高二第一学期数学期末试卷

合集下载

高二上学期期末考试数学试卷含答案

高二上学期期末考试数学试卷含答案

高二上学期期末考试数学试卷含答案一、单选题1.如图,在斜棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,AB a =,AD b =,1AA c =,则1MC =( )A .1122a b c ++B .1122---a b cC .1122-++a b cD .1122a b c --+2.在正方体1111ABCD A B C D -中,M 是正方形ABCD 的中心,则直线1A D 与直线1B M 所成角大小为( ) A .30°B .45°C .60°D .90°3.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( ) A 7B 13C 7D 134.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π65.设1F 、2F 分别为双曲线()222210,0x ya b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率e 为( )A .45B .54C .35D .536.已知直线斜率为k ,且13k -≤≤α的取值范围是( )A .30,,324πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭B .30,,34πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .30,,624πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭D .30,,64πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭7.若圆()()22:cos sin 1M x y θθ-+-=02θπ≤<()与圆22:240N x y x y +--=交于A 、B 两点,则tan ∠ANB 的最大值为( )A .12B .34C .45D .438.已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是( )A .321+B .42+2C .43+1D .432+二、多选题9.对于任意非零向量()111,,a x y z =,()222,,b x y z =,以下说法错误的有 A .若a b ⊥,则1212120x x y y z z ++=B .若//a b ,则111222x y z x y z == C .121212222222111222cos ,x x y y z z x y z a z b x y ++=++⋅+>+<D .若1111===x y z ,则a 为单位向量10.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是1,且它们彼此的夹角都是60°,M 为11A C 与11B D 的交点,若1,,AB A b c a D AA ===,则下列正确的是( )A .1122BM a b c =-+B .1AC a b c =++ C .1AC 5D .16cos ,3AB AC =11.已知直线:cos sin 1l x y αα+=与圆22:6O x y +=交于A ,B 两点,则( ) A .线段AB 的长度为定值B .圆O 上总有4个点到l 的距离为2C .线段AB 的中点轨迹方程为221x y +=D .直线l 的倾斜角为2πα+12.已知圆22:5,,O x y A B +=为圆O 上的两个动点,且2,AB M =为弦AB 的中点()22,C a ,()22,2D a +.当,A B 在圆O 上运动时,始终有CMD ∠为锐角,则实数a 的可能取值为( ) A .-3 B .-2C .0D .1三、填空题13.如图,在正方体1111ABCD A B C D -中,直线1A B 和平面11A DC 所成角的正弦值是____;14.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 15.过点()1,2且与圆221x y +=相切的直线的方程是______.16.设过原点的直线与双曲线C :22221x y a b-=()0,0a b >>交于,P Q 两个不同点,F 为C 的一个焦点,若4tan 3PFQ ∠=,5QF PF =,则双曲线C 的离心率为__________.四、解答题17.已知圆22:(4)(2)4C x y -+-=,圆22:450M x x y -+-=. (1)试判断圆C 与圆M 的位置关系,并说明理由; (2)若过点()6,2-的直线l 与圆C 相切,求直线l 的方程.18.