2017人教版九年级数学上册期末检测题(二)有答案AKwHwU (1)

合集下载

人教版初中数学九年级上册期末试卷(二)含答案解析

人教版初中数学九年级上册期末试卷(二)含答案解析

人教版初中数学九年级上册期末试卷校名:班级:姓名:学号:分数一、选择题(每小题 3 分,共24 分)1.(3 分)下列根式中不是最简二次根式的是()A.B.C.D.2.(3 分)用配方法解一元二次方程x2﹣4x﹣5=0 的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 3.(3 分)下面四个标志图是中心对称图形的是()A.B.C.D.4.(3 分)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形5.(3 分)掷一枚质地均匀的硬币10 次,下列说法正确的是()A.每2 次必有1 次正面向上B.可能有5 次正面向上C.必有5 次正面向上D.不可能有10 次正面向上6.(3 分)一次排球友谊赛,参赛队中每两队都要赛1 场,若此次友谊赛共66 场,则本次参赛球队有()A.14 队B.13 队C.12 队D.11 队7.(3 分)若圆锥的底面半径为5cm,侧面积为65πcm2,则该圆锥的高是()A.13cm B.12cm C.11cm D.10cm8.(3 分)如图,在平面直角坐标系中,⊙P 的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为,则a 的值是()A.2B.2+ C.2 D.2+二、填空题(每小题 3 分,共24 分)9.(3 分)若三角形的三边长分别为,和,则它的周长为.10.(3 分)方程(3x﹣1)2=(2﹣x)2的根是.11.(3 分)如图,PA,PB 是⊙O 是切线,A,B 为切点,AC 是⊙O 的直径,若∠BAC=25°,则∠P= 度.12.(3 分)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB 与小圆相交,则弦AB 的取值范围是.13.(3 分)若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为.14.(3 分)如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是.15.(3 分)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=1,将Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE,点B 经过的路径为,则图中阴影部分的面积是.16.(3 分)已知:如图,三个半圆依次相外切,它们的圆心都在x 轴的正半轴上并与直线y=x 相切,设半圆C1、半圆C2、半圆C3的半径分别是r1、r2、r3,则当r1=1 时,r3= .三、解答题(17,18,19 题各8 分,20,21,22 题各10 分,23,24,25,26题各12 分,共102 分)17.(8 分)计算:(1).(2).18.(8 分)用你熟悉的方法解方程:(x﹣3)2+2x(x﹣3)=0.19.(8 分)实践与操作:如图1 是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2 是以图1 为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3 中重新设计一个不同的轴对称图形.(2)以你在图3 中所画的图形为基本图案,经过图形变换在图4 中拼成一个中心对称图形.20.(10 分)如图,在边长为1 个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC 全等且A 与A1是对应点;(2)画出点B 关于直线AC 的对称点D,并指出AD 可以看作由AB 绕A 点经过怎样的旋转而得到的.21.(10 分)某商店从厂家以每件21 元的价格购进一批商品,该商品可以自行定价,若每件商品售价为a 元,则可卖出(350﹣10a)件.但物价局限定每次商品加价不能超过进价的20%,商品计划要赚400 元,需要卖出多少件商品?每件商品的售价应该是多少元?22.(10 分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2 的概率;(2)小峰先随机掷两枚骰子一次,点数和为7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6 个小圆点的小立方块,点数和:两枚骰子朝上的点数之和)23.(12 分)如图,已知直线PA 交⊙O 于A、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE,过 C 作CD⊥PA,垂足为D.(1)求证:CD 为⊙O 的切线;(2)若DC+DA=6,⊙O 的直径为10,求AB 的长度.24.(12 分)如图,PA、PB 分别与⊙O 相切于点A、B,点M 在PB 上,且OM ∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O 的半径R=3,PA=9,求OM 的长.25.(12 分)如图1 的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)如图2,《思维游戏》这本书的长为21cm,宽为15cm,厚为1cm,现有一张面积为875cm2 的矩形纸包好了这本书,展开后如图1 所示.求折叠进去的宽度;(2)若有一张长为60cm,宽为50cm 的矩形包书纸,包2 本如图2 中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1 所示.问折叠进去的宽度最大是多少?26.(12 分)如图,在△ABC 中,∠BAC=90°,AB=AC=6,D 为BC 的中点.(1)若E、F 分别是AB、AC 上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E 分别从C、A 两点同时出发,以每秒1 个单位长度的速度沿CA、AB 运动,到点A、B 时停止;设△DEF 的面积为y,F 点运动的时间为x,求y 与x 的函数关系式;(3)在(2)的条件下,点F、E 分别沿CA、AB 的延长线继续运动,求此时y 与x 的函数关系式.参考答案与试题解析一、选择题(每小题 3 分,共24 分)1.【分析】找到被开方数中含有开得尽方的因数的式子即可.【解答】解:各选项中只有选项C、=2,不是最简二次根式,故选:C.2.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选:D.3.【分析】根据中心对称图形的概念和各图特点作答.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180 度以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180 度以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;D、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180 度以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意.故选:B.4.【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D 都不符合;是中心对称图形的只有B.故选:B.5.【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,所以掷一枚质地均匀的硬币10 次,可能有5 次正面向上;故选:B.6.【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数=.即可列方程求解.【解答】解:设有x 个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,x(x﹣1)÷2=66,解得x=12 或﹣11(舍去).故应12 个球队参加比赛.故选:C.7.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解求得母线长,然后利用勾股定理求得圆锥的高即可.【解答】解:设母线长为R,则:65π=π×5R,解得R=13cm.故圆锥的高为:=12cm,故选:B.8.【分析】过P 点作PE⊥AB 于E,过P 点作PC⊥x 轴于C,交AB 于D,连接PA.分别求出PD、DC,相加即可.【解答】解:过P 点作PE⊥AB 于E,过P 点作PC⊥x 轴于C,交AB 于D,连接PA.∵PE⊥AB,AB=2 ,半径为2,∴AE= AB= ,PA=2,根据勾股定理得:PE= =1,∵点 A 在直线y=x 上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD 是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD= .∵⊙P 的圆心是(2,a),∴a=PD+DC=2+ .故选:B.二、填空题(每小题 3 分,共24 分)9.【分析】三边相加列出算式,计算即可得到结果.【解答】解:根据题意得:++=3+5+4=12 ,则三角形的周长为12.故答案为:1210.【分析】一元二次方程(3x﹣1)2=(2﹣x)2 表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【解答】解:开方得3x﹣1=±(2﹣x)即:当3x﹣1=2﹣x 时,x1= ;当3x﹣1=﹣(2﹣x)时,x2=﹣.故答案为:x1= ,x2=﹣.1.【分析】首先利用切线长定理可得PA=PB,再根据∠OBA=∠BAC=25°,得出∠ABP 的度数,再根据三角形内角和求出.【解答】解:∵PA,PB 是⊙O 的切线,A,B 为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50.12.【分析】解决此题首先要弄清楚AB 在什么时候最大,什么时候最小.当AB与小圆相切时有一个公共点,此时可知AB 最小;当AB 经过同心圆的圆心时,弦AB 最大且与小圆相交有两个公共点,此时AB 最大,由此可以确定所以AB 的取值范围.【解答】解:如图,当AB 与小圆相切时有一个公共点D,连接OA,OD,可得OD⊥AB,∴D 为AB 的中点,即AD=BD,在Rt△ADO 中,OD=3cm,OA=5cm,∴AD=4cm,∴AB=2AD=8cm;当AB 经过同心圆的圆心时,弦AB 最大且与小圆相交有两个公共点,此时AB=10cm,所以AB 的取值范围是8cm<AB≤10cm.故答案为:8cm<AB≤10cm13.【分析】求△ABC 的周长,即是确定等腰三角形的腰与底的长求周长.首先求出方程的根,根据三角形三边关系定理列出不等式,然后解不等式即可.【解答】解:解方程x2﹣6x+8=0 得x1=4,x2=2;当4 为腰,2 为底时,4﹣2<4<4+2,能构成等腰三角形,周长为4+2+4=10;当2 为腰,4 为底时4﹣2=2<4+2 不能构成三角形,当等腰三角形的三边分别都为4,或者都为 2 时,构成等边三角形,周长分别为6,12,故△ABC 的周长是6 或10 或12.14.【分析】圆锥的底面周长即为侧面展开后扇形的弧长,已知扇形的圆心角,所求圆锥的母线即为扇形的半径,利用扇形的弧长公式求解.【解答】解:将l=20π,n=120 代入扇形弧长公式l=中,得20π=,解得r=30.故答案为:30.15.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S 扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD【解答】解:∵∠ACB=90°,AC=BC=1,∴AB= ,∴S扇形ABD==.又∴Rt△ABC 绕 A 点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE +S扇形ABD﹣S△ABC=S扇形ABD=.故答案为:.16.【分析】分别过O1、O2、O3作直线y=x 的垂线,垂足为A、B、C,再分别过O1、O2作O1D⊥O2B,O2E⊥O3C,垂足为D、E,由直线解析式可知∠COO3= ∠DO1O2=∠EO2O3=30°,分别解Rt△DO1O2,Rt△EO2O3,求r3.【解答】解:如图,过O1、O2、O3作直线的垂线,垂足为A、B、C,过O1、O2作O1D⊥O2B,O2E⊥O3C,垂足为D、E,∵直线解析式为y=x,∴∠COO3=∠DO1O2=∠EO2O3=30°,在Rt△DO1O2中,O1O2=r1+r2,O2D=r2﹣r1,由sin∠DO1O2=,得= ,解得r2=3;在Rt△EO2O3中,O2O3=r2+r3,O3E=r3﹣r2,由sin∠EO2O3= ,得=,解得r3=9.故答案为:9.三、解答题(17,18,19 题各8 分,20,21,22 题各10 分,23,24,25,26题各12 分,共102 分)17.【分析】(1)原式利用同分母分式的加法法则逆运算法则计算即可得到结果;(2)原式各项化为最简二次根式,合并即可得到结果.【解答】解:(1)原式=÷+÷=4+2 ;(2)原式=2a3 +15a2 ﹣7a2=2a3 +8a2 .18.【分析】利用因式分解法即可将原方程变为3(x﹣3)(x﹣1)=0,继而可求得此方程的根.【解答】解:∵(x﹣3)2+2x(x﹣3)=0,∴(x﹣3)[(x﹣3)+2x]=0,∴(x﹣3)(3x﹣3)=0,∴3(x﹣3)(x﹣1)=0,∴x﹣3=0 或x﹣1=0,解得:x1=3,x2=1.19.【分析】(1)利用正方形边长的一半为半径,以边长中点为圆心画半圆,画出两个半圆即可得出答案;(2)利用(1)中图象,直接拼凑在一起得出答案即可.【解答】解:(1)在图3 中设计出符合题目要求的图形.(2)在图 4 中画出符合题目要求的图形.评分说明:此题为开放性试题,答案不唯一,只要符合题目要求即可给分.20.【分析】(1)利用△ABC 三边长度,画出以A1为顶点的三角形三边长度即可,利用图象平移,可得出△A1B1C1,(2)利用点B 关于直线AC 的对称点D,得出D 点坐标即可得出AD 与AB 的位置关系.【解答】解:(1)如图所示:根据AC=3,AB=,BC=5,利用△ABC≌△A1B1C1,利用图象平移,可得出△A1B1C1,(2)如图所示:AD 可以看成是AB 绕着点 A 逆时针旋转90 度得到的.21.【分析】本题的等量关系是商品的单件利润=售价﹣进价.然后根据商品的单价利润×销售的件数=总利润,设商品的售价为a,列出方程求出未知数的值后,根据“物价局限定每次商品加价不能超过进价的20%”将不合题意的舍去,进而求出卖的商品的件数.【解答】解:由题意得每件商品售价a 元,才能使商店赚400 元,根据题意得(a﹣21)(350﹣10a)=400,整理得:a2﹣56a+775=0,解得a1=25,a2=31.∵21×(1+20%)=25.2,而a1≤25.2,a2>25.2,∴舍去a2=31,则取a=25.当a=25 时,350﹣10a=350﹣10×25=100.故该商店要卖出100 件商品,每件售25 元.2.【分析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结果与点数和为2 的情况,利用概率公式即可求得答案;(2)根据(1)求得点数和大于7 的情况,利用概率公式即可求得答案.【解答】解:(1)随机掷骰子一次,所有可能出现的结果如表:∵表中共有36 种可能结果,其中点数和为 2 的结果只有一种.…..(3 分)∴P(点数和为2)=.…(5 分)(2)由表可以看出,点数和大于7 的结果有15 种.∴P(小轩胜小峰)= =.…(8 分)23.【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD 为⊙O 的切线;(2)过O 作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF 为矩形,设AD=x,在Rt△AOF 中,由勾股定理得(5﹣x)2+(6﹣x)2=25,从而求得x 的值,由勾股定理得出AB 的长.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC 平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO 为⊙O 半径,∴CD 为⊙O 的切线;(2)解:过O 作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF 为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF 中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x 大于0,故x=9 舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F 为AB 的中点,∴AB=2AF=6.24.【分析】(1)连接OA,由切线的性质可知OA⊥AP,再由MN⊥AP 可知四边形ANMO 是矩形,故可得出结论;(2)连接OB,则OB⊥BP 由OA=MN,OA=OB,OM∥AP.可知OB=MN,∠OMB= ∠NPM.故可得出Rt△OBM≌△MNP,OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP 利用勾股定理即可求出x 的值,进而得出结论.【解答】(1)证明:如图,连接OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP,∴四边形ANMO 是矩形,∴OM=AN;(2)解:连接OB,则OB⊥BP∵OA=MN,OA=OB,OM∥AP.∴OB=MN,∠OMB=∠NPM.∴Rt△OBM≌Rt△MNP,∴OM=MP.设OM=x,则NP=9﹣x,在Rt△MNP 中,有x2=32+(9﹣x)2∴x=5,即OM=5.25.【分析】(1)矩形面积=(2 宽+1+2 折叠进去的宽度)×(长+2 折叠进去的宽度).(2)按照书的不同摆放位置进行解答.关系式为:摆放后的总长度≤60;摆放后的总长度≤50.【解答】解:(1)设折叠进去的宽度为xcm,则(2x+15×2+1)(2x+21)=875,化简得x2+26x﹣56=0,∴x=2 或﹣28(不合题意,舍去),即折叠进去的宽度为2cm.(2)设折叠进去的宽度为xcm,则①得x≤﹣,不符合题意;②得x≤﹣3,不符合题意;③得x≤2;④得⑤得x≤2;⑥得x≤4.5.x≤﹣,不符合题意;综上,x≤4.5.即折叠进去的宽度最大为 4.5cm.26.【分析】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD 提供了重要的条件;(2)利用S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y 与x 之间的函数关系式;(3)依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF =S△BDE从而得到S△EDF=S△EAF+S△ADB 即可确定两个变量之间的函数关系式.【解答】(1)证明:∵∠BAC=90° AB=AC=6,D 为BC 中点∴∠BAD=∠DAC=∠B=∠C=45°∴AD=BD=DC (2 分)∵AE=CF∴△AED≌△CFD(SAS)(2)解:依题意有:FC=AE=x,∵△AED≌△CFD∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9∴∴;(3) 解:依题意有:AF=BE=x ﹣6,AD=DB ,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135° ∴△ADF ≌△BDE ∴S △ADF =S △BDE ∴S △EDF =S △EAF +S △ADB =∴.。

【期末复习】人教版 2017-2018学年 九年级数学上册 期末模拟卷 二(含答案)

【期末复习】人教版 2017-2018学年 九年级数学上册 期末模拟卷 二(含答案)

