8.2 消元──解二元一次方程组(3)
专题8.2 消元——解二元一次方程组
第八章二元一次方程组8.2 消元——解二元一次方程组1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K知识参考答案:1.消元2.加减法K—重点代入法或加减法解二元一次方程组K—难点用适当的方法解二元一次方程组K—易错解二元一次方程组时看错系数一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y=ax+b(或x=ay+b),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y xx y=-⎧⎨-=⎩时,代入正确的是A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=4【答案】C【解析】124y xx y=-⎧⎨-=⎩①②,把①代入②得:x-2(1-x)=4,整理得:x-2+2x=4.故选C.二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:693 6416 x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.1.方程组1325y xx y+=⎧⎨+=⎩的解是A.32xy=⎧⎨=-⎩B.34xy=-⎧⎨=⎩C .32x y =⎧⎨=⎩D .32x y =-⎧⎨=-⎩2.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩①②,①-②得A .2y =1B .5y =4C .7y =5D .-3y =-33.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩将两个方程相加,得A .3x =8B .7x =2C .10x =8D .10x =104.解关于x y ,的方程组239x y mx y m+=⎧⎨-=⎩,得2x y +的值为A .12mB .0C .2m -D .7m5.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩,比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 6.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩7.由方程组63x m y m +=⎧⎨-=⎩①②可得出x 与y 的关系式是A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-8.小亮解方程组2212x y x y +=∆⎧⎨-=⎩的解为5x y =⎧⎨=∑⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数∆和∑,则两个数∆和∑的值为A .82∆=⎧⎨∑=⎩B .82∆=⎧⎨∑=-⎩C .82∆=-⎧⎨∑=⎩D .82∆=-⎧⎨∑=-⎩9.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x ay b =⎧⎨=⎩,则a +b 值为A .19B .212C .7D .1310.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 11.不解方程组,下列与237328x y x y +=+=⎧⎨⎩的解相同的方程组是A .2836921y xx y =-+=⎧⎨⎩B .283237y xx y =+=+⎧⎨⎩C .372283y x y y ⎧⎪⎪⎨+=+=⎪⎪⎩D .372382y x x y ⎧⎪⎪⎨-+=+=⎪⎪⎩12.方程组221x yx y+=-=⎧⎨⎩的解是__________.13.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.14.若方程组35ax byax by-=-⎧⎨+=⎩与23144516x yx y+=⎧⎨-=-⎩的解相同,则a=__________,b=__________.15.解方程组:(1)23328y xx y=-⎧⎨+=⎩(代入法);(2)223210x yx y+=⎧⎨-=⎩(加减法);(3)357 425 x yx y-=⎧⎨+=⎩;(4)2()1343()2(2)8x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩.16.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩.同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②,由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53,把b=53代入③,解得a=2,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.17.3()2()5 4(2)3x y x yx y x y-++=⎧⎨-+-=-⎩.18.已知23x yx y-=⎧⎨+=⎩,则xy的值是A.2 B.1 C.-1 D.219.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩①②正确的方法是A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-220.用加减法解方程组326231x yx y+=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是(1)966462x yx y+=⎧⎨+=⎩(2)9618462x yx y+=⎧⎨-=⎩(3)9618462x yx y+=⎧⎨+=⎩(4)6412693x yx y+=⎧⎨+=⎩A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)21.已知方程组323()11x yy x y-=⎧⎨+-=⎩,那么代数式3x-4y的值为A.1 B.8 C.-1 D.-822.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④23.