已知直线()21:(2)340l m x m m y ++-+=和直线2:22(3)20()l mx m y m m +-++=∈R .(1)当m 为何值时,直线1l 和2l 平行? (2)当m 为何值时,直线1l 和2l 重合?19.已知圆1C :222280x y x y +++-=与2C :22210240x y x y +-+-=相交于A 、B 两点. (1)求公共弦AB 所在的直线方程;(2)求圆心在直线y =-x 上,且经过A 、B 两点的圆的方程;(3)求经过A 、B 两点且面积最小的圆的方程.20.已知双曲线2222:1(0,0)x y C a b a b -=>>过点A ,焦距为(0,)B b . (1)求双曲线C 的方程;(2)是否存在过点3,02D ⎛⎫- ⎪⎝⎭的直线l 与双曲线C 交于M ,N 两点,使△BMN 构成以MBN ∠为顶角的等腰三角形?若存在,求出所有直线l 的方程;若不存在,请说明理由. 21.(1)在平面直角坐标系xOy 中,直线1y x =-与圆C 相切于点(2,1)-,圆心C 在直线2y x =-上. 求圆C 的方程; (2)已知圆1O 22:(0)x y m m +=>与圆2O :226890+-++=x y x y 相交,求实数m 的取值范围.22.已知椭圆C :22221(0)x y a b a b +=>>()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ为定值。

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。

浙江省金华市2023-2024学年高二上学期期末数学试题含答案

浙江省金华市2023-2024学年高二上学期期末数学试题含答案

金华2023学年高二第一学期期末考试数学试卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分.1.空间直角坐标系中,点B 是点()345A ,,在坐标平面Oxy 内的射影,则OB =()A.5B.25C.D.【答案】A 【解析】【分析】求出B 点坐标,然后直接用距离公式计算即可.【详解】由点B 是点()345A ,,在坐标平面Oxy 内的射影可得()340B ,,,则5OB == .故选:A.2.椭圆C :221169x y +=的左焦点为F ,椭圆上的点1P 与2P 关于坐标原点对称,则12||||PF P F +的值是()A.3B.4C.6D.8【答案】D 【解析】【分析】令椭圆C 的右焦点F ',由已知条件可得四边形12PFP F '为平行四边形,再利用椭圆定义计算作答.【详解】令椭圆C 的右焦点F ',依题意,线段12PP 与FF '互相平分,于是得四边形12PFPF '为平行四边形,因此21||||P F PF '=,而椭圆C :221169x y +=的长半轴长4a =,所以1211||||||||28PF P F PF PF a '+=+==.故选:D3.等比数列{}n a 的前n 项和为n S ,若313S a =,则63a a =()A.8- B.8C.1或8- D.1-或8【答案】C 【解析】【分析】根据等比数列的前n 项和公式及等比数列通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,则因为313S a =,所以12313a a a a ++=,即220q q +-=,解得1q =或2q =-,所以3631a q a==或8-.故选:C.4.攒(cuán )尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为6,顶角为2π3的等腰三角形,则该屋顶的面积约为()A.B.C. D.6π【答案】B 【解析】【分析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中6AB =,23ACB π∠=,所以,36CAB AO π∠==,所以3cos6AO AC π===,所以圆锥的侧面积3S rl ππ==⨯=.故选:B5.已知圆C :222x y +=,点(,3)A m m -,则点A 到圆C 上点的最小距离为()A.1B.2C.2D.2【答案】C 【解析】【分析】写出圆C 的圆心和半径,求出AC 距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆C :222x y +=,得圆()0,0C ,半径r,所以AC ===≥所以点A 到圆C上点的最小距离为32222=.故选:C.6.直线12y xt =+与曲线y =相切,且与圆()2220x y r r +=>相切,则r =()A.15B.C.3D.3【答案】B 【解析】【分析】先由直线与曲线y =求出t ,再由直线与圆相切即可求出r【详解】设直线12yx t=+在曲线y=上的切点为(0x ,则()012f x '==,解得01x =,故切点坐标为()1,1,将()1,1代入直线12y x t =+中,解得12t =,所以直线方程为1122y x =+,即210x y -+=,又210x y -+=与圆()2220x y r r +=>相切,则55r ==,故选:B7.