2017-2018学年九年级数学上册期末模拟卷二一、选择题:1.若x=2是关于x的一元二次方程x2﹣mx+8=0的一个解.则m的值是()A.6 B.5 C.2 D.﹣62.观察下列图形,是中心对称图形的是()A.B.C.D.3.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是( )A.10 B.14 C.16 D.404.已知实数x,x2满足x1+x2=11,x1x2=30,则以x1,x2为根的一元二次方程是( )1A.x2-11x+30=0 B.x2+11x+30=0C.x2+11x-30=0 D.x2-11x-30=05.如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠AOC等于()A.25°B.30°C.50°D.65°6.如图,点A.B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )A.12.5°B.15°C.20°D.22.5°7.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是()A.BD=CD B.AC⊥BC C.AB=2AC D.AC=2OD8.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.9.对于抛物线y=﹣x2+2x+3,有下列四个结论:①它的对称轴为x=1;②它的顶点坐标为(1,4);③它与y轴的交点坐标为(0,3),与x轴的交点坐标为(﹣1,0)和(3,0);④当x>0时,y随x的增大而减小.其中正确的个数为()A.1 B.2 C.3 D.410.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是( )11.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为()A.π﹣2 B.πC.πD.π﹣212.如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A. B. C. D.二、填空题(:13.方程(m+1)x2+2x﹣1=0有两个不相等的实数根,则m的范围.14.一个不透明的袋子中装有仅颜色不同的3个红球和2个白球,从中随机摸出1个球不放回,再随机摸出1个球,则摸到的2个球颜色相同的概率为.15.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.16.同圆的内接正方形和内接正三角形的边长比是.17.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.18.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;其中正确的结论是.三、解答题:19.解方程:(x+1)(x﹣2)=2x(x﹣2)20.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.21.已知抛物线y=﹣x 2+bx+c 经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标.22.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:(1)求a 的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).23.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=0.4,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求CG:EF的值.24.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?25.如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为,点B的坐标为;(2)抛物线的关系式为;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C的位置.请判断点B′C′是否在(2)中的抛物线上,并说明理由.参考答案1.A2.C3.A4.A5.B6.C.7.B8.C9.C10.C11.C12.C13.答案为:m>﹣2且m≠﹣1.14.答案为:0.4.15.答案为:6.16.答案为:.17.答案为:3π;18.答案为:①③.19.解:(x+1)(x﹣2)=2x(x﹣2)移项得:(x+1)(x﹣2)﹣2x(x﹣2)=0因式分解得:(x﹣2)(x+1﹣2x)=0,∴x﹣2=0,或x+1﹣2x=0,解得:x1=2,x2=1.20.解:(1)如图,△A1B1C1为所作,A(﹣2,﹣6);(2)如图,△A2B2C2为所作.21.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).22.解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是: =,即第一组至少有1名选手被选中的概率是.23.(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD∥AB,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;(2)解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=0.4,设⊙O的半径为R,则=,解得R=2,∴AB=2OD=4.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=4﹣=;(3)解:连接CG,则∠AGC=90°,∵DE⊥AB,∴∠AEF=90°,∴CG∥EF,∴====.24.解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣0.1x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200,=﹣0.1(x2﹣100x)﹣200=﹣0.1 [(x﹣50)2﹣2500]﹣200=﹣0.1(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣0.1(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣0.1(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣0.1x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.25.解:(1)∵C(1,0),∴OC=1,∵AC=,∴OA==2,∴A(0,2),作BH⊥x轴于H,如图1,∵△ACB为等腰直角三角形,∴CA=CB,∠ACB=90°,∵∠ACO+∠BCH=90°,∠ACO+∠CAO=90°,∴∠CAO=∠BCH,在△ACO和△CBH中,∴△ACO≌△CBH,∴OC=BH=1,AO=CH=2,∴B(﹣3,1);故答案为(0,2),(﹣3,1);(2)把B(﹣3,1)代入y=ax2+ax﹣2得9a﹣3a﹣2=1,解得a=0.5,∴抛物线解析式为y=0.5x2+0.5x ﹣2;故答案为y=0.5x2+0.5x﹣2;(3)∵y=0.5x2+0.5x﹣2=0.5(x+0.5)2﹣,∴D(﹣0.5,﹣),设直线BD的关系式为y=kx+b,将B(﹣3,1)、D(﹣0.5,﹣)代入得,解得,∴BD的关系式为y=﹣x﹣;直线BD和x轴交点为E,如图1,当y=0时,﹣ x﹣=0,解得x=﹣2.2,则E(﹣2.2,0),∴S△BCD=S△BCE+S△DCE=0.5•(﹣1+2.2)•1+0.5•(﹣1+2.2)•=;(4)点B′、C′在(2)中的抛物线上.理由如下:如图2,过点B′作B′N⊥y轴于点N,过点B作BF⊥y轴于点F,过点C′作C′M⊥y轴于点M,∵三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C的位置,∴∠CAC′=90°,∠BAB′=90°,AC=AC′,AB=AB′,∵∠BAF+∠B′AN=90°,∠BAF+∠ABF=90°,∴∠ABF=∠B′AN,在Rt△AB′N与Rt△BAF 中,,∴Rt△AB′N≌Rt△BAF,∴B′N=AF=2,AN=BF=3,∴B′(1,﹣1),同理可得△AC′M≌△CAO,∴C′M=OA=2,AM=OC=1,∴C′(2,1),当x=1时,y=x2+x﹣2=+﹣2=﹣1,所以点B′(1,﹣1)在抛物线上,当x=2时,y=x2+x﹣2=2+1﹣2=1,所以点C′(2,1)在抛物线上.第11 页共11 页。

2017人教版九年级数学上册期末检测题(二)含答案

2017人教版九年级数学上册期末检测题(二)含答案

期末检测题(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2016·沈阳)一元二次方程x 2-4x =12的根是( )A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=62.(2016·宁德)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A .2B .4C .6D .83.(2016·玉林)如图,CD 是⊙O 的直径,已知∠1=30°,则∠2=( )A .30°B .45°C .60°D .70°4.(2016·泸州)若关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值范围是( )A .k ≥1B .k >1C .k <1D .k ≤15.(2016·孝感)将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A .(3,-1)B .(1,-3)C .(2,-2)D .(-2,2)第3题图第5题图第6题图6.(2016·新疆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.a>0 B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小7.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( ) A.①②B.②③C.①③D.①②③8.已知点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )A.(-3,7) B.(-1,7) C.(-4,10) D.(0,10)第7题图第9题图第10题图9.如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB ,CB 的延长线分别相交于点E ,F ,则图中阴影部分的面积为( )A .3+π2B .3+πC .3-π2D .23+π210.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc <0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB =-ca .其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(每小题3分,共24分)11.(2016·达州)设m ,n 分别为一元二次方程x 2+2x -2 018=0的两个实数根,则m 2+3m +n =______.12.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F.若∠ACF =65°,则∠E =________.第12题图第14题图13.(2016·长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.14.(2016·南通)如图,BD 为正方形ABCD 的对角线,BE 平分∠DBC ,交DC 与点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,若CE =1 cm ,则BF =__________cm .15.(2016·眉山)一个圆锥的侧面展开图是半径为8 cm 、圆心角为120°的扇形,则此圆锥底面圆的半径为________.16.(2016·荆州)若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为________.17.(2016·梧州)如图,点B 、C 把AD ︵分成三等分,ED 是⊙O 的切线,过点B 、C 分别作半径的垂线段,已知∠E =45°,半径OD =1,则图中阴影部分的面积是________.第17题图第18题图18.(2016·茂名)如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A的对应点A1落在直线y=33x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=33x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(3,1),则点A8的横坐标是________.三、解答题(共66分)19.(6分)解方程:(1)(2016·淄博)x2+4x-1=0;(2)(x-2)2-3x(x-2)=0.20.(7分)(2016·青岛)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.21.(7分)(2016·宁夏)已知△ABC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=23,求CD的长.22.(7分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=B C′;(2)若AB=2,BC=1,求AE的长.23.(8分)(2016·贵港)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.24.(9分)如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴,y轴分别相交于点D,点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,43).(1)求证:OE=CE;(2)请判断直线CD与⊙P位置关系,证明你的结论,并求出⊙P半径的值.25.(10分)(2016·葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数解析式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?26.(12分)(2016·衡阳)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,94),点A 坐标为(-1,2),点B 是点A 关于y 轴的对称点,点C 在x 轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F 为线段AC 上一动点,过点F 作FE ⊥x 轴,FG ⊥y 轴,垂足分别为点E ,G ,当四边形OEFG 为正方形时,求出点F 的坐标;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动,设平移的距离为t ,正方形的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连接DM ,是否存在这样的t ,使△DMN 是等腰三角形?若存在,求t 的值;若不存在,请说明理由.期末检测题(二)1.B 2.D 3.C 4.D 5.C 6.C 7.A 8.D 9.A10.B 11.2 016 12.50° 13.5614.2+ 215.83 cm 16.-1或2或1 17.π818.63+6 19.(1)x 1=-2+5,x 2=-2- 5.(2)x 1=2,x 2=-1. 20.这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)=36=12,∴这个游戏对双方是公平的. 21.(1)证明:∵ED =EC ,∴∠EDC =∠C ,∵∠EDC =∠B ,∴∠B =∠C ,∴AB =AC.(2)如图所示,连接BD ,∵AB 为直径,∴BD ⊥AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt △ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a)2.在Rt △CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2.∴42-(4-a)2=(23)2-a 2,整理得a =32,即CD =32.22.(1)证明:如图所示,连接AC ,AC′,∵四边形ABCD 为矩形,∴∠ABC =90°,即AB ⊥CC′,∵将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,∴AC =AC′,∴BC =BC′.(2)∵四边形ABCD 为矩形,∴AD =BC ,∠D =∠ABC′=90°,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,∴AD =AD′,∵BC =BC′,∴BC′=AD′,在△AD′E 与△C′BE中,⎩⎨⎧∠D′=∠ABC′,∠AED′=∠BEC′,AD′=BC′,∴△AD′E ≌△C′BE ,∴BE =D′E ,设AE =x ,则D′E =2-x ,在Rt △AD′E 中,∠D′=90°,由勾股定理,得x 2-(2-x)2=1,解得x =54,∴AE =54. 23.(1)设2014至2016年该市投入科研经费的年平均增长率为x ,根据题意,得500(1+x)2=720,解得x 1=0.2=20%,x 2=-2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得a -720720×100%≤15%,解得a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a 的取值范围为720<a≤828.24.(1)证明:如图所示,连接OC ,∵直线y =33x +23与y 轴相交于点E ,∴点E 的坐标为(0,23),即OE =2 3.又∵点B 的坐标为(0,43),∴OB =43,∴BE =OE =23,又∵OA 是⊙P 的直径,∴∠ACO =90°,即OC ⊥AB ,∴OE =CE.(2)直线CD 是⊙P 的切线.证明:连接PC ,PE ,由(1)可知OE =CE.在△POE 和△PCE 中,⎩⎨⎧PO =PC ,PE =PE ,OE =CE ,∴△POE ≌△PCE ,∴∠POE =∠PCE.又∵x 轴⊥y 轴,∴∠POE =∠PCE =90°,∴PC ⊥CE ,即PC ⊥CD.又∵直线CD 经过半径PC 的外端点C ,∴直线CD 是⊙P 的切线.∵对y =33x +23,当y =0时,x =-6,即OD =6,在Rt △DOE 中,DE =OD 2+OE 2=62+(23)2=43,∴CD =DE +EC =DE +OE =43+23=6 3.设⊙P 的半径为r ,则在Rt △PCD 中,由勾股定理知PC 2+CD 2=PD 2,即 r 2+(63)2=(6+r)2,解得r =6,即⊙P 半径的值为6. 25.y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得(x -20)y =150,则(x -20)(-2x +80)=150,整理,得x 2-60x +875=0,(x -25)(x -35)=0,解得x 1=25,x 2=35(不合题意舍去),答:每本纪念册的销售单价是25元.(3)由题意可得w =(x -20)(-2x +80)=-2x 2+120x -1600=-2(x -30)2+200,此时当x =30时,w 最大,又∵售价不低于20元且不高于28元,x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元. 26.(1)∵点B 是点A 关于y 轴的对称点,∴抛物线的对称轴为y 轴,∴抛物线的顶点为(0,94),故抛物线的解析式可设为y =ax 2+94. ∵A(-1,2)在抛物线y =ax 2+94上,∴a +94=2,解得a =-14,∴抛物线的函数解析式为y =-14x 2+94.(2)①当点F 在第一象限时,如图1,令y =0得,-14x 2+94=0,解得x 1=3,x 2=-3,∴点C 的坐标为(3,0).设直线AC 的解析式为y =mx +n ,则有⎩⎨⎧-m +n =2,3m +n =0,解得⎩⎨⎧m =-12,n =32,∴直线AC 的解析式为y =-12x +32.设正方形OEFG 的边长为p ,则F(p ,p).∵点F(p ,p)在直线y =-12x +32上,∴-12p +32=p ,解得p =1,∴点F 的坐标为(1,1).②当点F 在第二象限时,同理可得,点F 的坐标为(-3,3),此时点F 不在线段AC 上,故舍去.综上所述,点F 的坐标为(1,1).(3)过点M 作MH ⊥DN 于点H ,如图2,则OD =t ,OE =t +1.∵点E 和点C 重合时停止运动,∴0≤t≤2.当x =t 时,y =-12t +32,则N(t ,-12t +32),DN =-12t +32.当x =t +1时,y =-12(t +1)+32=-12t +1,则M(t +1,-12t +1),ME =-12t +1.在Rt △DEM 中,DM 2=12+(-12t +1)2=14t 2-t +2.在Rt △NHM 中,MH =1,NH =(-12t +32)-(-12t +1)=12,∴MN 2=12+(12)2=54.①当DN =DM 时,(-12t +32)2=14t 2-t +2,解得t =12;②当ND =NM 时,-12t +32=54=52,解得t =3-5;③当MN =MD 时,54=14t 2-t +2,解得t 1=1,t 2=3.∵0≤t≤2,∴t =1.综上所述,存在这样的t ,使△DMN 是等腰三角形,t 的值为12,3-5或1.。

2017九年级上学期数学期末试卷(2)

2017九年级上学期数学期末试卷(2)