若方程组(31)2y kx by k x =+=-+⎧⎨⎩有无穷多组解,则2k +b 2的值为A .4B .5C .8D .1024.已知甲、乙两人的收入比为32∶,支出之比为74∶,一年后,两人各余400元,若设甲的收入为x元,支出为y 元,可列出的方程组为A .4002740034x y x y -=⎧⎪⎨+=⎪⎩B .4003440027x y y ++⎧⎪⎨-=⎪⎩C .4002440037x y x y -=⎧⎪⎨-=⎪⎩D .4002740034x y x y -=⎧⎪⎨-=⎪⎩ 25.若关于x 、y 的二元一次方程组59x y kx y k +=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.26.若方程组7353x y x y +=⎧⎨-=-⎩,则3()(35)x y x y +--的值是__________.27.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.28.已知方程组82x y x y +∆=⎧⎨∆-=⎩WW 中,y x 、的系数部已经模糊不清,但知道其中W 表示同一个数,∆也表示同一个数,⎩⎨⎧-==11y x 是这个方程组的解,你能求出原方程组吗?29.解方程组:6323()2()28x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩.30.请你根据萌萌所给的如图所示的内容,完成下列各小题.(1)若m ※n =1,m ※2n =-2,分别求m 和n 的值;(2)若m 满足m ※2≤0,且3m ※(-8)>0,求m 的取值范围.31.(2018·怀化)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩ C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩32.(2018·天津)方程组10216x y x y +=⎧⎨+=⎩的解是A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C .36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩33.(2018·台湾)若二元一次联立方程式73838x y x y -=⎧⎨-=⎩的解为x =a ,y =b ,则a +b 之值为何?A .24B .0C .-4D .-834.(2018·桂林)若|321|20x y x y --++-=,则x ,y 的值为A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩35.(2018·常德)阅读理解:a ,b ,c ,d 是实数,我们把符号a bc d称为22⨯阶行列式,并且规定:a b a d b c c d =⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是 A .21732D ==--B .14x D =-C .27yD =D .方程组的解为23x y =⎧⎨=-⎩36.(2018·无锡)方程组225x y x y -=⎧⎨+=⎩的解是__________.37.(2018·福建)解方程组:1410x y x y +=⎧⎨+=⎩.38.(2018·湘西州)解方程组:335x y x y +=⎧⎨-=⎩.39.(2018·武汉)解方程组:10216x y x y +=⎧⎨+=⎩.40.(2018·宿迁)解方程组:20 346 x yx y+=⎧⎨+=⎩.41.(2018·舟山)用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.1.【答案】A【解析】1325y xx y+=⎧⎨+=⎩22233+252x y xx y y⎧+==⎧⇒⇒⎨==⎨-⎩⎩,故选A.2.【答案】C【解析】两式相减得,7y=5.故选C.3.【答案】D【解析】将两个方程相加,得:10x=10,故选D.4.【答案】A【解析】将方程组中的两个方程相加得(x+2y)+(x-y)=3m+9m,合并同类项得2x+y=12m.故选A.6.【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.7.【答案】A【解析】由①得:m=6-x,∴6-x=y-3,∴x+y=9.故选A.8.【答案】B【解析】把5x y =⎧⎨=∑⎩代入方程组可得,101012+∑=∆⎧⎨-∑=⎩,解得82∆=⎧⎨∑=-⎩,故选B .10.【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 11.【答案】A【解析】∵在A 选项中,方程283y x =-可化为:238x y +=; 方程6921x y +=可化为:237x y +=,∴A 选项中的方程组和原方程组的解相同,故选A .12.【答案】11x y ==⎧⎨⎩ 【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3, 解得:x =1.把x =1代入①得,y =1,故方程组的解为:11x y ==⎧⎨⎩.故答案为:11x y ==⎧⎨⎩.13.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=, 13333()322x y x y +=+=⨯=,故答案为:32. 14.【答案】1;1【解析】解方程组23144516x y x y +=⎧⎨-=-⎩,得14x y =⎧⎨=⎩.把它代入方程组35ax by ax by -=-⎧⎨+=⎩,得4345a b a b -=-⎧⎨+=⎩,解之,得a =1,b =1.故答案为1;1.15.【解析】(1)23328y x x y =-⎧⎨+=⎩①②,将①代入②得:3x +4x -6=8,解得x =2, 将x =2代入①得:y =1,则方程组的解为21x y =⎧⎨=⎩.(2)223210x y x y +=⎧⎨-=⎩①②,①×2+②得:7x =14,解得x =2, 将x =2代入①得:y =-2,则方程组的解为22x y =⎧⎨=-⎩.(3)357425x y x y -=⎧⎨+=⎩①②,①×2+②×5得:26x =39,即x =32, 将x =32代入②得:y =-12, 则方程组的解为3212x y ⎧=⎪⎪⎨⎪=-⎪⎩.(4)方程组化简,得51112058x yx y-+=⎧⎨=-⎩①②,把②代入①,得14y-28=0,解得y=2,把y=2代入②,得x=2,方程组的解为22 xy=⎧⎨=⎩.16.