在数列{}n a 中,11n n na na a +=+,若46n a =,11a =,则n 的值为()A.9B.10C.11D.12【答案】B 【解析】【分析】根据题意可得1n n n a a +-=,利用累加法可得(1)12n n n a -=+,结合46n a =即可求出n 的值.【详解】由11n n na na a +=+,得1n n n a a +-=,所以21321121(2)n n a a a a a a n n --=-=-=-≥ ,,,,所以112(1)n a a n -=+++- ,又11a =,所以(1)1(2)2n n n a n -=+≥,又11a =满足,所以(1)12n n n a -=+由46n a =,解得10n =.故选:B8.已知1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,点A 是C 的左顶点,O 为坐标原点,以2OF 为直径的圆交C 的一条渐近线于O 、P 两点,以OP 为直径的圆与x 轴交于,O M 两点,且PO 平分APM ∠,则双曲线C 的离心率为()A.B.2C.D.3【答案】B 【解析】【分析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,2F P OP ⊥,OM PM ⊥,所以2F P b =,OP a =因为OA a =,所以PAO APO∠=∠又因为PO 平分APM ∠,所以2APM PAO ∠=∠,由90APM PAO ∠+∠=︒,得30PAO ∠=︒,所以260POM PAO ∠=∠=︒,即tan 60ba=︒=所以2e ==故选:B二、多项题:本题共4小题,每小题5分,共20分.9.已知点M 椭圆22:4936C x y +=上一点,椭圆C 的焦点是12,F F ,则下列说法中正确的是()A.椭圆C 的长轴长是9B.椭圆C 焦距是C.存在M 使得1290F MF ∠=D.三角形12MF F 的面积的最大值是【答案】BCD 【解析】【分析】根据椭圆的几何性质逐个判断即可.【详解】22224936194x y x y +=⇒+=,所以229,43,2,a b a b c ==⇒===,对于A :因为3a =,所以长轴为26a =,A 错误;对于B :因为c =,所以焦距为2c =B 正确;对于C :当M 取到上顶点时此时12F MF ∠取到最大值,此时123MF MF a ===,122F F c ==所以(22212331cos 02339F MF +-∠==-<⨯⨯,所以此时12F MF ∠为钝角,所以存在M 使得1290F MF ∠= ,C 正确;对于D :当M 取到上顶点时此时三角形12MF F 的面积取到最大值,此时122S c b =⨯⨯=D 正确,故选:BCD10.等差数列{}n a 的前n 项和为n S ,10a <,613S S =,则()A.数列{}n a 是递减数列B.100a =C.9S 是n S 中最小项D.216S S <【答案】BC 【解析】【分析】根据等差数列的性质和前n 项求和公式可得19a d =-、0d >,结合通项公式和前n 项求和公式计算,依次判断选项即可.【详解】设等差数列{}n a 的公差为d ,由613S S =,得1165131261322a d a d ⨯⨯+=+,解得19a d =-,因为10a <,所以0d >.A :由0d >,得等差数列{}n a 为递增数列,故A 错误;B :1019990a a a d d =+=-+=,故B 正确;C :221(1)9(19)2222n n n n n dS na d nd d d n n -=+=-+-=-,因为00d n >>,,由二次函数的性质可知当9n =或10n =时,n S 取到最小值,即9S 为n S 中最小项,故C 正确;D :2122(9)17S a d d d d =+=⨯-+=-,161161516242S a d d ⨯=+=-,由0d >,得216S S >,故D 错误.故选:B C11.如图,正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,BC CC BB 的中点.则下列结论正确的是()A.直线1DB 与平面AEF 垂直B.直线1A G 与平面AEF 平行C.三棱锥D AEF -的体积为23D.点D 到平面AEF 的距离为43【答案】BCD 【解析】【分析】建立空间直角坐标系,求出相关各点坐标,求出平面AEF 的法向量,利用向量的数量积的计算,可判断A,B ;根据等体积法可求得三棱锥D AEF -的体积,可判断C ;利用空间距离的向量计算公式,可判断D .