2017九年级上学期数学期末试卷(2)2017九年级上学期数学期末试卷参考答案一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为( )A.﹣2B.2C.4D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2= .2.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.正三角形C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是( )A.2.5B.3C.5D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔dr.5.如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为( )A.84°B.96°C.116°D.132°【考点】圆内接四边形的性质;圆周角定理.【分析】连接OC,在优弧上取点D,连接BD、CD,根据等腰三角形的性质和三角形内角和定理求出∠BOC,根据圆周角定理求出∠BDC,根据圆内接四边形的性质计算即可.【解答】解:连接OC,在优弧上取点D,连接BD、CD,∵OB=OC,∴∠OCB=∠OBC=42°,∴∠BOC=96°,∴∠BDC= ∠BOC=48°,∴∠A=180°﹣∠BDC=132°,故选:D.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1B.2C.3D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴ ,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.7.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )A.∠ABP=∠CB.∠APB=∠ABCC. =D. =【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当 = 时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为( )A.6B.﹣6C.12D.﹣12【考点】反比例函数图象上点的坐标特征.【分析】反比例函数的解析式为y= ,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.【解答】解:设反比例函数的解析式为y= ,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣ =6,故选A.【点评】本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.10.如图,已知关于x的函数y=k(x﹣1)和y= (k≠0),它们在同一坐标系内的图象大致是( )A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据反比例函数图象所经过的象限判断出k的符号;然后由k的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项.【解答】解:A、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;B、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第二、四象限,且与y轴交于正半轴.故本选项正确;C、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;D、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于正半轴.故本选项错误;故选:B.【点评】本题考查反比例函数与一次函数的图象特点:①反比例函数y= 的图象是双曲线;②当k>0时,它的两个分支分别位于第一、三象限;③当k<0时,它的两个分支分别位于第二、四象限.11.若抛物线y=(x﹣m)2+(m﹣1)的顶点在第四象限,则m的取值范围( )A.00 C.m<1 D.m>1【考点】二次函数的性质.【分析】根据顶点式得出点的坐标,再由第四象限点的符号得出m的取值范围.【解答】解:∵抛物线y=(x﹣m)2+(m﹣1)的顶点(m,m﹣1)在第四象限,∴ ,解得0故选A.【点评】本题考查了二次函数的性质,以及求抛物线的顶点坐标的方法,掌握每个象限内点的符号是解题的关键.12.对于二次函数y=﹣x2+4x,有下列四个结论:①它的对称轴是直线x=2;②设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(4,0);④当00.其中正确的结论的个数为( )A.1B.2C.3D.4【考点】二次函数的性质.【分析】利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.【解答】解:y=﹣x2+4x=﹣(x﹣2)2+4,故①它的对称轴是直线x=2,正确;②∵直线x=2两旁部分增减性不一样,∴设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1或y2③当y=0,则x(﹣x+4)=0,解得:x1=0,x2=4,故它的图象与x轴的两个交点是(0,0)和(4,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(4,0),∴当00,正确.故选:C.【点评】此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题(本题有6个小题,每小题3分,计15)13.方程x2=5的解是x=± .【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=5,直接开平方得,x=± ,故答案为x=± .【点评】本题考查了用直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.14.二次函数y=﹣x2+2x+7的最大值为8 .【考点】二次函数的最值.【专题】计算题.【分析】先利用配方法把一般式配成顶点式,然后根据二次函数的性质求解.【解答】解:原式=﹣x2+2x+7=﹣(x﹣1)2+8,因为抛物线开口向下,所以当x=1时,y有最大值8.故答案为8.【点评】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y= ;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y= .15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为 .故答案为: .【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.【考点】扇形面积的计算.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积= π×22﹣=2π﹣π= π.答:图中阴影部分的面积等于π.故答案为:π.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k= 2+2 或2﹣2 .【考点】反比例函数图象上点的坐标特征;勾股定理.【专题】分类讨论.【分析】把P点代入y= 求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k的值.【解答】解:∵点P(1,t)在反比例函数y= 的图象上,∴t= =2,∴P(1.2),∴OP= = ,∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+ ,2)或(1﹣,2)∵反比例函数y= 的图象经过点Q,∴2= 或2= ,解得k=2+2 或2﹣2故答案为2+2 或2﹣2 .【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理的应用,求得Q点的坐标是解题的关键.三、解答题:共69分.18.已知:关于x的方程x2﹣2mx+m2﹣1=0.(1)不解方程:判断方程根的情况;(2)若方程有一个根为﹣3,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)首先找出方程中a=1,b=﹣2m,c=m2﹣1,然后求△=b2﹣4ac的值即可;(2)把x=﹣3代入方程中列出m的一元二次方程并求出m的值即可.【解答】解:(1)∵关于x的方程x2﹣2mx+m2﹣1=0,∴a=1,b=﹣2m,c=m2﹣1,∴△=b2﹣4ac=(﹣2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2﹣2mx+m2﹣1=0有两个不相等的实数根;(2)∵方程x2﹣2mx+m2﹣1=0的一根为﹣3,∴9+6m+m2﹣1=0,即m2+6m+8=0,∴m=﹣4或﹣2.【点评】本题主要考查了根的判别式以及一元二次方程解的知识,解答本题的关键是熟练掌握根的判别式的意义以及因式分解法解方程的知识.19.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出的小分支是多少?【考点】一元二次方程的应用.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设主干长出x个支干,由题意得1+x+x•x=111,即x2+x﹣110=0,解得:x1=10,x2=﹣11(舍去)答:每个支干长出的小分支是10.【点评】此题主要考查了一元二次方程的应用,解题时,要根据题意分别表示主干、支干、小分支的数目,列方程求解,注意能够熟练运用因式分解法解方程.20.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:△ABC是等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.【考点】圆周角定理;全等三角形的判定与性质.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;故答案为:△ABC是等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP.【点评】本题考查了圆周角定理、等边三角形的判定、三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图灯方法求出两次摸到的球是1个红球和1个白球的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)设红球的个数为x个,根据概率公式得到 = ,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球是1个红球1个白球的结果数,然后根据概率公式计算.【解答】解:(1)设红球的个数为x个,根据题意得 = ,解得x=1(检验合适),所以布袋里红球有1个;(2)画树状图如下:共有12种等可能结果,其中两次摸到的球是1个红球1个白球的结果数为4种,所以两次摸到的球都是白球的概率= = .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.已知反比例函数y= 的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为10,求m的值.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、 ),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;(2)∵点B与点A关于x轴对称,若△OAB的面积为10,∴△OAC的面积为5.设A(x, ),则x• =5,解得:m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠BAE=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心A 点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE 绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE= =10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积= AE2= ×100=50(平方单位).【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.24.某服装店销售一种内衣,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件的关系如表:销售单价x(元/件) … 55 60 70 75 …一周的销售量y(件) … 450 400 300 250 …(1)试求出y与x的之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价的什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)服装店决定将一周的销售内衣的利润全部捐给福利院,在服装店购进该内衣的贷款不超过8000元情况下,请求出该服装店最大捐款数额是多少元?【考点】二次函数的应用.【分析】(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过8000元,求出进货量,然后求最大销售额即可.【解答】解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000,(x≥50)(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为直线x=70,∴当40(3)∵购进该商品的货款不超过8000元,∴y的最大值为 =200(件).由(1)知y随x的增大而减小,∴x的最小值为:x=80,由(2)知当x≥70时,S随x的增大而减小,∴当x=80时,销售利润最大,此时S=8000,即该商家最大捐款数额是8000元.【点评】本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.25.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【专题】证明题.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到 = ,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE= BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴ = 即 = ,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.26.在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=﹣x2+bx+c求出b和c的值即可得到抛物线的解析式;(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用,可求出x的值,解方程求出x的值可得点P的坐标,代入直线y=kx即可求出k的值.【解答】解:(1)∵直线y=x+4经过A,C两点,∴A点坐标是(﹣4,0),点C坐标是(0,4),又∵抛物线过A,C两点,∴ ,解得:,∴抛物线的解析式为 .(2)①如图1∵ ,∴抛物线的对称轴是直线x=﹣1.∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,PQ=AO=4.∵P,Q都在抛物线上,∴P,Q关于直线x=﹣1对称,∴P点的横坐标是﹣3,∴当x=﹣3时,,∴P点的坐标是 ;②过P点作PF∥OC交AC于点F,∵PF∥OC,∴△PEF∽△OEC,∴ .又∵ ,∴ ,设点F(x,x+4),∴ ,化简得:x2+4x+3=0,解得:x1=﹣1,x2=﹣3.当x=﹣1时, ;当x=﹣3时,,即P点坐标是或 .又∵点P在直线y=kx上,∴ .【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题.。

人教版九年级数学上册期末检测题 (2).docx

人教版九年级数学上册期末检测题 (2).docx

马鸣风萧萧初中数学试卷马鸣风萧萧海口市九年级数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题(每小题2分,共20分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 答 案1.计算()24的结果是A. 8B. 4C. 2D. ±2 2.下列二次根式是最简二次根式的是 A.6 B.31C.12D. 23 3.方程x 2=4x 的解是A. x=4B. x 1=0 ,x 2=-4C. x 1=2 ,x 2=-2D. x 1=0 ,x 2=4 4.某药品经过两次降价后,每瓶零售价格为降价前的81%,则平均每次降价A .10%B .19%C .9.5%D .20% 5. 随机掷一枚质地均匀的普通硬币两次,出现两次正面都朝上的概率是A .21B .41C .43D .816.下列说法正确的是A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“彩票中奖的概率是1%”表示买100张彩票一定会中奖C.“抛一枚硬币正面朝上的概率是0.5”表示每抛2次就有1次出现正面朝上马鸣风萧萧-1 B D图3 y x 1 C O A 1 • 图1D.“抛一枚普通的正方体骰子,出现朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数7. 为了估算河的宽度,小明画了测量示意图(如图1). 若测得BD =120m ,DC =60m ,EC =50m ,则两岸间的距离AB 等于A. 110mB. 100mC. 90mD. 50m8. 如图2,P 是∠α的边OA 上一点,且点P 的坐标为(4,3),则cos α的值为A .53B .43C .54D .349.△ABC 在平面直角坐标系中的位置如图3所示,如果有一点E 在边AC 上,那么点E 的坐标为( )时,能使△ABC ∽△ADE .A.(2,-2)B. (-1,3)C. (-2,2)D. (-3,1)10.如图4,边长为1的菱形ABCD 的面积等于A .sin A B. cos A C .tan A D .cot A 二、填空题(每小题3分,共24分)11. 若二次根式1 x 在实数范围内有意义,则x 的取值范围是 . 12.已知关于x 的一元二次方程x 2+px -2=0的一个根为-2,则它的另一根为 .13. 现从以下四个二次根式8,12,32,21中随机抽取其中一个根式,能与32是同类二次根式的概率是 .14.如图5所示,若△ABC ∽△DEF ,则x = . BAC图64米图4C B ADα图24POA3•y x马鸣风萧萧15.如图6,修建抽水站时,沿着坡度为i =1:3的斜坡铺设水管. 若测得水管A 处铅垂高度为4米,则所铺设水管AC 的长度为 米.16. 如图7,△ABC 沿DE 折叠后,点A 落在BC 边上的A ′处,若点D 为AB 边的中点,BC =5,则DE= .17.如图8,在△ABC 中,AB =AC =6,BC =63,则∠BAC = 度.18. 如图9,在Rt △ABC 中,∠C =90°,AC =6,BC =3,P 为AC 上一个动点,四边形PCEF 为矩形,其中点E 、F 分别在BC 、AB 上. 当AP = 时,矩形PCEF 的周长等于10. 三、解答题(共56分) 19. (每小题4分,共8分)(1)计算:2sin 60°-cot 60°; (2)解方程: x 2+2x -1=0 .20.(8分)某商店经销一批季节性小家电,每件成本40元.试销中发现这种小家电每天的销售量p (件)与每件的销售价x (元)满足关系:p =700-10x .若该商店每天销售这种小家电要获得2000元的利润,那么每件的售价应定为多少元?每天要售出多少件? 图5BC A 6812 DEFx 9 CP BE A图9FABC图8BD图7CAE A ′马鸣风萧萧yB 1A 1121.(8分)一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.(1)小明认为,搅均后从中任意摸出一个....球,不是白球就是红球,因此模出白球和模出红球这两个事件是等可能的. 你同意他的说法吗?为什么? (2)搅均后从中一把模出两个球.......,请通过树状图或列表,求两个球都是白球的概率; (3)搅均后从中任意模出一个....球,要使模出红球的概率为32,应如何添加红球?22.(10分)如图10,在平面直角坐标系中,△ABC 的顶点坐标分别为A (1,-2)、B (4,-1)、C (3,-3),△ABC 内部任意一点P 的坐标为(a ,b ).(1)△A 1B 1C 1是由△ABC 经过某种变换后得到的图形,观察它们对应点的坐标之间的关系,指出是怎样变换得到的?并写出变换后点P 的对应点P 1的坐标(用含a 、b 的代数式表示); (2)以原点O 为位似中心,在位似中心的同侧画出△A 1B 1C 1的一个位似△A 2B 2C 2,使它与△A 1B 1C 1的相似比为2:1. 写出A 2、B 2、C 2的坐标,及变换后点P 1的对应点P 2的坐标(用含a 、b 的代马鸣风萧萧PAEBCD图11数式表示);(3)求△ABC与△A2B2C2的面积比.23.(10分)水平地面上的甲、乙两楼的水平距离为30米,从甲楼的顶部测得乙楼顶部的仰角为30°,测得乙楼底部的俯角为45°.(1)请你画出测量示意图(大楼的长、宽忽略不计);(2)求甲、乙两楼的高度.(结果保留根号)24. (12分)如图11,在矩形ABCD中,AB =6,AD =11.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)△CDP与△P AE相似吗?如果相似,请写出证明过程;(2)当∠PCD =30°时,求AE的长;(3)是否存在这样的点P,使△CDP的周长等于△P AE周长的2倍?若存在,求DP的长;若不存在,请说明理由.马鸣风萧萧2008—2009学年度第一学期海口市九年级数学科期末检测题参考答案及评分标准一、BADAB DBCCA二、11.x ≥-1 12. 1 13. 43 14. 6 15. 8 16. 2.5 17. 120 18. 2三、19.(1)原式33232-⨯= ……(2分) (2)x 2+2x +1=2 ……(1分)333-= ……(3分) (x +1)2=2 ……(2分)332= ……(4分) ∴ x +1=±2 ……(3分) ∴ x 1=-1+2,x 2=-1-2 (4分) (用其他解法参照以上评分标准给分) 20. 根据题意,得 (x -40)(700-10x )=2000 ……………………………(4分)整理,得 x 2-110x +3000=0 ………………………………(5分) 解这个方程,得x 1=60,x 2=50 ………………………………(6分) ∴ 当x 1=60时,p =700-10x=100马鸣风萧萧P •xyA B O CC 1 B 1 A 1B 2C 2 A 21 1-1 当x 2=50时,p =700-10x=200. ………………………………(7分)答:每件这种小家电的售价定为60元时,每天要售出100件,定为50元时,每天要售出200件. ………………………………(8分)21.(1)不同意小明的说法. ………………………………(1分)因为摸出白球的概率是32,摸出红球的概率是31,因此摸出白球和摸出红球不是等可能的. ………………………(2分) (2)树状图如图(或列表). ………………………(4分)∴ P (两个球都是白球)3162==. …………………………(5分)(3)解法1:设应添加x 个红球,由题意,得 3231=++x x . …………(7分)解得x =3(经检验是原方程的解) 答:应添加3个红球. ……(8分) 解法2:∵ 添加后P (摸出红球)=32,∴ 添加后P (摸出白球)31321=-=.∴ 添加后球的总个数6312=÷=.∴ 应添加6-3=3个红球.…(8分)22.(1)平移,P 1(a -5,b +3). …(2分) (2)如图所示. …………(4分)A 2(-8,2),B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6). ……(8分)(3)△ABC 与△A 2B 2C 2的面积比为41.(10分) 23.(1)如图.…(2分)(2)过点B 作BE ⊥CD ,垂足为E .∵ BA ⊥AC ,CD ⊥AC ,∴ 四边形ABEC 为矩形,……(3分) ∴ AB =EC ,BE =AC ,BE ∥AC . ……(4分) ∴ ∠ACB =∠EBC =45°. ……(5分) ∴ AB =AC =30. ……(6分) 在Rt △BED 中,tan ∠DBE =BEDE , ……(7分)∴ DE=BE •tan ∠DBE =30 tan 30°=103 …………………(8分)∴ CD =CE +DE =AB +DE =30+103. ………………………(9分)答:甲、乙两楼高分别为30米,(30+103)米. ……………(10分)24.(1)△CDP ∽△P AE . ………………………………(1分)证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,CD=AB=6. ……………………(2分) ∴ ∠PCD +∠DPC=90° ……………………(3分) ⅠⅡ红 白1 白2红 (白1,红) (白2,红)白1 (红,白1) (白2,白1)白2 (红,白2) (白1,白2) 白1 白2 红 白1 白2红 白2 红 白1 A B C DE 30°45°甲 乙马鸣风萧萧又∵ ∠CPE=90°,∴ ∠EP A +∠DPC=90°, ……………………(4分) ∴ ∠PCD=∠EP A . ………………………(5分) ∴ △CDP ∽△P AE . ………………………(6分)(2)在Rt △PCD 中,由tan ∠PCD =CDPD . ……………………(7分)∴ PD=CD •tan ∠PCD=6•tan 30°=6×33=23. …………(8分)∴ AP=AD -PD=11-23. ………………………………(9分) 解法1:由△CDP ∽△P AE 知APCD AE PD =,∴ AE=233116)3211(32-=-⨯=⋅CD AP PD …………(10分)解法2:由△CDP ∽△P AE 知∠EP A =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-. ……(10分)(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x由△CDP ∽△P AE 知2=APCD , ……………(11分)∴ 2116=-x,解得x=8,此时AP=3,AE=4. ……………(12分)。

2017届九年级数学上学期期末考试试题 (2)

2017届九年级数学上学期期末考试试题 (2)

