{}2x x x x例: A={3} B=于是x 具有性质()p x x ⇒具有性质()q x ,即()()p x q x ⇒。

B ∈⇒⇒若A B 当x 3x2当x3x 2我们说A 一定是的子集。

反之,如果()()p x q x ⇒,则A 一定是B 的子集。

集合的运算 ⑴交集一般地,对于两个给定的集合,A B ,由属于A 又属于B 的所有元素构成的集合,叫做,A B 的交集,记作A B ⋂,读作“A 交B ” 由定义容易知道:⑵并集一般地,对于两个给定的集合,A B ,由A ,B 两个集合的所有元素构成的集合,叫做,A B 的并集,记作A B ⋃,读作“A 并B ” 由定义容易知道⑶补集全集:如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U 来表示。

补集:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作UA ,读作“A 在U 中的补集”。

高考要求:理解子集、补集、交集、并集的概念。

了解全集的意义,了解包含、相等关系得意义,掌握相关的术语、符号,并会用它们正确表示一些简单的集合。

例题讲解:夯实基础一、用适当的符号填空∈⊆⊂1){}2__1,2,3 2){}__,a a b 3){}{}_____,,a a b c 4){}__0∅ 5){}{}1,4,7____7,1,4 6){}0,1____N 7){}2____1x R x ∅∈=-二、已知集合{}2,0,1A =-,那么A 的非空真子集有_________个。

{}{}{}{}{}{}20120211,0Φ---解:A 的非空真子集指的是,除A 集合本身与后所有子集 含有1个元素的 含有2个元素的,,n 2n =给出计算子集的公式,全部子集个数,表示元素个数。

三、求下列四个集合间的关系,并用维恩图表示。

U A C{}{}{}{}A x x B x x C x x D x x ====是平行四边形,是菱形,是矩形,是正方形⊂⊂⊂⋂解:B A,C A,D A,D=B C四、已知{}{}{}1,2,3,4,,10,21234U A B ===,4,6,8,10,,,,,求()(),U U A B C A C B ⋂⋂。

{}{}{}()(){}24135795678910579U U U U A B A B A B ⋂===∴⋂=解:, C ,,,, C ,,,,,C C ,,能力提升一、若集合X 满足{}{}0121012X ⊆⊆--,,,,,,则X 的个数有几个? {}{}{}{}{}{}{}{}{}{}0101320110120101232101220112010132102X --------解:中至少要含有,两个元素。

比,多一个元素的有个,,,,,,比,多个人元素的有个,,,,,,,,,比,多个元素的,,,1, 二、如右图U 是全集,,,M P S 是U 的三个子集, 则阴影部分所表示的集合是( )()().U A M P C S ⋂⋂()().U B M P C S ⋂⋃().C M P S ⋂⋂().D M P S ⋂⋃u M P C S ⋂解:先看如图所示 而为图以外部分以上两部分公共区域显然为图中阴影三、已知集合{}{}{}24,21,,5,1,9,9A a a B a a A B =--=--⋂=,试求实数a 。

{9}9B A∴∴∴⋂⋂=∴∈解:对于集合A 来讲(1)令2a-1=9a=5A={-4,9,25} B={0,-4,9}A B={-4,9}与已知不符。

a=5舍去A2(2)9333{4,5,9}a a a a A ===-==-令或时, B={-2,-2,9} 不符合集合的互异性,a=3舍去A B={9}3{4,4,8,7,9}a A B ⋂∴=-∴⋃=---(3)当a=-3A={-4,-7,9} B={-8,4,9} 与相符 四、已知集合(){}2210,,A x x p x p x R =+++=∈,且A R +⋂=∅,求实数p 的取值范围。

222(2)x 1041104p0 -4p 0A R p φφφ+⋂=+++=∴∆-⨯⨯+∴解:若 等价于A= 或方程x 有两个非正根 若A=则=(p+2)p21212(2)x 100p 0p 4x x p 20p x x 10p -4p 0p 2p 0p p +++=∆≥⇒≥≤⎧⎪+=--⎨⎪⋅=⎩≤≥⎧⎨-⎩∴≥∞ (2)方程x 有两个非正根或 -2或 解得 综上的取值范围(-4,+)注意:A R +⋂=∅的条件之一就是A =∅,这是十分容易遗漏的,另外对(){}2210,,A x x p x p x R =+++=∈的正确理解应是二次方程()2210x p x +++=的根组成的集合。

那么应该有三种情况:两个不等实根、两个相等实根、无实根。

而无实根就是使得A 为空集的情况。

第二讲 函数及其性质知识要点一:函数及其相关概念⑴映射:设,A B 是两个非空集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素与它对应,这样的对应关系叫做从集合A 到集合B 的映射。

记作::f A B →。

⑵象与原象:给定一个集合A 到集合B 的映射,且,a A b B ∈∈,如果,a b 对应那么元素b 叫做元素a 的象,元素a 叫做元素b 的原象。

⑶一一映射:设,A B 是两个非空集合,:f A B →是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,把这个映射叫做从集合A 到集合B 的一一映射。

⑷函数:设集合A 是一个非空数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数,记作:(),y f x x A =∈这里x 叫自变量,自变量的取值范围叫做这个函数的定义域,所有函数值构成的集合,叫做这个函数的值域。

这里可以看出一旦一个函数的定义域与对应法则确定,则函数的值域也被确定,所以决定一个函数的两个条件是:定义域和对应法则。

⑸函数的表示方法:解析法、图像法、列表法。

⑹区间:定 义 名 称 符 号{}x a x b ≤≤ 闭区间 [],a b {}x a x b << 开区间 (),a b{}x a x b ≤< 半开半闭区间 [),a b {}x a x b <≤半开半闭区间(],a b闭区间是包括端点,开区间不包括端点。

相关文档
最新文档