【解析】213 3113a bb a=-+⎧⎨=-⎩①②,把②代入①,得2a=-1+(11-3a),解得a=2,把a=2代入①,解得b=53,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.17.【解析】原方程整理为55593x yx y-=⎧⎨-=-⎩①②,①-②,得8y=8,解得,y=1.把y=1代入①得,5x-1=5,解得,x=65,所以,方程组的解为651xy⎧=⎪⎨⎪=⎩.18.【答案】B【解析】23x yx y-=⎧⎨+=⎩①②,②-①得,y=1③,将③代入①,得x=1,则xy=1,故选B.19.【答案】D【解析】先将②变为x-3y=7③,再①-③得x=-2,故选D.20.【答案】C【解析】①3⨯和②2⨯转化为(3);或者①2⨯和②3⨯转化为(4).故选C . 21.【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1, 将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B .23.【答案】B【解析】根据方程组有无穷多组解,可知方程组中的两个方程相同, 所以b =2,3k -1=k , 解得:k =12,b =2, ∴2k +b 2=1+4=5.故选B . 24.【答案】C【解析】根据甲的收入-甲的支出400=元,得方程400=-y x , 根据乙的收入-乙的支出400=元,得方程4007432=-y x , 则可列方程组为4002440037x y x y -=⎧⎪⎨-=⎪⎩,故选C . 25.【答案】34【解析】59x y k x y k +=⎧⎨-=⎩①②,①+②得:2x =14k ,即x =7k ,将x =7k 代入①得:7k +y =5k ,即y =-2k , 将x =7k ,y =-2k 代入2x +3y =6得:14k -6k =6, 解得:k =34,故答案为:34. 26.【答案】24【解析】将方程组中的两个方程看作整体代入得:3(x +y )-(3x -5y )=3×7-(-3)=24. 故答案为:24.27.【解析】(1)将①代入②得,32(402)22x x +-=,解得x =58,将x =58代入①,得:y =-76,故原方程组的解为:5876x y =⎧⎨=-⎩.(2)①×2得,4x +6y =10③,③-②得:8y =9,y =98, 将y =98代入①,得:1316x =, 故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③,①+③得:21x =0,解得:x =0, 将x =0代入②得:y =3,故原方程组的解为:03x y =⎧⎨=⎩.28.【解析】由题意得82x y x y +∆=⎧⎨∆-=⎩W W ,解得53=⎧⎨∆=-⎩W,则原方程组为538352x y x y -=⎧⎨--=⎩.29.【解析】原方程组整理得536528x y x y -=⎧⎨+=⎩①②,由②得y x 528-=③,把③代入①得36)528(5=--y y ,解得4=y , 把4=y ③代入③得,8=x ,∴方程组的解为84x y =⎧⎨=⎩.30.【解析】(1)∵m ※n =1,m ※2n =-2,∴431462m n m n -=⎧⎨-=-⎩,解得11n m =⎧⎨=⎩.(2)∵m ※2≤0,3m ※(-8)>0,∴46012240m m -≤⎧⎨+>⎩,解得-2<m ≤32. 31.【答案】B【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得:2x =0, 解得:x =0,把x =0代入①得:y =2,则方程组的解为02x y =⎧⎨=⎩,故选B .32.【答案】A【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得x =6,把x =6代入①,得y =4,原方程组的解为64x y =⎧⎨=⎩.故选A . 33.【答案】A【解析】73838x y x y -=⎧⎨-=⎩①②,①-②×3,得:-2x =-16, 解得:x =8,将x =8代入②,得:24-y =8,解得:y =16,即a =8,b =16,则a +b =24,故选A .34.【答案】D 【解析】∵|321|20x y x y --++-=,∴321020x y x y --=⎧⎨+-=⎩, 将方程组变形为3212x y x y -=⎧⎨+=⎩①②, ①+②×2得,5x =5,解得x =1, 把x =1代入①得,3-2y =1,解得y =1,∴方程组的解为11x y =⎧⎨=⎩.故选D . 35.【答案】C【解析】A 、D =2132-=2×(-2)-3×1=-7,故A 选项正确,不符合题意; B 、D x =11122-=-2-1×12=-14,故B 选项正确,不符合题意;C、D y=21312=2×12-1×3=21,故C选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=-3,故D选项正确,不符合题意,故选C.36.【答案】31 xy=⎧⎨=⎩【解析】225 x yx y-=⎧⎨+=⎩,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31 xy=⎧⎨=⎩,故答案为:31 xy=⎧⎨=⎩.37.【解析】1410x yx y+=⎧⎨+=⎩①②,②-①得:3x=9,解得:x=3,把x=3代入①得:y=-2,则方程组的解为32 xy=⎧⎨=-⎩.38.【解析】①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为21x y =⎧⎨=⎩. 39.【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩.41.【解析】(1)解法一中的计算有误(标记略).(2)用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下: 由①-②,得33x -=,解得1x =-,把1x =-代入①,得135y --=,解得2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
消元—解二元一次方程组(3)
① ②
代入①,解y
4 0.4 10y 3.6 y 0.2 .