2016~2017学年度第一学期期末检测九年级数学试卷(考试时间120分钟 满分120分)一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.二次函数2(1)3y x =--的最小值是(A) 2 (B) 1 (D) -2 (D ) -3 2.下列事件中,是必然事件的是(A) 明天太阳从东方升起; (B) 射击运动员射击一次,命中靶心;(C) 随意翻到一本书的某页,这页的页码是奇数; (D) 经过有交通信号灯的路口,遇到红灯.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是(A) 23(B) 12 (C) 25(D) 13 4.如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,若AD :DB =1:2,则△ADE 与△ABC 的面积之比是(A) 1:3 (B) 1:4 (C) 1:9 (D) 1:165. 已知点A (1,a )与点B (3,b )都在反比例函数12y x=-的图象上,则a 与b 之间的关系是 (A) a >b (B) a <b (C) a ≥b (D) a =b6. 已知圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面展开图的面积为(A) 18πcm 2 (B) 12πcm 2 (C) 6πcm 2 (D) 3πcm 27. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R 表示电流I 的函数表达式为(A) 3I R = (B) I R=-6 (C) 3I R=-(D) I R=68.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为5,AC =8.则cos B 的值是 (A) 43(B)35(C)3 (D) 49.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形, 勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能 容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是 (A) 5步 (B) 6步 (C) 8步 (D)10步 10. 已知二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=kx +n (k ≠0)的图象如图所示, 下面有四个推断: ①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0④过动点P (m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-1. 其中正确的是 (A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11. 将二次函数y =x 2-2x -5化为y=a (x-h )2+k 的形式为y= .12.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 . 13. 如图,若点P 在反比例函数3(0)y x x=-<的图象上,过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,则矩形PMON 的面积为 .14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:则该作物种子发芽的概率约为.15. 如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.计算:o o o++2sin45tan602cos3018.如图,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC AD = 1,求DB的长.19.已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标; (2)求出该函数图象与x 轴的交点坐标.20. 如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A (2,6),B (4,2), C (6,2). (1)以原点O 为位似中心,将△ABC 缩小为原来的12,得到△DEF . 请在第一象限内, 画出△DEF .(2)在(1)的条件下,点A 的对应点D 的坐标为 ,点B 的对应点E 的坐标为 .21. 如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,CD =10,EM =25.求⊙O 的半径.22. 如图,在Rt △ABC 中,∠C =90°,点D 是BC 边的中点,CD =2,tan B =34.(1)求AD 和AB 的长; (2)求sin ∠BAD 的值.23. 已知一次函数21y x =-+的图象与y 轴交于点A , 点B (-1,n )是该函数图象与反比例函数)(0≠=k xky 图象在第二象限内的交点.(1)求点B 的坐标及k 的值;(2)试在x 轴上确定点C ,使AC AB =,直接写出点C 的坐标.24.如图,用一段长为40m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长28m.设AB 长为x m ,矩形的面积为y m 2.(1)写出y 与x 的函数关系式;(2)当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? (3)当花圃的面积为150m 2时,AB 长为多少米?25.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且 BC= CD ,过点C 的直线CF ⊥AD 于点F ,交AB 的延长线于点E ,连接AC . (1)求证:EF 是⊙O 的切线;(2)连接FO ,若sin E =12,⊙O 的半径为r ,请写出求线段FO 长的思路.26.某“数学兴趣小组”根据学习函数的经验,对函数y = -x 2+2x +1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:其中m = ;(2)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出: ①该函数的一条性质 ;②直线y =kx +b 经过点(-1,2),若关于x 的方程-x 2+2x +1=kx +b 有4个互不相等的实数根,则b 的取值范围是 .27.在平面直角坐标系xOy 中,直线y =14-x +n 经过点A (-4, 2),分别与x ,y 轴交于点B ,C ,抛物线y = x 2-2mx +m 2-n 的顶点为D . (1) 求点B ,C 的坐标;(2) ①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y = x 2-2mx +m 2-n 与线段BC 有公共点,求m 的取值范围.28.在Rt △ABC 中,∠ACB =90°,O 为AB 边上的一点,且tan B =21,点D 为AC 边上的动点(不与点A ,C 重合),将线段OD 绕点O 顺时针旋转90°,交BC 于点E .(1)如图1,若O 为AB 边中点, D 为AC 边中点,则OE OD 的值为 ;(2)若O 为AB 边中点, D 不是AC 边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D 在AC 边上运动的过程中,(1)中OE OD的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求OE OD 的值的几种想法:想法1:过点O 作OF ⊥AB 交BC 于点F ,要求OE OD的值,需证明△OEF ∽△ODA .想法2:分别取AC ,BC 的中点H ,G ,连接OH ,OG ,要求OE OD的值,需证明△OGE ∽△OHD .想法3:连接OC ,DE ,要求OE OD的值,需证C ,D ,O ,E 四点共圆.......请你参考上面的想法,帮助小军写出求OE OD的值的过程 (一种方法即可);(3)若1BO BA n =(n ≥2且n 为正整数),则OE OD的值为 (用含n 的式子表示).29.在平面直角坐标系xOy 中, C 的半径为r (r >1),P 是圆内与圆心C 不重合的点,C 的“完美点”的定义如下:若直线..CP 与 C 交于点A ,B ,满足2PA PB -=,则称点P 为 C 的“完美点”,下图为 C 及其“完美点”P 的示意图.(1) 当O 的半径为2时,①在点M (32,0),N (0,1),1()2T -中, O 的“完美点”是 ;② 若O 的“完美点”P 在直线y =上,求PO 的长及点P 的坐标;(2) C 的圆心在直线1y =+上,半径为2,若y 轴上存在 C 的“完美点”,求圆心C 的纵坐标t 的取值范围.北京市朝阳区2016~2017学年度第一学期期末检测 九年级数学试卷参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17. 解:2sin 45tan602cos30︒+︒+︒-22=-=18.解:∵,ACD ABC ∠=∠A A ∠=∠, ∴△ACD ∽△ABC . ∴AC ADAB AC=.=. ∴3AB =.∴2DB =.19.解:(1) 由题意,得c = -3.将点(2, 5),(-1,-4)代入,得4235,3 4.a b a b +-=⎧⎨--=-⎩ 解得1,2.a b =⎧⎨=⎩∴223y x x =+- . 顶点坐标为(-1,-4). (2) (-3,0),(1,0).20.解:(1) 如图.(2) D (1,3),E (2,1). 21.解:如图,连接OC ,∵M 是弦CD 的中点,EM 过圆心O , ∴EM ⊥CD . ∴CM =MD . ∵CD =10, ∴CM =5.设OC =x ,则OM =25-x ,在Rt △COM 中,根据勾股定理,得 52+(25-x )2=x 2. 解得 x =13 .∴⊙O 的半径为13 .22. 解: (1) ∵D 是BC 的中点,CD =2, ∴BD =DC =2,BC =4.在Rt △ACB 中, 由 tan B =34AC CB =, ∴344AC =. ∴AC =3.∴AD ,AB =5 . (2) 过点D 作DE ⊥AB 于E ,∴∠C =∠DEB =90°.又∠B =∠B ,∴△DEB ∽△ACB . ∴DEDBAC AB =. ∴235DE =. ∴65DE =.∴sin BAD ∠=23. 解:(1) ∵点B (-1,n )在直线21y x =-+上,∴21 3.n =+=∴B (-1,3).∵点B (-1,3)在反比例函数x ky =的图象上,∴3k =-.(2) ()2,C -0或()2,0.24. 解:(1) 2240y x x =-+.(402)x x -(或写成)(2) 由题意,得0402028x x -≤⎧⎨⎩>,<.∴6≤x <20 .由题意,得 ()2210200y x =--+.∴当x =10时,y 有最大值,y 的最大值为200.∴当AB 长为10m 时,花圃面积最大,最大面积为200m 2.(3) 令y =150,则 2240150x x -+=.∴ 125,15x x == .∵6≤x <20,∴x =15.∴当AB 长为15m 时,面积为150m 2.25. (1) 证明:如图,连接OC ,∵OC=OA,∴∠1 =∠2.∵ BC= CD,∴∠1 =∠3.∴∠2 =∠3.∴OC∥AF.∵CF⊥AD,∴∠CFA=90°.∴∠OCF=90°.∴OC⊥EF.∵OC为⊙O的半径,∴EF是⊙O的切线.(2) 解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sin E=12,可得△AEF,△OEC都为含30°的直角三角形;②由∠1 =∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.26. 解:(1) m= 1.(2)如图.(3)①答案不唯一.如:函数图象关于y轴对称.②1<b<2.27. 解: (1) 把A(-4,2)代入y=14x+n中,得n=1. ∴B(4,0),C(0,1).(2) ①D (m ,-1).②将点(0,1)代入2221y x mx m =-+-中,得211m =-.解得12m m == 将点(4,0)代入2221y x mx m =-+-中,得 201681m m =-+-.解得 125,3m m ==.∴5m ≤≤ .28.解:(1) 12.(2) ①如图.②法1:如图,过点O 作OF ⊥AB 交BC 于点F , ∵∠DOE =90°,∴∠AOD +∠DOF =∠DOF +∠FOE =90°.∴∠AOD =∠FOE .∵∠ACB =90°,∴∠A +∠B =∠OFE +∠B =90°.∴∠A =∠OFE .∴△OEF ∽△ODA .∴OE OFOD OA =.∵O 为AB 边中点,∴OA =OB .在Rt △FOB 中,tan B =21, ∴12OFOB =. ∴1.2OFOA =∴12OE OD =.法2:如图,分别取AC ,BC 的中点H ,G ,连接OH ,OG ,∵O 为AB 边中点,∴OH ∥BC ,OH =12BC ,OG ∥AC .∵∠ACB =90°,∴∠OHD =∠OGE =90°.∴∠HOG =90°.∵∠DOE =90°,∴∠HOD +∠DOG =∠DOG +∠GOE =90°.∴∠HOD =∠GOE .∴△OGE ∽△OHD . ∴OEOGOD OH =.∵tan B =21, ∴1.2OGGB =∵OH =GB , ∴1.2OG OH = ∴12OEOD =.法3:如图,连接OC ,DE ,∵∠ACB =90°,∠DOE =90°,∴DE 的中点到点C ,D ,O ,E 的距离相等.∴C ,D ,O ,E 四点共圆.∴∠ODE =∠OCE .∵O 为AB 边中点,∴OC =OB .∴∠B =∠OCE .∴∠ODE =∠B .∵tan B =21, ∴12OE OD =. (3) 122n -.29. 解:(1) ①N ,T . ②如图,根据题意,2PA PB -=,∴∣OP +2-(2- OP )∣=2.∴OP =1.若点P 在第一象限内,作PQ ⊥x 轴于点Q ,∵点P 在直线y =上,OP =1,∴OQ =12,PQ∴P (12).若点P 在第三象限内,根据对称性可知其坐标为(-12,综上所述,PO 的长为1,,点P 的坐标为(12或(-12,).(2)对于 C 的任意一个“完美点”P 都有2PA PB -=, 即2(2)2CP CP +-=-.可得CP =1.对于任意的点P ,满足CP =1,都有2(2)2CP CP +-=-, 即2PA PB -=,故此时点P 为 C 的“完美点”.因此, C 的“完美点”的集合是以点C 为圆心,1为半径的圆.设直线1y =+与y 轴交于点D ,如图,当 C 移动到与 y 轴相切且切点在点D 的下方时,t 的值最小.设切点为E ,连接CE ,可得DEt的最小值为1当 C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1综上所述,t的取值范围为1t ≤1。

(精校版)人教版九年级数学上册期末试卷及答案(2)

(精校版)人教版九年级数学上册期末试卷及答案(2)

(直打版)人教版九年级数学上册期末试卷及答案(2)(word 版可编辑修改)
九年级数学期末检测试卷
满分 120 分,考试时间为 90 分钟.
一、仔细选一选(本题有 10 小题,每题 3 分,共 30 分)
1、如图,⊙O 是△ABC 的外接圆,∠OBC=40°,则∠A 等于( ▲ )
A。30° B.40° C。50° D。60°
2、若当
x
3 时,正比例函数
y
k1x k1
0
与反比例函数
y
k2 x
k2
0
的值相等,则
k1

k2

比是( ▲ )。
A。9:1
B.3:1
C。1:3
D.1:9
3、将函数 y 3x2 1的图象向右平移 2 个单位得到的新图象的函数解析式为( ▲ )。
2
A。 y 3 x 2 1
2
B. y 3 x 2 1
(直打版)人教版九年级数学上册期末试卷及答案(2)(word 版可编辑修改)
(直打版)人教版九年级数学上册期末试卷及答案(2)(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版九年级数学上 册期末试卷及答案(2)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚 的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为(直打版)人教版九年级数学上册期末试卷及答案(2)(word 版可编辑修改)的全部内容。

【最新试题库含答案】2017届九年级数学上期末试卷(含答案和解释)

【最新试题库含答案】2017届九年级数学上期末试卷(含答案和解释)

2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。

考生必须在答题卡上解题作答。

答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。

一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。

2017年秋人教版九年级上数学期末检测试卷含答案

2017年秋人教版九年级上数学期末检测试卷含答案

1 2 x +mx+n与x轴交于A,B两 2 点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0), C(0,2). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰 三角形?如果存在,直接写出P点坐标,如果不存在,请说明理由; (3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于 点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边 形CDBF的最大面积及此时E点的坐标. 1 3 解:(1)y=- x2+ x+2 2 2 4.(2014· 兰州)如图,抛物线y=-
版权所有-
解:(1)∵一次函数 y=x-1的图象经过B点,∴B点坐标为(1,0). ∵A点坐标为(-3,0),抛物线顶点P的纵坐标为-4,
a+b+c=0, ∴抛物线顶点P的坐标为(-1,-4),∴9a-3b+c=0, a-b+c=-4. a=1, 解方程组得b=2, 故抛物线的解析式为y=x2+2x-3 c=-3,
版权所有-
(2)存在.如图,①当点N在x轴的下方, ∵四边形ACNM是平行四边形,∴CN⊥对称轴, 5 ∴点C与点N关于对称轴x=2对称,∵C点的坐标为(0,- ), 2 5 ∴点N的坐标为(4,- );②当点N′在x轴上方时,作N′H⊥x轴于点 2 H,∵四边形ACM′N′是平行四边形,∴AC=M′N′,∠N′M′H= ∠CAO,∴Rt△CAO≌Rt△N′M′H,∴N′H=OC,∵点C的坐 5 5 5 1 2 5 标为(0,- ),∴N′H= ,即N点的纵坐标为 ,∴ x -2x- = 2 2 2 2 2 5 5 ,解得x1=2+ 14,x2=2- 14 ,∴点N′的坐标为(2- 14, )和 2 2 5 (2+ 14 , ).综上所述,满足条件的点N共有三个,分别为(4,- 2 5 5 5 ),(2- 14, )和(2+ 14 , ) 版权所有2 2 2

2017九年级数学上期末试卷(2)

2017九年级数学上期末试卷(2)