【详解】如图,以D 点为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z轴,建立空间直角坐标系,则11(0,0,0),(2,2,2),(2,0,0),(1,2,0),(0,2,1),(2,0,2),(2,2,1)D B A E F A G ,对于A,1(2,2,2),(1,2,0),(2,2,1)DB AE AF ==-=-,设平面AEF 的法向量为(,,)n x y z =,则20220n AE x y n AF x y z ⎧⋅=-+=⎨⋅=-++=⎩,可取(2,1,2)n =,而1(2,2,2)DB = ,与(2,1,2)n =不平行,故直线1DB 与平面AEF 不垂直,故A 错;对于B ,1(0,2,1)AG =- ,平面AEF 的法向量为(2,1,2)n =,()()10,2,12,1,20A G n ⋅=-⋅=,1A G 不在平面AEF 内,故直线1A G 与平面AEF 平行,故B 正确;对于C ,11122213323D AEF F DAE DAE V V S FC --==⨯=⨯⨯⨯⨯= ,故C 正确;对于D ,(2,0,0)DA = ,平面AEF 的法向量为(2,1,2)n =,,故点D 到平面AEF 的距离为||23||n DA d n ⋅===,故D 正确,故选:BCD12.已知抛物线2:4C y x =,点(2,0)M -,(2,0)P ,过点P 的直线l 交抛物线C 与,A B 两点,设11(,)A x y ,22(,)B x y ,下列说法正确的有()A.128y y =-B.AB的最小值为C.11AP BP +=D.AMP BMP∠=∠【答案】ABD 【解析】【分析】首先设直线l 的方程为2x my =+,与抛物线方程联立,消去x ,得2480y my --=,分别写出12y y +,12y y 式子,然后逐项验证,对于A 直接得出,对于B 利用弦长公式再结合二次函数求最值即可,对于C ,直接利用两点间的距离公式计算即可,对于D ,利用0AM BM k k +=即可验证.【详解】设直线l 的方程为2x my =+,则由224x my y x=+⎧⎨=⎩,消去x 整理,得2480y my --=,因为直线l 交抛物线C 与,A B 两点,设11(,)A x y ,22(,)B x y ,则所以124y y m +=,128y y =-,故A 正确.AB ===≥,m =0时等号成立,故B 正确.AP ==1,同理,可得BP y =2,则AP BP +=11===≠2,故C 不正确.()()()()AM BM y x y x y yk k x x x x ++++=+=++++1221121212212222()()()()()()()y my y my my y y y x x x x +++++==++++12211212121244242222.()()()m mx x -+⨯==++122844022,即AMP BMP ∠=∠,故D 正确.故选:ABD.【点睛】解决本题的关键就是设出直线l 的方程为2x my =+,这样很大程度减小了运算量,联立直线方程与抛物线,进而利用韦达定理写出交点纵坐标之间的关系,在逐项验证即可.三、填空题:本题共4小题,每小题5分,共20分.13.直线20x y ++=的倾斜角的是______.【答案】3π4【解析】【分析】根据直线的斜率与倾斜角的关系即可求解.【详解】因为直线20x y ++=的斜率1-,设直线20x y ++=的倾斜角为α,则tan 1α=-,因为[0,π)α∈,所以3π4α=,故答案为:3π4.14.已知函数()()sin 20f x x xf '=-,则π2f ⎛⎫'= ⎪⎝⎭___________.【答案】3-【解析】【分析】先求函数()()sin 20f x x xf '=-的导数,利用赋值法求出(0)f ',即可得函数解析式,从而求得π2f ⎛⎫' ⎪⎝⎭的值.【详解】由于()()2cos 20f x x f ''=-,所以(0)2cos0(0)f f =-'',解得(0)1f '=,所以()sin 2f x x x =-,则()2cos21f x x '=-,所以π32f ⎛⎫'=- ⎪⎝⎭.故答案为:3-15.九连环是我国古代流传至今的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环,移动圆环的次数决定解开圆环的个数.在某种玩法中,推广到m 连环,用n a 表示解下()n n m ≤个圆环所需的最少移动次数,若数列{}n a 满足:11a =,且1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数,则解下n (n 为偶数)个圆环所需的最少移动次数n a =___________.(用含n 的式子表示)【答案】121n --【解析】【分析】根据通项公式得到243n n a a -=+,构造出等比数列,进而求出121n n a -=-.