x 0.4, 是原方程组的解. y 0.2
11x 4.4,
解得
x 0.4.
例4的教学
问题4 你能结合教科书上的框图,简述加减消 元法解方程组的一般步骤吗?
用加减消元法解方程组:
代入③,得
③
代入②,消去y,解得
y 3.5.
x 1, y 3.5
0.8 x 0.( 6 1.5 2 x) 1.3
x 1
是原方程组的解.
灵活运用
x 2 y 3, ① 3x 2 y 5.②
解:选择加减法,
①+②得
4x 8 x2
探索与思考
ax by 2 3、在解方程组 时,小张正确的解是 cx 3 y 5
x 3 得到方程组的解为 y 1
x 1 ,小李由于看错了方程组中的C y 2
,试求方程组中的a、b、c的值.
4 x 3 y 2, ① 5.关于x、y的方程组 kx (k 1) y 6 ② 的解x与y的值相等,试求k的值。
2 2 x 5 y) 3.6 , ( 依题意得: 5 3x 2 y) 8. (
例4的教学
例4 2台大收割机和5台小收割机同时工作2 h 共收割小麦3.6 hm2,3台大收割机和2台小收割 机同时工作5 h收割小麦8 hm2.1台大收割机和 1台小收割机每小时各收割小麦多少公顷?
8.2 消元—解二元一次方程组 (第3课时)
例4的教学
例4 2台大收割机和5台小收割机同时工作2 h 共收割小麦3.6 hm2,3台大收割机和2台小收割 机同时工作5 h收割小麦8 hm2.1台大收割机和 1台小收割机每小时各收割小麦多少公顷? 问题1 本题的等量关系是什么? 2台大收割机2小时的工作量 +5台小收割机2小时的工作量=3.6; 3台大收割机5小时的工作量 +2台小收割机5小时的工作量=8.
第八章 二元一次方程组8.2消元——解二元一次方程组教案(3课时)
§ 8.2消元——解二元一次方程组(一)
课时
第1课时
课型
新授
教
学
目
标
知识
与
技能
1.知道消元思想和代入法的概念;
2.会用代入消元法解二元一次方程组。
过程
与
方法
1.通过探究,了解解二元一次方程的“消元”思想,初步体会数学的化归思想.
2.培养探索、自主、合作的意识,提高解题能力.
情感、态度
与价值观
1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.
学生回答,教师点评,强调。
二、提出问题:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组.
这个问题能用一元一次方程解决吗?
三、讲授新课:
1、怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
②代入(把变形好的方程代入到另一个方程,即可消元)
③求解(解一元一次方程,得一个未知数的值);
④回代(把求得的未知数代入变形的方程,求另一个未知数的值);
⑤写解(用x=a
y=b的形式写出方程组的解)。
⑥验算(把方程的解代回原方程组验算)
简记:变形→代入→求解→回代→写解→验算
四、例题分析:
例1、课本P91
课本P97习题8.2第2题
板书设计
消元——解二元一次方程组
1、基本思路:“消元”——把“二元”变为“一元”
2、主要步骤:变形→代入→求解→回代→写解→验算
教学反思
8.2解二元一次方程组加减消元法(三)
新课标(RJ) 数学 七年级下册
8.2 消元——解二元一次方程组
加减消元法(三)
8.2
消元——解二元一次方程组
教材重难处理
教材【第111页第3题的第(2)小题】分层分析
2 ( x - y ) x + y - =-1,① 3 4 解方程组: 6(x+y)-4(2x-y)=16.②
[分析] (1)方程①去分母、去括号、合并同类项,得形如 a1x +b1y=c1 的方程:
5x-11y ____________ =-12.③
8.2
消元——解二元一次方程组
(2)方程②去括号、合并同类项、化简,得形如 a2x+b2y=c2 的方程:
-x+5y _______________ =8.④ 28 .解得 y=______ 2 . (3)③+④×5,得 14y=______ 2 2 代入方程④,解得 x=______ (4)将 y=______ . 2 , x= 2 所以原方程组的解是 2 y= 2 W . a1x+b1y=c1, a2x+b2y=c2 (5) 这类方程组需要先整理成形如 __________________ 的方
8.2
消元——解二元一次方程组
解:设灌溉用井打 x 口,生活用井打 y 口.由题意,得
x+y=58, 4x+0.2y=80, x=18, 解这个方程组,得 y=40,
答:灌溉用井和生活用井各打18口和40口. [归纳总结] 找出等量关系,构建方程组模型,是解决实际问
题的一种常用方法.