2017九年级数学上期末试卷(2)2017九年级数学上期末试卷参考答案一、精心选一选(本题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合要求的)1.用配方法解方程x2+4x+1=0,配方后的方程是( )A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3【考点】解一元二次方程-配方法.【分析】移项后两边配上一次项系数一半的平方即可.【解答】解:∵x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:C.2.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( )A. B. C. D.【考点】概率公式.【分析】让骰子中大于4的数个数除以数的总个数即为所求的概率.【解答】解:根据等可能条件下的概率的公式可得:小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数大于4的概率为 .故选B.3.如图,在⊙O中,AD,CD是弦,连接OC并延长,交过点A 的切线于点B,若∠ADC=30°,则∠ABO的度数为( )A.50°B.40°C.30°D.20°【考点】切线的性质.【分析】先利用同弧所对的圆周角和圆心角的关系得出∠AOB,再判断出∠OAB=90°,最后用直角三角形的两锐角互余即可.【解答】解:如图,连接OA,∵∠ADC=30°,∴∠AOC=2∠ADC=60°,∵AB切⊙O于A,∴∠OAB=90°,∴∠ABO=90°﹣∠AOC=30°,故选:C4.若反比例函数y= ,当x<0时,y随x的增大而增大,则k的取值范围是( )A.k>﹣2B.k<﹣2C.k>2D.k<2【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数y= ,当x<0时y随x的增大而增大,∴k+2<0,解得k<﹣2.故选:B.5.如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是( )A. =B. =C.∠ADE=∠CD.∠AED=∠B【考点】相似三角形的判定.【分析】根据相似三角形的判定定理进行判定即可.【解答】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当 = 即 = 时,△ABC∽△AED.故选:A.6.在正方形网格中,△ABC的位置如图所示,则tanB的值为( )A.2B.C.D.1【考点】锐角三角函数的定义.【分析】观察图形判断出∠B=45°,再根据45°角的正切值求解即可.【解答】解:由图可知,∠B=45°,所以,tanB=tan45°=1.故选D.7.如图是一个“中”的几何体,则该几何体的俯视图为( )A. B. C. D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看的到的图形,可得答案.【解答】解:从上边看是由5个矩形组成得,左边矩形的右边是虚线,右边矩形的左边是虚线,故选:C.8.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( )A.x>1B.x<1C.x>﹣1D.x<﹣1【考点】二次函数的性质.【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣ =1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.9.如图,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )A.( + )πB.( + )πC.2πD. π【考点】轨迹;勾股定理;旋转的性质.【分析】A点所经过的弧长有两段,①以C为圆心,CA长为半径,∠ACA1为圆心角的弧长;②以B1为圆心,AB长为半径,∠A1B1A2为圆心角的弧长.分别求出两端弧长,然后相加即可得到所求的结论.【解答】解:在Rt△ABC中,AB= ,BC=1,则∠BAC=30°,∠ACB=60°,AC=2;由分析知:点A经过的路程是由两段弧长所构成的:①A~A1段的弧长:L1= = ,②A1~A2段的弧长:L2= = ,∴点A所经过的路线为( + )π,故选A.10.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为( )A. B. C.2 D.1【考点】正多边形和圆.【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【解答】解:连接OM、OD、OF,如图所示:∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2× = ,∴MD= = = ;故选:A.二、细心填一填(本大题共8小题,每小题3分,共24分)11.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= x2+ x(x>0),若该车某次的刹车距离为9m,则开始刹车时的速度为90 m/s.【考点】一元二次方程的应用.【分析】将函数值y=9代入二次函数,然后解一元二次方程即可,注意舍去不合题意的根.【解答】解:当刹车距离为9m时,即y=9,代入二次函数解析式:9= x2+ x.解得x=90或x=﹣100(舍),故开始刹车时的速度为90m/s.故答案为:90.12.在一个不透明的口袋中装有12个白球、16个黄球、24个红球、28个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在0.3左右,则小明做实验时所摸到的球的颜色是红色.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手解答即可.【解答】解:共有12+16+24+28=80个球,∵白球的概率为: = ;黄球的概率为: = ;红球的概率为:= ≈0.3;绿球的概率为: = .∴小明做实验时所摸到的球的颜色是红色故答案为:红色.13.如图,圆锥体的高,底面半径r=2cm,则圆锥体的侧面积为8πcm2.【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2 cm,∴圆锥的母线长为4cm,∴侧面面积= ×4π×4=8πcm2;故答案为:8π.14.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为 6 .【考点】位似变换.【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6.故答案为:6.15.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是.【考点】切线的性质.【分析】因为PB为切线,所以△OPB是Rt△.又OB为定值,所以当OP最小时,PB最小.根据垂线段最短,知OP=3时PB最小.根据勾股定理得出结论即可.【解答】解:∵PB切⊙O于点B,∴∠OBP=90°,∴PB2=OP2﹣OB2,而OB=2,∴PB2=OP2﹣4,即PB= ,当OP最小时,PB最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PB的最小值为 = .故答案为: .16.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为(4,3) .【考点】二次函数的性质.【分析】根据A和B关于x=2对称,求得(0,3)关于x=2的对称点是关键.【解答】解:点A的坐标为(0,3),关于x=2的对称点是(4,3).即点B的坐标为(4,3).故答案是(4,3).17.如图,点P、Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1 = S2.(填“>”或“<”或“=”)【考点】反比例函数系数k的几何意义.【分析】设p(a,b),Q(m,n),根据三角形的面积公式即可求出结果.【解答】解;设p(a,b),Q(m,n),则S△ABP= AP•AB= a(b﹣n)= ab﹣ an,S△QMN= MN•QN= (m﹣a)n= mn﹣ an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.18.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα= ,则“人字梯”的顶端离地面的高度AD是180 cm.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度的定义求出AG,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:由题意得,FG= EF=30,∵EF∥BC,∴∠AFE=α,∴ = ,即 = ,解得,AG=75,∵EF∥BC,∴ = = ,解得,AD=180,∴“人字梯”的顶端离地面的高度AD是180cm,故答案为:180.三、解答题(本大题共6小题,70分)19.如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.【考点】列表法与树状图法.【分析】(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以6,即可得出结果.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用两次抽中的奖品的总价值大于14元的情况的数量除以所有情况的数量即可.【解答】解:(1)共有6个可能的结果,抽中10元奖品的结果有1个,∴抽中10元奖品的概率为 .(2)画树状图:共有30种可能的结果,两次抽中的奖品的总价值大于14元的结果有22个,∴两次抽中的奖品的总价值大于14元的概率= = .20.如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF.求证:直线BE是⊙O的切线.【考点】切线的判定;圆周角定理.【分析】先利用垂径定理得到= ,则∠ACD=∠ADC,再证明CD∥BE,则利用平行线的性质得到AB⊥BE,然后根据切线的判定定理可判断直线BE是⊙O的切线.【解答】证明:∵CD⊥AB,∴ = ,∴∠ACD=∠ADC,∵∠E=∠ACF,∴CD∥BE,∴AB⊥BE,∴直线BE是⊙O的切线.21.如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P 在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.请问:△CDP与△PAE相似吗?如果相似,请写出证明过程.【考点】相似三角形的判定.【分析】根据矩形的性质,推出∠D=∠A=90°,再由直角三角形的性质,得出∠PCD+∠DPC=90°,又因∠CPE=90°,推出∠EPA+∠DPC=90°,∠PCD=∠EPA,从而证明△CDP∽△PAE.【解答】解:△CDP∽△PAE.理由如下:∵四边形ABCD是矩形,∴∠D=∠A=90°,CD=AB=6,∴∠PCD+∠DPC=90°,又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA,∴△CDP∽△PAE.22.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,ta n22°=0.4040)【考点】解直角三角形的应用.【分析】通过解Rt△BAD求得BD=AB•tan∠BAE,通过解Rt△CED求得CE=CD•cos∠BAE.然后把相关角度所对应的函数值和相关的线段长度代入进行求值即可.【解答】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,又∵tan∠BAE= ,∴BD=AB•tan∠BAE,又∵cos∠BAE=cos∠DCE= ,∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=( AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).23.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式.(2)请直接写出D点的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【考点】二次函数与不等式(组);待定系数法求二次函数解析式;抛物线与x轴的交点.【分析】(1)由于已知抛物线与x轴两交点,则设交点式y=a(x+3)(x﹣1),然后把C(0,3)代入求出a的值即可得到抛物线解析式;(2)通过解方程﹣x2﹣2x+3=3可得到D(﹣2,3);(3)观察函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.【解答】解;(1)设二次函数的解析式为y=a(x+3)(x﹣1),把C(0,3)代入得a×3×(﹣1)=3,解得a=﹣1.所以抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)当y=3时,﹣x2﹣2x+3=3,解得x1=0,x2=﹣2.则D(﹣2,3).(3)观察函数图象得使一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.24.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x) 元,今年生产的这种玩具每件的出厂价为(12+6x) 元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【考点】二次函数的应用.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.。

2017年九年级数学上学期期末测试卷(2)

2017年九年级数学上学期期末测试卷(2)

2017年九年级数学上学期期末测试卷(2)2017年九年级数学上学期期末测试卷参考答案一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的)1.下列计算正确的是( )A. =2B. ﹣=C. × =D.( )=﹣3【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=2 ,所以A选项错误;B、原式=2﹣,所以B选项错误;C、原式= = ,所以C选项正确;D、原式=3,所以D选项错误.故选C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列说法正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.3.使有意义的x的取值范围是( )A.x>2B.x<﹣2C.x≤2D.x≥2【考点】二次根式有意义的条件.【分析】二次根式有意义,被开方数是非负数.【解答】解:依题意,得x﹣2≥0,解得,x≥2.故选:D.【点评】本题考查了二次根式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.将一元二次方程x2﹣4x﹣1=0配方后得到的结果是( )A.(x+4)2=1B.(x﹣4)2=3C.(x+2)2=4D.(x﹣2)2=5【考点】解一元二次方程-配方法.【分析】移项,配方,变形后即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选D.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.5.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取一张,则抽到的卡片上印有的图案是轴对称图形的概率为( )A. B. C. D.【考点】概率公式;轴对称图形.【分析】先求出是轴对称图形的图形的个数,再除以图形总数即可得出结论.【解答】解:∵等边三角形、平行四边形、等腰梯形、圆共有3个图形是轴对称图形,∴抽到的卡片上的图案是轴对称图形的概率是,故选D.【点评】本题主要考查了概率的计算方法,在解题时根据题意列出式子是本题的关键.6.2011年初中毕业生诊断考试)某校2016届九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2450张相片,如果全班有x名学生,根据题意,列出方程为( )A.x(x﹣1)=2450B.x(x+1)=2450C.2x(x+1)=2450D.【考点】由实际问题抽象出一元二次方程.【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程:(x﹣1)x=2450.【解答】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2450,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送x﹣1张相片,有x个人是解决问题的关键.7.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是( )A.b=a•sinBB.a=b•cosBC.a=b•tanBD.b=a•tanB【考点】锐角三角函数的定义.【分析】根据三角函数的定义即可判断.【解答】解:A、∵sinB= ,∴b=c•sinB,故选项错误;B、∵cosB= ,∴a=c•cosB,故选项错误;C、∵tanB= ,∴a= ,故选项错误;D、∵tanB= ,∴b=a•tanB,故选项正确.故选D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8.如图,小正方形的边长均为1,则下列图中的三角形与△ABC相似的是( )A. B. C. D.【考点】相似三角形的判定.【专题】网格型.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB= = ,AC= ,BC=2,∴AC:BC:AB= :2: =1::,A、三边之比为1::2 ,图中的三角形与△ABC不相似;B、三边之比为::3,图中的三角形与△ABC不相似;C、三边之比为1::,图中的三角形与△ABC相似;D、三边之比为2::,图中的三角形与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.9.如果y= + +2,那么2x+y=( )A.4B.5C.6D.无法确定【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式求出x的值,代入已知式子求出y的值,计算即可.【解答】解:由题意得,2x﹣3≥0,3﹣2x≥0,解得,x= ,则y=2,∴2x+y=5,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.10.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E 为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:4B.1:3C.2:3D.1:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.【解答】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴ = ,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE= DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.11.若关于x的一元二次方程(a﹣1)x2+2x+3=0有实数根,则整数a的最大值是( )A.2B.1C.0D.﹣1【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程(a﹣1)x2+2x+3=0有实数根,则a﹣1≠0,且△≥0,即△=22﹣4(a﹣1)×3=16﹣12a≥0,解不等式得到a的取值范围,最后确定整数a的最大值.【解答】解:∵关于x的一元二次方程(a﹣1)x2+2x+3=0有实数根,∴a﹣1≠0,且△≥0,即△=22﹣4(a﹣1)×3=16﹣12a≥0,解得a≤ ,∴a的取值范围为a≤ 且a≠1,所以整数a的最大值是0.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c 为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解.12.如图,Rt△ABC中,∠BCA=90°,AC=BC,点D是BC的中点,点F在线段AD上,DF=CD,BF交CA于E点,过点A作DA的垂线交CF的延长线于点G,下列结论:①CF2=EF•BF;②AG=2DC;③AE=EF;④AF•EC=EF•EB.其中正确的结论有( )A.①②③B.①②④C.①③④D.②③④【考点】相似三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】根据等边对等角的性质求出∠DCF=∠DFC,然后求出DF=DB,根据等边对等角求出∠DBF=∠DFB,然后求出∠BFC是直角,根据直角三角形的性质求出△BCF和△CEF相似,根据相似三角形对应边成比例列式整理即可得到①正确;根据互余关系求出∠G=∠ACG,再根据等角对等边的性质求出AG=AC,然后求出AG=BC,然后利用“角角边”证明△BCE和△AGF全等,根据全等三角形对应边相等可得AG=BC,从而判断②正确;根据角的互余关系可以求出∠EAF+∠ADC=90°,∠AFE+∠DFC=90°再根据∠ADC的正切值为2可知∠ADC≠60°,然后求出∠FDC≠∠DFC,然后求出∠EAF≠∠EF A,从而得到AE≠EF,判断出③错误;根据根据直角三角形的性质求出△CEF 和△BCE相似,根据相似三角形的对应边成比例列式求出EC2=EF•EB,再根据全等三角形对应边相等可得AF=CE,从而判断出④正确.【解答】解:∵DF=CD,∴∠DCF=∠DFC,∵AC=BC,点D是BC的中点,∴DF=DB=DC,∴∠DBF=∠DFB,又∵∠DBF+∠DFB+∠DFC+∠DCF=180°,∴∠BFC= ×180°=90°,∴CF⊥BE,∴Rt△BCF∽Rt△CEF,∴ = ,∴CF2=EF•BF,故①正确;∵AG⊥AD,∴∠G+∠AFG=90°,又∵∠ACG+∠DCF=90°,∠DCF=∠DFC=∠AFG,∴∠G=∠ACG,∴AG=AC,∵AC=BC,∴AG=BC,又∵∠CBE=∠ACG,∴∠CBE=∠G,在△BCE和△AGF中,∵ ,∴△BCE≌△AGF(AAS),∴AG=BC,∵点D是BC的中点,∴BC=2DC,∴AG=2DC,故②正确;根据角的互余关系,∠EAF+∠ADC=90°,∠AFE+∠DFC=90°,∵tan∠ADC=2,∴∠ADC≠60°,∵∠DCF=∠DFC,∴∠FDC≠∠DFC,∴∠EAF≠∠EFA,∴AE≠EF,故③错误;∵∠ACB=90°,CF⊥BE,∴△CEF∽△BCE,∴ = ,∴EC2=EF•EB,∵△BCE≌△AGF(已证),∴AF=EC,∴AF•EC=EF•EB,故④正确;所以,正确的结论有①②④.故选B.【点评】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的性质,根据等角对等边以及等边对等角的性质求出AG=AC,然后证明△BCE和△AGF全等是证明的关键,也是本题的难点.二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案直接填在题中横线上)13.化简 = .【考点】分母有理化.【分析】直接利用二次根式的性质化简求出答案.【解答】解: = = .故答案为: .【点评】此题主要考查了分母有理化,正确找出有理化因式是解题关键.14.有5张扑克牌,牌面朝下,随机抽出一张记下花色后放回,洗牌后再这样抽,经历多次试验后,得到随机抽出一张牌是红桃的频率是0.2,则红桃大约有 1 张.【考点】利用频率估计概率.【专题】计算题;概率及其应用.【分析】根据概率的频率定义可知,由于抽到红桃的概率为0.2,根据概率公式即可求出红桃的张数.【解答】解:由题意可得,红桃大约有:5×0.2=1(张)故答案为:1.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解部分的具体数目=总体数目×相应频率,属基础题.15.若x1、x2是方程x2+3x﹣1=0的两根,则(x1﹣1)(x2﹣1)= 3 .【考点】根与系数的关系.【分析】根据根与系数的关系,得出x1+x2,x1x2,再整体代入即可得出答案.【解答】解:∵x1、x2是方程x2+3x﹣1=0的两根,∴x1+x2=﹣3,x1x2=﹣1,∴(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=﹣1+3+1=3,故答案为3.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.如图,放置的△OA1B1、△B1A2B2、△B2A3B3,…,都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标为(1008,1007 ) .【考点】一次函数图象上点的坐标特征;等边三角形的性质.【专题】规律型.【分析】根据题意得出直线B2B1的解析式为:y= x,进而得出B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(1,0),AO∥A1B1,∠B1OC=30°,∴CB1=OB1cos30°= ,∴B1的横坐标为:,则B1的纵坐标为:,∴点B1,B2,B3,…都在直线y= x上,∴B1( , ),同理可得出:A1的横坐标为:1,∴y= ,∴A1(2, ),…An(1+ , ).∴A2015(1008,1007 ).故答案为(1008,1007 ).【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.三、解答题(本大题共6小题,共56分,解答应写出必要的文字说明、证明过程或推演步骤17.(1)计算:4cos30°﹣﹣ +(﹣ )﹣2(2)解方程:x2﹣2x﹣1=0.【考点】二次根式的混合运算;负整数指数幂;解一元二次方程-配方法;特殊角的三角函数值.【专题】计算题.【分析】(1)根据特殊角的三角函数值和负整数指数得意义得到原式=4× ﹣(2﹣ )﹣3 +9,然后合并即可;(2)利用配方法解方程.【解答】解:(1)原式=4× ﹣(2﹣ )﹣3 +9=2 ﹣2+ ﹣3 +9=7;(2)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1= ,所以x1=1+ ,x2=1﹣ .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了配方法解一元二次方程.18.小明与小亮玩游戏:他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上,规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数是2的倍数,则小明胜;否则,小亮胜.(1)请用树状图或列表法表示能组成哪些两位数?(2)这个游戏对双方公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意直接列出树形图或列表即可;(2)游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)列表得:第一次第二次 2 3 42 (2,2) (2,3) (2,4)3 (3,2) (3,3) (3,4)4 (4,2) (4,3) (4,4)由表格可以看出,所有可能出现的结果共有9种,分别是:22,23,24,32,33,34,42,43,44,而且每种结果出现的可能性都相同;(2)这个游戏规则对双方不公平由(1)可知:P(小明获胜)= ,P(小亮获胜)= ,,所以游戏不公平.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.19.一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】先设AB=x米,根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得CB、DB的数值,再根据CD=BD﹣BC=10,进而可求出答案.【解答】解:∵设AB=x米,在Rt△ACB和Rt△ADB中,∵∠D=30°,∠ACB=45°,CD=10,∴CB=x,AD=2x,BD= = x,∵CD=BD﹣BC=10,x﹣x=10,∴x=5( +1)≈13.7.答:该树高是13.7米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E是AB的中点.(1)求证:△ADC∽△ACB;(2)求证:CE∥AD;(3)若AB=6,AD=4,求的值.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定与性质,可得,根据比例的性质,可得答案;(2)根据直角三角形的性质,可得CE与AE的关系,根据等腰三角形的性质,可得∠EAC=∠ECA,根据角平分线的定义,可得∠CAD=∠CAB,根据平行线的判定,可得答案;(3)由(2)知CE∥AD,进而得到△AFD∽△CFE,AD:CE=AF:CF;求得CE=3,AD=4,即可解决问题.【解答】证明:(1)∵AC平分∠BAD,∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°,∴△ADC∽△ACB;(2)∵E是AB的中点,∴CE= AB=AE,∴∠EAC=∠ECA.∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠CAD=∠ECA,∴CE∥AD;(3)解:由(2)知CE∥AD;∴△AFD∽△CFE,∴ AD:CE=AF:CF;∵CE= AB=3,AD=4,,∴ .【点评】本题考查了相似三角形的判定与性质,(1)利用了相似三角形的判定与性质,比例的性质;(2)利用了直角三角形的性质,等腰三角形的性质,平行线的判定,牢固掌握直角三角形的性质、相似三角形的判定及其性质是解题的关键.21.某超市准备进一批季节性小家电,每个进价是40元,经市场预测:销售价定为50元,可售出400个,定价每增加1元,销售量将减少10个.超市若要保证获得利润6000元,同时又要使顾客得到实惠,那么每个定价应该是多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】设每个定价增加x元,根据总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍,即可得出答案.【解答】解:设每个定价增加x元,根据题意得:(x+10)(400﹣10x)=6000,整理得:x2﹣30x+200=0解得x1=10,x2=20,∵顾客要实惠,∴x=10,∴x+50=60.答:当定价为60元时利润达到6000元;【点评】考查了一元二次方程的应用,解题的关键是能够表示每个的销售利润和所有的销售量,从而列出方程求解即可.22.如图,在△ABC中,AB=AC=10,点D是边BC上的一动点(不与B,C重合),∠ADE=∠B=α,且cosα= ,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)探究:在点D运动过程中,△ADE能否构成等腰三角形?若能,求出BD的长;若不能,请说明理由.【考点】相似三角形的判定与性质;等腰三角形的判定;解直角三角形.【专题】动点型.【分析】(1)由AB=AC,易得∠B=∠C,又由∠ADE=∠B=α,根据三角形外角的性质,可证得∠BAD=∠EDC,继而证得结论;(2)分别从DE=AD与DE=AE去分析求解即可求得答案.【解答】(1)证明:∵在△ABC中,AB=AC=10,∴∠B=∠C,∵∠ADE=∠B=α,∠ADE+∠CDE=∠B+∠BAD,∴∠BAD=∠CDE,∴△ABD∽△DCE;(2)解:过点A作AF⊥BC于点F,①若DE=AD,则△ABD≌△DCE,∴CD=AB=10,∵∠ADE=∠B=α,且cosα= ,∴BF=AB•cosα=10× =8,∵AB=AC,∴BC=2BF=16,∴BD=BC﹣CD=6;②若DE=AE,则∠EAD=∠ADE,∵∠B=∠C=∠ADE=α,∴∠B=∠ADE,∠EAD=∠C,∴△ABC∽△EAD,∴ = = ,∵△ABD∽△DCE,∴ ,∴CD= ,∴BD= ;综上所述:△ADE能够成等腰三角形,BD=6或 .【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及三角形外角的性质.注意准确作出辅助线,利用分类讨论思想求解是解此题的关键.。

