电磁感应中能量的转化与守恒(电动势)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的能量转化与守恒

能的转化与守恒定律,是自然界的普遍规律,也是物理学的重要规律。电磁感应中的能量转化与守恒问题,是高中物理的综合问题,也是高考的热点、重点和难点。在电磁感应现象中,外力克服安培力做功,消耗机械能,产生电能,产生的电能是从机械能转化而来的;当电路闭合时,感应电流做功,消耗了电能,转化为其它形式的能,如在纯电阻电路中电能全部转化为电阻的内能,即放出焦耳热,在整个过程中,总能量守恒。

在与电磁感应有关的能量转化与守恒的题目中,要明确什么力做功与什么能的转化的关系,它们是:合力做功=动能的改变;

重力做功=重力势能的改变;重力做正功,重力势能减少;重力做负功,重力势能增加;

弹力做功=弹性势能的改变;弹力做正功,弹性势能减少;弹力做负功,弹性势能增加;

电场力做功=电势能的改变;电场力做正功,电势能减少;电场力做负功,电势能增加;

安培力做功=电能的改变,安培力做正功,电能转化为其它形式的能;安培力做负功(即克服安培力做功),其它形式的能转化为电能。

以2005年高考题为例,说明与电磁感应有关的能量转化与守恒问题的解法。

例1如图1所示,两根足够长的固定平行金属光滑导轨位于同一水平面,导轨上横放着两根相同的导体棒ab、cd与导轨构成矩形回路。导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒的中间用细线绑住,它们的电阻均为R,回路上其余部分的电阻不计。在导轨平面内两导轨间有一竖直向下的匀强磁场。开始时,导体棒处于静止状态。剪断细线后,导体棒在运动过程中( )

A.回路中有感应电动势

B.两根导体棒所受安培力的方向相同

C.两根导体棒和弹簧构成的系统动量守恒,机械能守恒

D.两根导体棒和弹簧构成的系统动量守恒,机械能不守恒

解析:因回路中的磁通量发生变化(因面积增大,磁通量增大)所以有感应电动势;据楞次定律判断,感生电流的方向是a,用左手定则判断ab受安培力向左,dc受安培力向右;因平行金属导轨光滑,所以两根导体棒和弹簧构成的系统受合外力为零(重力与支持力平衡),所以动量守恒,但一部分机械能转化为电能,所以机械能不守恒,因此本题选A、D。

例2如图2所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略。初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0。在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。

图2

(1)求初始时刻导体棒受到的安培力。

(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为E

p ,则这一过程中安培力所做的功W

1

和电阻R上产生的

焦耳热Q

1

分别为多少?

(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?

解析:(1)用右手定则判断导体棒的感生电流方向从B向A,用右手定则判断导体棒受的安培力方向向左。

感应电动势为

感生电流为

安培力为

所以。

(2)这一过程中导体棒的动能转化为弹簧的弹性势能和电路的电能(通过安培力做功),电路的电能通过电阻R转化为焦耳热,所以。

(3)只有导体棒的动能为零并且弹簧的弹性势能也为零,导体棒才能静止,所以最终将静止于初始位置。此时,导体棒的动能全部转化为电阻R上产生的焦耳热,所以。

例3图3中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计。导轨所在平面与磁感应强度B 为0.50T的匀强磁场垂直。质量m为6.0×10-3kg、电阻为1.0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导

轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1。当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P 为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2。

图3

解析:在杆ab达到稳定状态以前,杆加速下降,重力势能转化为动能和电能。当杆ab达到稳定状态(即匀速运动)时,导体棒克服安培力做功,重力势能转化为电能,即电路消耗的电功,所以有

代入数据得:。

感应电动势为

感生电流为

其中r为ab的电阻,R

外为R

1

与R

2

的并联电阻,即。

代入数据,解得:R

2

=6.0。

例4 如图4所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=37?角,下端连接阻值为R的电阻。匀强磁场方向与导轨平面垂直。质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。

图4

⑴求金属棒沿导轨由静止开始下滑时的加速度大小;

⑵当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;

⑶在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小和方向。(g=10m/s2,sin37?=0。6,cos37?=0。8)

解析:(1)由受力分析,根据牛顿第二定律,得:

代入数据,解得。

(2)当金属棒下滑速度达到稳定时,金属棒重力势能一部分克服摩擦力做功,转化为内能,另一部分克服安培力做功,转化为电能,它等于电路中电阻R消耗的电功;设速度为,在时间内,据能量守恒,有:

代入数据,解得:

(3)据及,解得B=0.4T。

用右手定则判断磁场方向垂直导轨平面向上。

归纳:在同一水平面内,重力势能不变,动能与电能之和守恒,如例2;物体做匀速运动时,其动能不变,势能与电能之和守恒,如例1和例3;如果再有克服摩擦力做功,则势能、内能与电能之和守恒,如例4。在电磁感应现象中,机械能不守恒。

相关文档
最新文档