方程组
3x 5 y m 2 ① 2 x 3 y m
的解也是方
程 x y 8 的解,求m的值 解:①-②得: x 2y 2 ③
《8.2消元——解二元一次方程组》第1课时教案
《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
人教版七年级数学下册8.2 消元——代入法解二元一次方程组(课件20张PPT 教案)
例2 根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g)两种产品的销 售数量(按瓶计算)的比为2:5.某厂每天生产 这种消毒液 22.5吨,这些消毒液应该分装大、 小瓶两种产品各多少瓶?
问题中的条件 大瓶数:小瓶数=2:5 大瓶所装消毒液+小瓶所装消毒液=总生 产量
解:设这些消毒液应该分装x大瓶、y小瓶. ① 5 x 2 y 由题意得 ② 500 x 250 y 22500000
x y 3 的解是( 2x 4
x 5
D )
x 3 A. y 0
x 1 B. y 2
x 2 C. y 2 D. y1
作业布置
1. 必做题:97页1.(2)(4)2.(3)(4 2. 选做题:98页7.8
“即使能力有限,也要全力以赴,即使输了, 也要比从前更强,我一直都在与自己比,我要 把最美好的自己,留在这终于相逢的决赛赛 场。”
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
人教初中数学七下 8.2 消元 解二元一次方程组(第3课时)课件 【经典初中数学课件】
8
三、研读课文
一
元
一
知次
不
识等
式
点的
三
解 法
及
练
习
注意:当不等式的两边都乘或除以同一个负数时, 不等号的方向 改变 .归纳:解一元一次方程,要根 据等式的性质,将方程逐步化为 X=a的形式;而解
一元一次不等式,则要根据不等式的性质,将不等
式逐步化为 x<a (或 X>a )的形式.
一
元
一
知
次 不
四、归纳小结
3、解一元一次不等式的一般步骤: ① 去分母 ② 去括号 ③ __移__项___ ④ 合__并__同__类__项__⑤ 系数化为1 .
4、学习反思___________________.
五、强化训练
1、下列式子中,属于一元一次不等式的
是( D )
A. 4>3
B. C.C. 3x-2<y+7
解得 y= 14
11
把y=
14 11
代入①得2x+ 解得y= 9
70 11
=8
11
所以方程组的解是
x
=
70 14
y= 9
11
四、归纳小结
四、归纳小结 1、加减消元法的步骤: (1)将原方程组的两个方程化为有一个未知数
的系数_相__反或相等 的两个方程; (2)把这两个方程相加或_相__减___,消去一个
4
这个不等式的解集在数轴上的表示:
5
04
四、归纳小结
1、含有 一 个未知数,未知数__次__数_是__1____的 不等式,叫做一元一次不等式.
2、解一元一次方程,要根据等式的性质,将方 程逐步化为 X=a 的形式;而解一元一次 不等式,则要根据不等式的性质,将不等式逐 步化为 x<a (或 X>a )的形式.