2017年秋季学期新版新人教版九年级数学上册期末检测试卷含答案

2017年秋季学期新版新人教版九年级数学上册期末检测试卷含答案

检测内容:期末检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是( )A .14B .12C .34D .1 2.已知一个直角三角形的两条直角边的长恰好是方程x 2-3x =4(x -3)的两个实数根,则该直角三角形斜边上的中线长是( )A .3B .4C .6D .2.53.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x ,由题意,所列方程正确的是( )A .28(1-2x)=16B .16(1-2x)=28C .28(1-x)2=16D .16(1-x)2=284.将二次函数y =x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y =(x -1)2+3B .y =(x +1)2+3C .y =(x -1)2-3D .y =(x +1)2-35.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A .抛物线开口向上 B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点为(-1,0),(3,0) 6.如图,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上一点,且∠P =36°,则∠ACB =( ) A .54° B .72° C .108° D .144°,第6题图) ,第9题图),第10题图)7.在体检中,12名同学的血型结果为:A 型3人,B 型3人,AB 型4人,O 型2人,若从这12名同学中随机抽出2人,这两人的血型均为O 型的概率为( )A .166B .133C .1522D .7228.已知x 1,x 2是关于x 的一元二次方程x 2-(2m +3)x +m 2=0的两个不相等的实数根,且满足x 1+x 2=m 2,则m 的值是( )A .-1B .3C .3或-1D .-3或19.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( )A .OC ∥AEB .EC =BC C .∠DAE =∠ABED .AC ⊥OD 10.(2016·齐齐哈尔)如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.点P(-2,5)关于原点对称的点的坐标是________.12.已知一个圆锥的底面直径为20 cm ,母线长为30 cm ,则这个圆锥的表面积是________.13.(2016·河南)已知A(0,3),B(2,3)是抛物线y =-x 2+bx +c 上两点,该抛物线的顶点坐标是________.14.已知二次函数y =-x 2-2x +3的图象上有两点A(-7,y 1),B(-8,y 2),则y 1________y 2.(填“>”“<”或“=”)15.如图,△ABC 和△A′B′C 是两个不完全重合的直角三角板,∠B =30°,斜边长为10 cm ,三角板A′B′C 绕直角顶点C 顺时针旋转,当点A′落在AB 边上时,CA ′旋转所构成的扇形的弧长为________cm .,第15题图) ,第16题图),第18题图)16.如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO ,以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF.若∠BAC =22°,则∠EFG =________.17.已知AB ,AC 分别是同一圆的内接正方形和内接正六边形的边,那么∠ABC 的度数为________.18.如图,△ABC 中,∠ACB =90°,∠A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°)得到△DEC ,设CD 交AB 于点F ,连接AD ,当旋转角α度数为________,△ADF 是等腰三角形.三、解答题(共66分) 19.(8分)解方程:(1)53x +错误!=x 2; (2)2(x -3)2=x 2-9.20.(8分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C,过点C 作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD的面积.21.(8分)如图,AB是⊙O的弦,D为半径OA上的一点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.求证:BC是⊙O的切线.22.(10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF,EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.23.(10分)在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其他均相同.甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问这个游戏公平吗?说明理由.24.(10分)(2016·铜仁)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?25.(12分)如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点;①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.单元清七1.A 2.D 3.C 4.A 5.C 6.B 7.A 8.B 9.D 10.B 11.(2,-5) 12.300π cm 2 13.(1,4) 14.>15.5π3 16.33° 17.15°或105° 18.40°或20° 19.(1)x 1=2,x 2=-13 (2)x 1=3,x 2=9 20.解:(1)y =-x 2+2x +3 (2)B ,C ,D 三点的坐标分别为:B(3,0),C(0,3),D(1,3),∴CD =1,BO =3,CO =3,S 梯形COBD =12(CD +BO)·CO =12×4×3=6 21.证明:连接OB ,∵CE =CB ,∴∠CEB =∠CBE ,又∵CD ⊥AO ,∴∠A +∠AED =90°,又∵∠AED =∠CEB ,∴∠A +∠CBE =90°,又∵OA =OB ,∴∠A =∠OBA ,∴∠OBA +∠CBE =90°,即∠OBC =90°,∴OB ⊥BC ,∴BC 为⊙O 的切线 22.解:(1)连接FO ,∵AP ⊥DE ,∠DPA =45°,∴∠D =45°,∴∠EOF =90°,又AC =CO ,∴OE =2OC ,∴∠COE =60°,又CE =CD =3,∴CO 2+(3)2=(2OC)2,∴OC =1,OE =R =2 (2)S 阴影=S 扇形EOF -S △OEF =14πR 2-12OE ·OF =14π×4-12×2×2=π-2 23.解:画树状图如下:由图可知,所有等可能的结果共有9种,其中,两位数能被4整除的情况有3种,所以P(甲获胜)=39=13,P(乙获胜)=23,因为13≠23,所以这个游戏不公平 24.解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y =180-10(x -12)=-10x +300(12≤x ≤30) (2)设王大伯获得的利润为W ,则W =(x -10)y =-10x 2+400x -3 000,令W =840,则-10x 2+400x -3 000=840,解得:x 1=16,x 2=24,∴王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元 (3)∵W =-10x 2+400x -3 000=-10(x -20)2+1 000,∵a =-10<0,∴当x =20时,W 取最大值,最大值为1 000.故当售价定为20元时,王大伯获得利润最大,最大利润是1 000元25.(1)∵点A(-3,0)与点B 关于直线x =-1对称,∴点B 的坐标为(1,0) (2)∵a =1,∴y =x 2+bx +c ,∵抛物线过点(-3,0),且对称轴为直线x =-1,∴b =2,c =-3,∴y =x 2+2x -3,且点C 的坐标为(0,-3),①设P 的坐标为(x ,y),由题意S △BOC =12×1×3=32,∴S △POC =6.当x >0时,有12×3×x =6,∴x =4,∴y =42+2×4-3=21.当x <0时,有12×3×(-x)=6,∴x =-4,∴y =(-4)2+2×(-4)-3=5,∴点P 的坐标为(4,21)或(-4,5)②∵直线y =mx +n 过A ,C 两点,∴⎩⎪⎨⎪⎧-3m +n =0,n =-3.解得⎩⎪⎨⎪⎧m =-1n =-3.∴y =-x -3.设点Q 的坐标为(x ,y),-3≤x ≤0.则有QD =-x -3-(x 2+2x -3)=-x 2-3x =-(x +32)2+94,∵-3≤-32≤0,∴当x =-32时,QD 有最大值94,∴线段QD 长度的最大值为94。

人教版九年级数学上册期末测试卷(二)(附答案)

人教版九年级数学上册期末测试卷(二)(附答案)

人教版九年级数学上册期末测试卷(二)(附答案)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列图形中既是轴对称图形,又是中心对称图形的是 ( )A.平行四边形B.等边三角形C.正方形D.正五边形2.圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是 ( )A.x 2-6x +10=0B.x 2-6x +1=0C.x 2-5x +6=0D.x 2+6x +9=03.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本 ( )A.8.5%B.9%C.9.5%D.10%4.如图所示,在⊙O 中,A ,P ,B ,C 是⊙O 上的四个点,已知:∠APC=60°,∠CPB =50°,则∠ACB 的度数是 ( )A.100°B.80°C.70°D.60°5.抛物线y =3(x -1)2+1的顶点坐标是 ( )A.(1, 1)B.(-1, 1)C.(-1, -1)D.(1, -1)6.某市约有36000名九年级学生参加中学毕业考试,为了了解这36000名学生的数学成绩,准备从中随机抽取1200名学生的数学成进行统计分析,那么其中一名学生的数学成绩被抽中的概率为 ( )A. 136000B. 11200C. 150D. 1307.已知Rt △ABC 中,∠C =90°,AC =8cm ,BC =6cm ,则其内心和外心之间的距离是( )A. 10 cmB.5 cmC.√5cmD. 2 cm8.已知二次函数y =2x 2+9x +34,当自变量x 取两个不同的值x 1,x 2时,函数值相等,则当自变量x 取x 1+x 2时的函数值与 ( )A. x =1时的函数值相等B. x =0时的函数值相等C. x =14时的函数值相等D. x =﹣94时的函数值相等9.函数y= ax+b的图象经过第一、二、三象限,则二次函数y=ax2+b的大致图象是( )10.如图所示,⊙M与x轴相切于原点,平行于y轴直线交圆于P,Q两点,交x轴于点B,P点在Q点的下方,若P点的坐标是(2, 1),则圆心M的坐标是( ))A.(0, 3)B.(0,52C.(0, 2)D.(0,3)2二、填空题(每小题3分,共24分)1.已知(a2+b2)(a2+b2-1)=6,则a2+b2的值是__________.2.如图所示,在正方形ABCD中,E为DC边上的一点,连接BE,将△BCE绕点C顺时针方向旋转90°,得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为____.3.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁上,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图所示,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长。

上册九年级数学期末考试卷二附答案

上册九年级数学期末考试卷二附答案

B ' A 'B C A (7题图)1、平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是 () (A ) (3,-2) (B )(2,-3) (C )(-2,-3) (D )(2,3)2、若式子 2x+1x-1在实数范围内有意义,则x 的取值范围是 ( )(A) x ≥--12 (B) x ≠1 (C) x >--12 且x ≠1 (D) x ≥--12 且x ≠13、右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是 ( )(A )外离 (B )相交 (C )外切 (D )内切 4、下列一元二次方程中没有实数根是 ( ) (A )x 2+3x +4=0 (B )x 2-4x +4=0(C )x 2-2x -5=0 (D )x 2+2x -4=0 5、圆锥侧面展开图可能是下列图中的 ( )6、二次根式12、32+x 、23、b a 2、5.02、26中,最简二次根式的概率是(A ) 16 (B ) 23 (C ) 13 (D ) 12 ( ) 7、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C '''的位置.若AC =15cm那么顶点A 从开始到结束所经过的路径长为( )(A )10πcm (B )cm (C )15πcm (D )20πcm 8、下列说法中正确的是 ( )(A )32+42 =32 +42 =3+4 (B) 方程2x 2=x 的根是x =12(C )相等的弦所对的弧相等 (D) 明天会下雨是随机事件二、认真填一填(本大题共5小题,每小题3分,共15分)9、请写出两个我们学过的、既是中心对称、又是轴对称的几何图形 . 10、直径12cm 的圆中,垂直平分半径的弦长为 cm11、本试卷中的选择题,每小题都有4个选项,其中只有一个是正确的,当你遇到不会做的题目时,如果你随便选一个答案,那么你答对的概率为12、政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为 . 13、下面是按一定规律排列的2008年北京奥运会比赛项目中的五项比赛项目的图标,按此 规律画出的第2009个图标应该是 ,(填上符合题意的运动项目的名称)三、耐心求一求(本大题共5小题,每小题5分,共25分) 14、计算:327 ÷32+ ( 2 -1 )2 15、解方程:2x 2+x -6=016、“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川的灾后重建工作.(1) 若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2) 求恰好选中医生甲和护士A 的概率.17、如图:在平面直角坐标系中,网格中每一个小 正方形的边长为1个单位长度;已知△ABC① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1② 再以O 为旋转中心,将△A 1B 1C 1旋转180° 得△A 2B 2C 2, 画出平移和旋转后的图形,并标明对应字母.上学期人教版九年级数学期末考试卷(二)(卷首提示语)亲爱的同学这份卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任目光的目光,(A ) (B ) (C ) (D )……田径 游泳举重射击足球第3题图…④③②18、如图,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.四、用心想一想 (本大题共3小题,每小题6分,共18分)19、先化简,再求值:( 1x -y -1x +y )÷xy 2x 2-y2 ,其中 x = 2 +1,y = 2 -1,20、阅读下面材料:解答问题为解方程 (x 2-1)2-5 (x 2-1)+4=0,我们可以将(x 2-1)看作一个整体,然后 设 x 2-1=y ,那么原方程可化为 y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时, x 2-1=1,∴x 2=2,∴x =± 2 ;当y =4时,x 2-1=4,∴x 2=5,∴x =± 5 , 故原方程的解为 x 1= 2 ,x 2=- 2 ,x 3= 5 ,x 4=- 5 . 上述解题方法叫做换元法;请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0 21、(1)如图①,M 、N 分别是⊙O 的内接正△ABC 的边AB 、BC 上的点且BM =CN ,连接OM 、ON ,求∠MON 的度数。

【人教版】九年级上期末数学试卷2含答案

【人教版】九年级上期末数学试卷2含答案

【人教版】九年级上期末数学试卷2含答案一、选择题(本大题每小题3分,满分42分)1.2-的相反数是A·21B·21- C·2- D·22.在实数2、0、1-、2-中,最小的实数是().A.2B.0C.1-D.2-3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为A· 237×106 吨 B· 2·37×107 吨 C· 2·37×108吨 D· 0·237×109吨4·下列运算,正确的是A·523aaa=⋅ B·abba532=+ C·326aaa=÷ D·523aaa=+5·下列各图中,是中心对称图形的是6·方程042=-x的根是A·2,221-==xx B·4=x C·2=x D·2-=x7·不等式组⎩⎨⎧-><-12xx的解集是A·1->x B·2-<x C·2<x D·21<<-x 8.函数1-=xy中,自变量x的取值范围是A·1≥x B·1->x C·0>x D·1≠x9.下列各点中,在函数xy2=图象上的点是A.(2,4) B.(-1,2) C.(-2,-1) D.(21-,1-)10·一次函数2+=xy的图象不经过...A B C DA ·第一象限B · 第二象限C · 第三象限D · 第四象限 11· 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是A .1·65,1·70B .1·70,1·65C .1·70,1·70D .3,512.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0·002、s 乙2=0·03,则 ( )A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定13· 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A · 80°B · 90°C · 100°D · 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB 长为半径作⋂AC ,则图中阴影部分的面积为( )A ·2)4(cm π-B · 2)8(cm π- C· 2)42(cm -π D · 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15· 计算:=-283 ·16·在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同·若从中随机摸出一个球,它是黄球的概率是54,则n = ·A BCOE1D 图1A17·如图3,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE= cm·18·如图4,∠ABC=90°,O为射线BC上一点,以点O为圆心,21BO长为半径作⊙O,当射线BA绕点B按顺时针方向旋转度时与⊙0相切·三、解答题(本大题满分56分)19.计算(满分8分,每小题4分)(1)231(3)4(2)2-⨯+-(2)化简:(a+1)(a-1)-a(a-1)·20.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?21·(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:图4ABO C AB C图3ED共计145元共计280元yAO xBC(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度? (3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人? 22.(本题满分8分)如图5的方格纸中,ABC ∆ 的顶点坐标分别为()5,2-A 、()1,4-B 和()3,1-C (1)作出ABC ∆关于x 轴对称的111C B A ∆,并写出点A 、B 、C 的对称点1A 、1B 、1C 的坐标; (2)作出ABC ∆关于原点O 对称的222C B A ∆,并写出点A 、B 、C 的对称点2A 、2B 、2C 的坐标; (3)试判断:111C B A ∆与222C B A ∆是否关于y 轴对称 (只需写出判断结果)·23.(本大题满分11分)如图6,四边形ABCD 是正方形,G 是BC 上任意一点(点第21题答案图G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F · (1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF ·24.(13分)如图7,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上· (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围; ②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?解:(1)∵60%106=,∴这次考察中一共调查了60名学生· (2)∵%25%20%20%10%251=----图7ACDE F图6G∴︒=⨯︒90%25360∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90° (3)12%2060=⨯,∴补全统计图如下图(4)∵450%251800=⨯∴可以估计该校学生喜欢篮球活动的约有450人九年级数学科期末检测模拟试题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 ° 三、解答题(本大题满分56分)19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a =a -1B 2yCABC 1B 1A 1C 2A 2Ox= -7 20.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元·依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元·21、满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C (3)111C B A ∆与222C B A ∆关于y 轴对称22.(本题满分8分)解:(1)∵60%106=,∴这次考察中一共调查了60名学生·(2)∵%25%20%20%10%251=----∴︒=⨯︒90%25360∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3)12%2060=⨯,∴补全统计图如下图(4)∵450%251800=⨯∴可以估计该校学生喜欢篮球活动的约有450人23· (满分11分)(1) ΔAED ≌ΔDFC ·∵ 四边形ABCD 是正方形, ∴ AD=DC ,∠ADC=90º· 又∵ AE ⊥DG ,CF ∥AE , ∴ ∠AED=∠DFC=90º,…∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC ·∴ ΔAED ≌ΔDFC (AAS )·ADE F第21题答案图(2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC·…∵ DF=DE+EF,∴ AE=FC+EF·)24· (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m·∴ m=1·设所求二次函数的关系式为y=a(x-1)2·∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1·∴所求二次函数的关系式为y=(x-1)2·即y=x2-2x+1·(2) 设P、E两点的纵坐标分别为y P和y E·∴ PE=h=y P-y E=(x+1)-(x2-2x+1)=-x2+3x·…即h=-x2+3x (0<x<3)·(3)图7。