人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】
P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48
①
10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2
⑵
2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)
①
3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)
8.2 消元——加减消元法解二元一次方程组(教案)
8.2 消元——加减消元法解二元一次方程组(教案)一、教材分析“用加减消元法解二元一次方程组”是在学习了“用代入消元法解二元一次方程组”的基础上的进一步学习,同时又是后续学习“解三元一次方程组”的重要基础。
代入法和加减法是解二元一次方程组的两种有效途径,而且是解二元一次方程组的通法,“用加减消元法解二元一次方程组”是对“用代入消元法解二元一次方程组”的有力补充和完善,两者相辅相成,各见长处。
二、教学目标1、知识技能:掌握用加减消元法解二元一次方程组。
2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。
3、情感态度与价值观:在探索用加减法解二元一次方程组的过程中享受成功的快乐,感受数学知识的实际用价值,养成良好的学习习惯。
三、教学重点与难点(一)教学重点:用加减法解二元一次方程组。
(二)教学难点:如何运用加减法进行消元。
四、教学方法:本节课采用“探索---发现---比较”的教学法。
五、教学辅助手段教师采用多媒体PPT演示六、教学设计过程(一)温故而知新一〃1. 根据等式性质填空:<1>若a =b ,那么a ±c = . (等式性质1)<2>若a =b ,那么ac = . (等式性质2)<3>思考:若a =b ,c =d ,那么a ±c =b ±d 吗?2.用代入法解方程的关键是什么?3、解二元一次方程组的基本思路是什么?4.请你代入消元法解下面这个方程组:⎩⎨⎧=+=+40222y x y x具体步骤是:由①得 =y . ③,把③代入①得 .从而达到消元的目的。
(即把二元一次方程变成我们较熟悉的一元一次方程)(二)提出问题,阅读课本,得出加减法的定义。
1. 解这个方程组⎩⎨⎧=+=+40222y x y x 除了用代入法,还有别的方法吗? 2. 请大家认真阅读课本99面第二个思考前的内容。
消元—解二元一次方程组(3)
由①+②得: 18x=10.8
两个二元一次方程中同一未知数的系数相反 或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
探究新知
追问1 两个方程加减后能够实现消元的前提条 件是什么? 两个二元一次方程中同一未知数的系数 相反或相等. 追问2 加减的目的是什么? “消元”
解:由①+②得: 5x=10
① ②
x=2
把x=2代入①,得 y =3 所以原方程组的解是
x 3 y 2
探究新知
问题3 这种解二元一次方程组的方法叫什么?有 哪些主要步骤? 当二元一次方程组中的两个二元一次方程中同一 未知数的系数相反或相等时,把这两个方程的两边分 别相加或相减,就能消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消元法,简称加减法.
① ②
解:把 ②+①得: 18x=10.8 x=0.6 把x=0.6代入①,得: 3×0.6+10y=2.8 解得:y=0.1
所以原方程组的解是 y=0.1
x= 0.6
加减消元法
3x 10 y 2.8 15x 10 y 8
① ②
x+y=10
①
2x+y=16 ②
由 ②-①得:x=6
5 x 6 y 33
本例题可以用加减 消元法来做吗?
3x 4 y 16 解方程 5x 6 y 33
解:①×3,得:9x+12y=48 ③ ②×2,得:10x-12y=66 ④ ③十④,得:19x= 114, x =6 把x =6代入①,得 3×6+4y=16, 4y=-2 1 得 y= 2 x=6 所以原方程组的解是 1
数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》说课稿
《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。
一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。
2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。
七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版
初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。
教具学具准备:电脑或投影仪。
教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。
如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。
师生互动分析: [1]2x + (22 - x)=40 。
列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。
彭泽县八中七年级数学下册第八章二元一次方程组8.2消元__解二元一次方程组第3课时选择适当的方法解二
x+y=12, 解:(1)设成人人数为 x 人,学生人数为 y 人,则有35x+325y=350,
解得xy= =84, . ∴一共去了 8 个成人,4 个学生. (2)当按团体购票时共需 12×35×0.6=252 元,∵252<350,∴按团 体票最省钱.
14.(导学号 09124091)(2017·南召县期末)如下是按一定规律排列的方程
包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23, 结果打了 16 个包还多 40 本;第二次他们把剩下的书全部取来,连同 第一次打包剩下的书一起,刚好又打了 9 个包.那么这批书共有多少 本?
23y=16x+40, 解:设每包有 x 本书,这批书共有 y 本,则31y=9x-40, 解得
例2 甲、乙两商场以同样的价格出售同样的商
品,并且又各自要推使出购不物同花的优费惠最方少案,:在甲商 场收费累;计你到在购哪能乙买从些商10题信0场你元息目累后是计中?,怎购得超么买出想超1过0的0元5?0元的后部,分超按过90%50
元的部分按95%收费.顾客到哪家商场购物花 费少?
分析 在甲商场购物超过 100 元后享受优 惠,在乙商场购物超过 50 元后享受优 惠.因此,我们需要分三种情况讨论: (1)累计购物不超过 50 元;
购物款
在甲商场花费
不超过50元(0<x≤50)
x
超过50,但不超过100 元(50<x≤100)
x
超过100元(x>100) 100+0.9(x-100)
在乙商场花费 x
50+0.95(x-50) 50+0.95(x-50)
你能从表格中看出在哪 家商场花费少吗?
(a)当0<x≤50时,在两家商场花费一样,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
挑战自我,拓展提高
3x 4 y 8,① 【问题3】用加减法解方程组 5x 8 y 6. ②
⑴本题可以直接用加减法求解吗?
zxxk
⑵直接使用加减法解二元一次方程组的条件是什么?
⑶请你观察两个方程中未知数的系数有何特点? ⑷怎样才能使两个方程中某一未知数的系数相等或相反呢?
挑战自我,拓展提高
答:轮船在静水中的速度为18 km/h,水的流速为2 km/h.
代入加减,合理选择
【问题3】你怎样解下面的方程组?
2 x y 1.5, ⑴ 0.8x 0.6 y 1.3; x+2y 3, ⑵ 3x 2 y 5.
代入加减,合理选择
【问题3】你怎样解下面的方程组?
系你能发现新的消元方法吗?
加减并行,完善解法
【问题2】联系上面的解法,想一想怎样解方程组
3x 10 y 2.8, 15 x 10 y 8.
两个二元一次方程中同一未知数的系数相反或相 等时,把两个方程的两边分别相加或相减,就能消 去这个未知数,得到一个一元一次方程.这种方法 叫做加减消元法,简称加减法.
2 2 x 5 y) 3.6 , 依题意得: ( 5 3x 2 y) 8. (
问题3 如何解这个方程组?
例4的教学
2 2 x 5 y) 3.6, ( 5 3x 2 y) 8. (
① ②
解:化简得:
4 x 10 y 3.6, 15x 10 y 8.
实际应用,一显身手
【问题4】某工厂第一车间工人人数比第二车间工人人
数的2倍少10人,若从第一车间抽调5人到第二车间,那么两 个车间的人数一样多. 问原来每个车间各有多少名工人?
相等关系: ①第一车间工人人数=第二车间工人人数×2-10; ②第一车间工人人数-5=第二车间工人人数+5.
解:设第一车间原有工人 x 名,第二车间原有工人 y 名, 根据题意,得 x 2 y 10, x 30, 解这个方程组,得 x 5 y 5. y 20.
总结提升,布置作业
作业:教材习题8.2第3题.
答:每节火车车厢平均装50 t化肥,每辆汽车平均装4 t化肥.
巩固训练,加强应用
【问题2】
练习2:一条船顺流航行,每小时行20 km;逆流航行, 每小时行16 km.求轮船在静水中的速度与水的流速.
相等关系: ①顺水速度=静水速度+水流速度; ②逆水速度=静水速度-水流速度.
解:设轮船在静水中的速度为 x km/h,水的流速为 y km/h, 根据题意,得 x y 20, x 18, 解这个方程组,得 x y 16. y 2.
相等关系: ①6节火车车厢的装载量+15辆汽车的装载量=360; ②8节火车车厢的装载量+10辆汽车的装载量=440. 解:设每节火车车厢平均装 x t化肥,每辆汽车平均装 y t化肥, 根据题意,得
6 x 15 y 360, x 50, 解这个方程组,得 8 x 10 y 440. y 4.
答:第一车间原有工人30名,第二车间原有工人20名.
梳理知识,布置作业
⑴解二元一次方程组的基本思想是什么? ⑵解二元一次方程组有哪几种方法? ⑶用代入法解二元一次方程组的一般步骤有哪些? ⑷用加减法解二元一次方程组的一般步骤有哪些? ⑸何时选用代入法?何时选用加减法? ⑹列方程组解应用题的一般步骤有哪些?
0 (1) 3x+ (-3x) =_____
(-9x) (3) 9x+ _____=0
0 (2) 2y-2y=______ 7y (4) 7y-_____=0
想一想:在一个方程组里,如果某个未知数的系数是相同 或互为相反数,我们可不可以用加减法消去这个未知数。
问题再现,探究新法
x y 10, ① 【问题1】我们知道,可以用代入法解方程组 2 x y 16. ② 这个方程组的两个方程中, y 的系数有什么关系?利用这种关
练习巩固,熟练掌握
【问题5】练习:用加减法下列解方程组:
x 2 y 9, ⑴ 3x 2 y 1;
2 x 5 y 8, ⑶ 3x 2 y 5; 5x 2 y 25, ⑵ 3x 4 y 15; 2 x 3 y 6, ⑷ 3x 2 y 2.