九年级数学上期末试卷附答案

九年级数学上期末试卷附答案

九年级数学上期末试卷附答案2017年九年级数学上期末试卷附答案对于九年级的学生来说,要提高自己的数学呢?做一些相关知识点的试题是很不错的选择,以下是店铺为你整理的2017年九年级数学上期末试卷,希望对大家有帮助!2017年九年级数学上期末试题一、选择题1.与是同类二次根式的是( )A. B. C. D.2.方程x2=2x的解是( )A.x=0B.x=2C.x=0或x=2D.x=±3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A. B. C. D.4.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是( )A.b=a•sinBB.a=b•cosBC.a=b•tanBD.b=a•tanB5.如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(﹣2,0),顶点是(1,3).下列说法中不正确的是( )A.抛物线的对称轴是x=1B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0)D.当x=1时,y有最大值是36.已知x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解7.如图,菱形ABCD的周长为40cm,DE⊥AB,垂足为E,sinA= ,则下列结论正确的有( )①DE=6cm;②BE=2cm;③菱形面积为60cm2;④BD= cm.A.1个B.2个C.3个D.4个8.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )A.2:5B.14:25C.16:25D.4:21二、填空题9.当x 时,在实数范围内有意义.10.已知四条线段a,b,c,d成比例,并且a=2,b= ,c= ,则d= .11.在一个陡坡上前进5米,水平高度升高了3米,则坡度i= .12.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为.13.两个相似三角形对应的中线长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为cm,面积为cm2.14.共青团县委准备在艺术节期间举办学生绘画展览,为美化画面,在长30cm、宽20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图所示),若设彩纸的宽度为xcm,则列方程整理成一般形式为.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为.三、解答题(共75分)16.(7分)计算:4cos30°﹣| ﹣2|+( )0﹣ +(﹣ )﹣2.17.(7分)用配方法解方程:x2+4x﹣1=0.18.(9分)如图,梯形ABCD中,AB∥CD,点F在BC上,连DF 与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.19.(10分)如图,一条抛物线经过(﹣2,5),(0,﹣3)和(1,﹣4)三点.(1)求此抛物线的函数解析式.(2)假如这条抛物线与x轴交于点A,B,与y轴交于点C,试判断△OCB的形状.20.(10分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)21.(10分)为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:每千克售价(元) 25 24 23 (15)每天销售量(千克) 30 32 34 (50)如果单价从最高25元/千克下调到x元/千克时,销售量为y千克,已知y与x之间的函数关系是一次函数:(1)求y与x之间的函数解析式;(不写定义域)(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?22.(11分)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.23.(11分)如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.(1)判断△PBC的形状,并简要说明理由;(2)当t>0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;(3)当t为何值时,△AOP与△APC相似?2017年九年级数学上期末试卷答案与解析一、选择题1.与是同类二次根式的是( )A. B. C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义进行选择即可.【解答】解:A、与不是同类二次根式,故错误;B、 =3与不是同类二次根式,故错误;C、 =3 与不是同类二次根式,故错误;D、 = 与是同类二次根式,故正确;故选D.【点评】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.2.方程x2=2x的解是( )A.x=0B.x=2C.x=0或x=2D.x=±【考点】解一元二次方程-因式分解法.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣2x=0,分解因式得:x(x﹣2)=0,解得:x1=0,x2=2.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A. B. C. D.【考点】概率公式.【分析】列举出所有情况,看能被3整除的数的情况占总情况的多少即可.【解答】解:第一个数字有4种选择,第二个数字有3种选择,易得共有4×3=12种可能,而被3整除的有4种可能(12、21、24、42),所以任意抽取两个数字组成两位数,则这个两位数被3整除的概率为 = ,故选A.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .4.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是( )A.b=a•sinBB.a=b•cosBC.a=b•tanBD.b=a•tanB【考点】锐角三角函数的定义.【分析】根据三角函数的定义即可判断.【解答】解:A、∵si nB= ,∴b=c•sinB,故选项错误;B、∵cosB= ,∴a=c•cosB,故选项错误;C、∵tanB= ,∴a= ,故选项错误;D、∵tanB= ,∴b=a•tanB,故选项正确.故选D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(﹣2,0),顶点是(1,3).下列说法中不正确的是( )A.抛物线的对称轴是x=1B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0)D.当x=1时,y有最大值是3【考点】二次函数的性质.【分析】根据二次函数的性质,结合图象,逐一判断.【解答】解:观察图象可知:A、∵顶点坐标是(1,3),∴抛物线的对称轴是x=1,正确;B、从图形可以看出,抛物线的开口向下,正确;C、∵图象与x轴的一个交点是(﹣2,0),顶点是(1,3),∴1﹣(﹣2)=3,1+3=4,即抛物线与x轴的另一个交点是(4,0),错误;D、当x=1时,y有最大值是3,正确.故选C.【点评】主要考查了二次函数的性质,要会根据a的值判断开口方向,根据顶点坐标确定对称轴,掌握二次函数图象的对称性.6.已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【考点】根的判别式;一元一次方程的解.【分析】利用k的值,分别代入求出方程的根的情况即可.【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.【点评】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.7.如图,菱形ABCD的周长为40cm,DE⊥AB,垂足为E,sinA= ,则下列结论正确的有( )①DE=6cm;②BE=2cm;③菱形面积为60cm2;④BD= cm.A.1个B.2个C.3个D.4个【考点】解直角三角形.【分析】根据角的正弦值与三角形边的关系,可求出各边的长,运用验证法,逐个验证从而确定答案.【解答】解:∵菱形ABCD的周长为40cm,∴AD=AB=BC=CD=10.∵DE⊥AB,垂足为E,sinA= = = ,∴DE=6cm,AE=8cm,BE=2cm.∴菱形的面积为:AB×DE=10×6=60cm2.在三角形BED中,BE=2cm,DE=6cm,BD=2 cm,∴①②③正确,④错误; =2∴结论正确的有三个.故选C.【点评】此题看上去这是一道选择题实则是一道综合题,此题考查直角三角形的性质,只要理解直角三角形中边角之间的关系即可求解.8.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )A.2:5B.14:25C.16:25D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x= ,则EC=8﹣ = ,利用三角形面积公式计算出S△BCE= BC•CE= ×6× = ,在Rt△BED中利用勾股定理计算出ED= = ,利用三角形面积公式计算出S△BDE= BD•DE= ×5× = ,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB= =10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD= AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x= ,∴EC=8﹣x=8﹣ = ,∴S△BCE= BC•CE= ×6× = ,在Rt△BED中,∵BE2=ED2+BD2,∴ED= = ,∴S△BDE= BD•DE= ×5× = ,∴S△BCE:S△BDE= : =14:25.故选B.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.二、填空题9.当x > 时,在实数范围内有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题考查了代数式有意义的x的取值范围.一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:由分式的分母不为0,得2x﹣3≠0,即x≠ ,又因为二次根式的被开方数不能是负数,所以有2x﹣3≥0,得x≥ ,所以,x的取值范围是x> .故当x> 时,在实数范围内有意义.【点评】判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.10.已知四条线段a,b,c,d成比例,并且a=2,b= ,c= ,则d= .【考点】比例线段.【分析】根据题意列出比例式,再根据比例的基本性质,易求d 的值.【解答】解:∵四条线段a,b,c,d成比例,并且a=2,b= ,c= ,∴a:b=c:d,即2: = :d,解得d= ,故答案为 .【点评】本题考查了比例线段,解题的关键是利用了两内项之积等于两外项之积.11.在一个陡坡上前进5米,水平高度升高了3米,则坡度i= .【考点】解直角三角形的应用-坡度坡角问题.【分析】先求出水平方向上前进的距离,然后根据山坡的坡度=竖直方向上升的距离:水平方向前进的距离,即可解题.【解答】解:如图所示:AC=5米,BC=3米,则AB= = =4(米),则坡度i= = .故答案为:3:4.【点评】本题考查了坡度的概念,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比.12.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为.【考点】旋转的性质;解直角三角形.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB= = ,∴tanB′=tanB= .故答案为 .【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.13.两个相似三角形对应的中线长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为14 cm,面积为cm2.【考点】相似三角形的性质.【分析】由两个相似三角形对应的中线长分别是6cm和18cm,可得此相似三角形的相似比为:6:18=1:3;即可得此相似三角形的周长比为:1:3,面积比为:1:9,又由较大三角形的周长是42cm,面积是12cm2,即可求得答案.【解答】解:∵两个相似三角形对应的中线长分别是6cm和18cm,∴此相似三角形的相似比为:6:18=1:3;∴此相似三角形的周长比为:1:3,面积比为:1:9,∵较大三角形的周长是42cm,面积是12cm2,∴较小三角形的周长为:42× =14(cm),面积为:12× = (cm2).故答案为:14, .【点评】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的`面积的比等于相似比的平方.14.共青团县委准备在艺术节期间举办学生绘画展览,为美化画面,在长30cm、宽20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图所示),若设彩纸的宽度为xcm,则列方程整理成一般形式为x2+25x﹣150=0 .【考点】由实际问题抽象出一元二次方程.【分析】设彩纸的宽度为xcm,则镶上宽度相等的彩纸后长度为30+2x,宽为20+2x,它的面积等于原来面积的2倍,由此列出方程.【解答】解:设彩纸的宽度为xcm,则由题意列出方程为:(30+2x)(20+2x)=2×30×20.整理得:x2+25x﹣150=0,故答案为:x2+25x﹣150=0.【点评】本题主要考查一元二次方程的应用,变形后的面积是原来的2倍,列出方程即可.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作D E⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为1或2 .【考点】翻折变换(折叠问题);含30度角的直角三角形;勾股定理.【分析】首先由在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,即可求得AC的长、∠AEF与∠BAC的度数,然后分别从从∠AFE=90°与∠EAF=90°去分析求解,又由折叠的性质与三角函数的知识,即可求得CF的长,继而求得答案.【解答】解:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°﹣∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°﹣∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AC=BC•tan∠B=3× = ,∠BAC=60°,如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=30°,∴CF=AC•tan∠FAC= × =1,∴BD=DF= =1;如图②若∠EAF=90°,则∠FAC=90°﹣∠BAC=30°,∴CF=AC•tan∠FAC= × =1,∴BD=DF= =2,∴△AEF为直角三角形时,BD的长为:1或2.【点评】此题考查了直角三角形的性质、折叠的性质以及特殊角的三角函数问题.此题难度适中,注意数形结合思想与分类讨论思想的应用.三、解答题(共75分)16.计算:4cos30°﹣| ﹣2|+( )0﹣ +(﹣ )﹣2.【考点】特殊角的三角函数值;绝对值;零指数幂;负整数指数幂;二次根式的性质与化简.【分析】按照实数的运算法则依次计算:cos30°= ,| ﹣2|= ,( )0=1, =3 ,(﹣ )﹣2=9.【解答】解:4cos30°﹣| ﹣2|+( )0﹣ +(﹣ )﹣2== (5分)=8.(6分)【点评】本题重点考查了实数的基本运算能力.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.17.用配方法解方程:x2+4x﹣1=0.【考点】解一元二次方程-配方法.【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:x+2=± ,解得:x1=﹣2+ ,x2=﹣2﹣ .【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.18.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB 的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.【考点】相似三角形的判定;三角形中位线定理;梯形.【分析】(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一已知条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.【解答】(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)【点评】本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.19.(10分)(2016秋•唐河县期末)如图,一条抛物线经过(﹣2,5),(0,﹣3)和(1,﹣4)三点.(1)求此抛物线的函数解析式.(2)假如这条抛物线与x轴交于点A,B,与y轴交于点C,试判断△OCB的形状.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)待定系数法求解可得;(2)分别求出抛物线与坐标轴的交点即可得出答案.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将(﹣2,5),(0,﹣3)和(1,﹣4)三点代入,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3;(2)令y=0,即x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴抛物线与x轴的两个交点为(﹣1,0)、(3,0),∵c=﹣3,∴抛物线与y轴的交点为(0,﹣3),∴OB=OC,∴△OCB是等腰直角三角形.【点评】本题主要考查待定系数法求二次函数的解析式,在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(10分)(2012•苏州模拟)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC 宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】由i的值求得大堤的高度AE,点A到点B的水平距离BE,从而求得MN的长度,由仰角求得DN的高度,从而由DN,AM,h求得高度CD.【解答】解:延长MA交直线BC于点E,∵AB=30,i=1:,∴AE=15,BE=15 ,∴MN=BC+BE=30+15 ,又∵仰角为30°,∴DN= = =10 +15,CD=DN+NC=DN+MA+AE=10+15+15+1.5≈17.32+31.5≈48.8(m).【点评】本题考查了直角三角形在坡度上的应用,由i的值求得大堤的高度和点A到点B的水平距离,求得MN,由仰角求得DN高度,进而求得总高度.21.(10分)(2013•闸北区二模)为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:每千克售价(元) 25 24 23 (15)每天销售量(千克) 30 32 34 (50)如果单价从最高25元/千克下调到x元/千克时,销售量为y千克,已知y与x之间的函数关系是一次函数:(1)求y与x之间的函数解析式;(不写定义域)(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?【考点】一元二次方程的应用;一次函数的应用.【分析】(1)利用表格中的数据得到两个变量的对应值,然后利用待定系数法确定一次函数的解析式即可;(2)设这一天每千克的销售价应定为x元,利用总利润是200元得到一元二次方程求解即可.【解答】解:(1)设y=kx+b (k≠0),将(25,30)(24,32)代入得:…(1分)解得:,∴y=﹣2x+80.(2)设这一天每千克的销售价应定为x元,根据题意得:(x﹣15)(﹣2x+80)=200,x2﹣55x+700=0,∴x1=20,x2=35.(其中,x=35不合题意,舍去)答:这一天每千克的销售价应定为20元.【点评】本题考查了一元二次方程及一次函数的应用,列方程及函数关系式的关键是找到等量关系.22.(11分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为75°,AC的长为 3 .参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.【考点】相似三角形的判定与性质;勾股定理;解直角三角形.【分析】根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.【解答】解:∠ABC+∠ACB=∠ECD+∠ACB=∠ACE=180°﹣75°﹣30°=75°,∠E=75°,BD=2DC,∴AD=2DE,AE=AD+DE=3,∴AC=AE=3,∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴ =2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°= ,AD=2DF=2 .∴AC=AD=2 ,AB=2DF=2 .∴BC= =2 .【点评】本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.23.(11分)(2016秋•唐河县期末)如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.(1)判断△PBC的形状,并简要说明理由;(2)当t>0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;(3)当t为何值时,△AOP与△APC相似?【考点】相似形综合题.【分析】(1)根据旋转的现在得出PB=PC,再根据B是线段PA的中点,得出∠BPC=90°,从而得出△PBC是等腰直角三角形.(2)根据∠OBP=∠BPC=90°,得出OB∥PC,再根据B是PA的中点,得出四边形POBC是平行四边形,当OB⊥BP时,得出OP2=2OB2,即t2=2( t2+1),求出符合题意的t的值,即可得出答案;(3)根据题意得出∠AOP=∠APC=90°,再分两种情况讨论,当 = = 时和 = = 时,得出△AOP∽△APC和△AOP∽△CPA,分别求出t的值即可.【解答】解:(1)△PBC是等腰直角三角形,理由如下:∵线段PB绕着点P顺时针方向旋转90°,得到线段PC,∴PB=PC,∵B是线段PA的中点,∴∠BPC=90°,∴△PBC是等腰直角三角形.(2)当OB⊥BP时,以P、O、B、C为顶点的四边形为平行四边形.∵∠OBP=∠BPC=90°,∴OB∥PC,∵B是PA的中点,∴OB= AP=BP=PC,∴四边形POBC是平行四边形,当OB⊥BP时,有OP= OB,即OP2=2OB2,∴t2=2( t2+1),∴t1=2,t2=﹣2(不合题意),∴当t=2时,以P、O、B、C为顶点的四边形为平行四边形.(3)由题意可知,∠AOP=∠APC=90°,当 = = 时,△AOP∽△APC,此时OP= OA=1,∴t=±1,当 = = 时,△AOP∽△CPA,此时OP=2OA=4,∴t=±4,∴当t=±1或±4时,△AOP与△CPA相似.【点评】此题考查了相似形的综合,用到的知识点是旋转的性质、平行四边形的判定,相似三角形的判定与性质,注意分情况讨论,不要漏解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末检测题(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2016·沈阳)一元二次方程x 2-4x =12的根是( )A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=62.(2016·宁德)已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A .2B .4C .6D .83.(2016·玉林)如图,CD 是⊙O 的直径,已知∠1=30°,则∠2=( )A .30°B .45°C .60°D .70°4.(2016·泸州)若关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值范围是( )A .k ≥1B .k >1C .k <1D .k ≤15.(2016·孝感)将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A .(3,-1)B .(1,-3)C .(2,-2)D .(-2,2)第3题图第5题图第6题图6.(2016·新疆)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .c <0C .3是方程ax 2+bx +c =0的一个根D .当x <1时,y 随x 的增大而减小7.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )A .①②B .②③C .①③D .①②③8.已知点A(a -2b ,2-4ab)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A .(-3,7)B .(-1,7)C .(-4,10)D .(0,10)第7题图第9题图第10题图9.如图,菱形ABCD 的边长为2,∠A =60°,以点B 为圆心的圆与AD ,DC 相切,与AB ,CB 的延长线分别相交于点E ,F ,则图中阴影部分的面积为( )A .3+π2B .3+πC .3-π2D .23+π210.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc<0;②b 2-4ac 4a >0;③ac-b +1=0;④OA·OB=-ca.其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(每小题3分,共24分)11.(2016·达州)设m ,n 分别为一元二次方程x 2+2x -2 018=0的两个实数根,则m 2+3m +n =______. 12.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F.若∠ACF =65°,则∠E =________.第12题图第14题图13.(2016·长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.14.(2016·南通)如图,BD 为正方形ABCD 的对角线,BE 平分∠DBC ,交DC 与点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,若CE =1 cm ,则BF =__________cm .15.(2016·眉山)一个圆锥的侧面展开图是半径为8 cm 、圆心角为120°的扇形,则此圆锥底面圆的半径为________.16.(2016·荆州)若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为________. 17.(2016·梧州)如图,点B 、C 把AD ︵分成三等分,ED 是⊙O 的切线,过点B 、C 分别作半径的垂线段,已知∠E =45°,半径OD =1,则图中阴影部分的面积是________.第17题图第18题图18.(2016·茂名)如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A的对应点A1落在直线y=33x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=33x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(3,1),则点A8的横坐标是________.三、解答题(共66分)19.(6分)解方程:(1)(2016·淄博)x2+4x-1=0;(2)(x-2)2-3x(x-2)=0.20.(7分)(2016·青岛)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.21.(7分)(2016·宁夏)已知△ABC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED,若ED =EC.(1)求证:AB=AC;(2)若AB=4,BC=23,求CD的长.22.(7分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=B C′;(2)若AB=2,BC=1,求AE的长.23.(8分)(2016·贵港)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.24.(9分)如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=3 3 x+23与x轴,y轴分别相交于点D,点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,43).(1)求证:OE=CE;(2)请判断直线CD与⊙P位置关系,证明你的结论,并求出⊙P半径的值.25.(10分)(2016·葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数解析式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?26.(12分)(2016·衡阳)如图,抛物线y =ax 2+bx +c 经过△ABC 的三个顶点,与y 轴相交于(0,94),点A 坐标为(-1,2),点B 是点A 关于y 轴的对称点,点C 在x 轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F 为线段AC 上一动点,过点F 作FE ⊥x 轴,FG ⊥y 轴,垂足分别为点E ,G ,当四边形OEFG 为正方形时,求出点F 的坐标;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动,设平移的距离为t ,正方形的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连接DM ,是否存在这样的t ,使△DMN 是等腰三角形?若存在,求t 的值;若不存在,请说明理由.期末检测题(二)1.B 2.D 3.C 4.D 5.C 6.C 7.A 8.D 9.A10.B 11.2 016 12.50° 13.5614.2+ 215.83 cm 16.-1或2或1 17.π818.63+6 19.(1)x 1=-2+5,x 2=-2- 5.(2)x 1=2,x 2=-1. 20.这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)=36=12,∴这个游戏对双方是公平的. 21.(1)证明:∵ED =EC ,∴∠EDC =∠C ,∵∠EDC =∠B ,∴∠B =∠C ,∴AB =AC.(2)如图所示,连接BD ,∵AB 为直径,∴BD ⊥AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt △ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a)2.在Rt △CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2.∴42-(4-a)2=(23)2-a 2,整理得a =32,即CD =32.22.(1)证明:如图所示,连接AC ,AC′,∵四边形ABCD 为矩形,∴∠ABC =90°,即AB ⊥CC′,∵将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,∴AC =AC′,∴BC =BC′.(2)∵四边形ABCD 为矩形,∴AD =BC ,∠D =∠ABC′=90°,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,∴AD =AD′,∵BC =BC′,∴BC′=AD′,在△AD′E 与△C′BE 中,⎩⎨⎧∠D′=∠ABC′,∠AED′=∠BEC′,AD′=BC′,∴△AD′E ≌△C′BE ,∴BE =D′E ,设AE=x ,则D′E =2-x ,在Rt △AD′E 中,∠D′=90°,由勾股定理,得x 2-(2-x)2=1,解得x =54,∴AE =54.23.(1)设2014至2016年该市投入科研经费的年平均增长率为x ,根据题意,得500(1+x)2=720,解得x 1=0.2=20%,x 2=-2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得a -720720×100%≤15%,解得a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a 的取值范围为720<a≤828.24.(1)证明:如图所示,连接OC ,∵直线y =33x +23与y 轴相交于点E ,∴点E 的坐标为(0,23),即OE =2 3.又∵点B 的坐标为(0,43),∴OB =43,∴BE =OE =23,又∵OA 是⊙P 的直径,∴∠ACO =90°,即OC ⊥AB ,∴OE =CE.(2)直线CD 是⊙P 的切线.证明:连接PC ,PE ,由(1)可知OE =CE.在△POE和△PCE 中,⎩⎨⎧PO =PC ,PE =PE ,OE =CE ,∴△POE ≌△PCE ,∴∠POE =∠PCE.又∵x 轴⊥y 轴,∴∠POE =∠PCE =90°,∴PC ⊥CE ,即PC ⊥CD.又∵直线CD 经过半径PC 的外端点C ,∴直线CD 是⊙P 的切线.∵对y =33x +23,当y =0时,x =-6,即OD =6,在Rt △DOE 中,DE =OD 2+OE 2=62+(23)2=43,∴CD =DE +EC =DE +OE =43+23=6 3.设⊙P 的半径为r ,则在Rt △PCD 中,由勾股定理知PC 2+CD 2=PD 2,即 r 2+(63)2=(6+r)2,解得r =6,即⊙P 半径的值为6. 25.y =-2x +80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得(x -20)y =150,则(x -20)(-2x +80)=150,整理,得x 2-60x +875=0,(x -25)(x -35)=0,解得x 1=25,x 2=35(不合题意舍去),答:每本纪念册的销售单价是25元.(3)由题意可得w =(x -20)(-2x +80)=-2x 2+120x -1600=-2(x -30)2+200,此时当x =30时,w 最大,又∵售价不低于20元且不高于28元,x <30时,y 随x 的增大而增大,∴当x =28时,w 最大=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元. 26.(1)∵点B 是点A 关于y 轴的对称点,∴抛物线的对称轴为y 轴,∴抛物线的顶点为(0,94),故抛物线的解析式可设为y =ax 2+94.∵A(-1,2)在抛物线y =ax 2+94上,∴a +94=2,解得a =-14,∴抛物线的函数解析式为y =-14x 2+94.(2)①当点F 在第一象限时,如图1,令y =0得,-14x 2+94=0,解得x 1=3,x 2=-3,∴点C 的坐标为(3,0).设直线AC 的解析式为y =mx +n ,则有⎩⎨⎧-m +n =2,3m +n =0,解得⎩⎨⎧m =-12,n =32,∴直线AC 的解析式为y =-12x +32.设正方形OEFG 的边长为p ,则F(p ,p).∵点F(p ,p)在直线y =-12x +32上,∴-12p +32=p ,解得p =1,∴点F 的坐标为(1,1).②当点F 在第二象限时,同理可得,点F 的坐标为(-3,3),此时点F 不在线段AC 上,故舍去.综上所述,点F 的坐标为(1,1).(3)过点M 作MH ⊥DN 于点H ,如图2,则OD =t ,OE =t +1.∵点E 和点C 重合时停止运动,∴0≤t≤2.当x =t 时,y =-12t +32,则N(t ,-12t +32),DN =-12t +32.当x =t +1时,y =-12(t +1)+32=-12t +1,则M(t+1,-12t +1),ME =-12t +1.在Rt △DEM 中,DM 2=12+(-12t +1)2=14t 2-t +2.在Rt △NHM 中,MH =1,NH =(-12t +32)-(-12t +1)=12,∴MN 2=12+(12)2=54.①当DN =DM 时,(-12t +32)2=14t 2-t +2,解得t =12;②当ND =NM 时,-12t +32=54=52,解得t =3-5;③当MN =MD 时,54=14t 2-t +2,解得t 1=1,t 2=3.∵0≤t≤2,∴t =1.综上所述,存在这样的t ,使△DMN 是等腰三角形,t 的值为12,3-5或1.。

相关文档
最新文档