① 3x 4 y 16, 【问题4】例3:用加减法解方程组 5 x 6 y 33. ② ⑴① 3、② 2后两方程相加,消去未知数 y ;
⑵① 5、② 3 后两方程相减,消去未知数 x . 用加减法解二元一次方程组的一般步骤:
⑴变形;⑵加减求解; ⑶回代求解; ⑷写解.
2 ; 2. 由2 x-5y=-11用含y的代数式表示x,则x=________
3. 利用等式的基本性质将方程2x+y=40 与x+y=22的 x=18 左右两边分别相减得________ ; 4.利用等式的基本性质将方程3 x+5y=21 与2 x-5y=-11 5 x=10 ; 的左右两边分别相加得________ 5.合并同类项:
② - ①,消y 得
代入①,解y
4 0.4 10 y 3.6 y 0.2 .
x 0.4, 是原方程组的解 y 0.2 .
11x 4.4,
解得
x 0.4.
探究新知,解决问题
4 x 10 y 3.6 ①
y 解得
y 0.2
二 元 一 次 方 程 组
x 1, 所以这个方程组的解是 y 3.5.
代入加减,合理选择
【问题3】你怎样解下面的方程组?
x+2y 3, ① ⑵ 3x 2 y 5. ②
解: ①+②,得 4 x 8 . 解这个方程,得 x 2 . 把 x 2 代入②,得 3 2 2 y 5 . 1 y . 解这个方程,得 2 x 2, 所以这个方程组的解是 1 y . 2
总结提升,布置作业
⑴解二元一次方程组有哪几种方法? ⑵解二元一次方程组的基本思想是什么?
⑶具有什么特点的二元一次方程组能直接使用 加减法求解?
Zx。xk
⑷如果两个二元一次方程中同一未知数的系数 成整数倍,那么怎样解决? ⑸如果方程组中的同一未知数的系数绝对值不 相等且不成整数倍,那么怎样解决?
探究新知,解决问题
1、解二元一次方程组的基本思路是什么? 基本思路:
消元: 二元
一元
2、用代入法解方程的步骤是什么? 一元
主要步骤: 用一个未知数的代数式 变形 表示另一个未知数 代入 消去一个元 求解 写解 分别求出两个未知数的值
写出方程组的解
课前热身
7- x ;5 y 11 1.已知x+y=7,用含x的代数式表示y,则y=_____
代入
②①
x 0.4
解得
一元一次方程
15x 10 y 8 ②
11x 4.4
两方程相减,消未知数 y
巩固训练,加强应用
【问题1】
练习3:运输360 t化肥,装载了8节火车车厢与10辆汽车.每节火车车厢 与每辆汽车平均各装多少吨化肥?
【问题1】例4:2台大收割机和5台小收割机均工作2 h共收
割小麦3.6 hm2,3台大收割机和2台小收割机均工作5 h共收割 小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多 少公顷? 等量关系:
①2台大收割机2小时的工作量 5台小收割机2小时的工作量 3.6 ; ②3台大收割机5小时的工作量 2台小收割机5小时的工作量 8.
xk
Zx。
① 2 x y 1.5, ⑴ 0.8 x 0.6 y 1.3; ②
解:由①,得 y 1.5 2 x . ③ 把③代入②,得 0.8x 0.6 1.5 2x 1.3 . 解这个方程,得 x 1 . 把 x 1 代入③,得 y 3.5 .
设1台大收割机和1台小收割机每小时各收割小麦 x hm2和 y hm2 ,则
2台大收割机1小时收割小麦 2台大收割机2小时收割小麦 5台小收割机2小时收割小麦
hm2 , hm2 , hm2 .
例4的教学
例4 2台大收割机和5台小收割机同时工作2 h 共收割小麦3.6 hm2,3台大收割机和2台小收割 机同时工作5 h收割小麦8 hm2.1台大收割机和 1台小收割机每小时各收割小麦多少公顷? 解:设1台大收割机和1台小收割机每小时分别 收割小麦x hm2 和y hm2 .