【详解】因为n 为偶数,当4n ≥时,()12221222143n n n n a a a a ---=-=+-=+,即()2141n n a a -+=+,又2121211a a =-=-=,所以{}1n a +是以212a +=为首项,4为公比的等比数列,故1121242n n n a -+=⨯=,所以121n n a -=-,故答案为:121n --16.已知在平面直角坐标系xOy 中,(3,0),(3,0)A B -,动点P 满足2PA PB=,则P 点的轨迹Γ为圆_______,过点A 的直线交圆Γ于两点C ,D ,且AC CD = ,则CD =______.【答案】①.()22516x y -+=②.【解析】【分析】设(),P x y ,根据2PA PB =可得圆的方程,利用垂径定理可求CD =【详解】设(),P x y2=,整理得到221090x y x +-+=,即22(5)16x y -+=.因为AC CD = ,故C 为AD 的中点,过圆心()5,0作AD 的垂线,垂足为M ,则M 为CD的中点,则32AM CD ==解得CD =故答案为:22(5)16x y -+=,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 中,11a =,且122(*)n n n a a n N +=+∈(1)求证:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出n a ;(2)数列{}n a 前n 项和为n S ,求n S .【答案】(1)证明见解析,12n n a n -=⋅(2)()121n n S n =-+ 【解析】【分析】(1)利用等差数列的定义可证2n n a ⎧⎫⎨⎬⎩⎭是等差数列,利用等差数列的通项公式可求n a .(2)利用错位相减法可求n S .【小问1详解】因为122(*)n n n a a n N +=+∈,111222n n n n a a ++∴-=∴2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列,11(1)2222n n a n n ∴=+-⨯=,12n n a n -∴=⋅.【小问2详解】0111·22·22n n S n -=+++⋅ ,2n S =()1112122n n n n -⋅++-⋅+⋅ ,12112222n n n S n -∴-=++++-⋅ ()121n n =-⋅-,()121n n S n ∴=-⋅+.18.如图,直三棱柱111ABC A B C -中,11AB AC AA ===,AB AC ⊥,D 是棱BC 的中点,(1)求异面直线11,AB DC 所成角的余弦值;(2)求二面角11B AD C --的余弦值.【答案】(1)6(2)13【解析】【分析】(1)建立空间直角坐标系,求出相关各点的坐标,求出11,AB DC ,利用向量的夹角公式求得答案;(2)求出平面平面1B AD 和平面1ADC 的一个法向量,利用向量夹角公式求得答案.【小问1详解】以1{,,}AB AC AA 为正交基底,建立如图所示的空间直角坐标系A xyz -,则1111(0,0,0),(1,0,0),(1,0,1),(0,1,0),(,,0)(0,1,1)22A B B C D C ,,1111(1,0,1),(,,1)22AB DC ==- ,所以111111cos ,6AB DC AB DC AB DC <>== ,所以直线11AB DC ,所成角的余弦值为6;【小问2详解】设(,,)m x y z = 为平面1B AD 的一个法向量,111(,,0),(1,0,1)22AD AB == ,则⋅A =12+12=0 ·B 1 =+=0,∴+=0+=0,1,1,1(1,1,1)x y z m ==-=-∴=-- 令则,,同理111(,,0),(0,1,1)22AD AC == ,则11100,220·0x y n AD x y y z n AC y z ⎧+=⋅=+=⎧⎪∴⎨⎨+=⎩⎪=+=⎩,可取平面1ADC 的一个法向量为(1,1,1)n =- ,则1cos ,3m n m n m n<>== ,由图可知二面角11B AD C --为锐角,所以二面角11B AD C --的余弦值为13.19.已知椭圆()2222:10x y C a b a b +=>>经过点21,2M ⎛ ⎪⎝⎭,N .(1)求椭圆C 的方程;(2)已知直线l 的倾斜角为锐角,l 与圆2212x y +=相切,与椭圆C 交于A 、B 两点,且AOB 的面积为23,求直线l 的方程.【答案】(1)2212x y +=(2)1y x =±【解析】【分析】(1)将点M 、N 的坐标代入椭圆方程计算,求出a 、b 的值即可;(2)设l 的方程为:(0)y kx m k =+>,1122,,()()A x y B x y ,,根据直线与圆的位置关系可得2221m k =+,直线方程联立椭圆方程并消去y ,利用韦达定理表示出1212+、x x x x ,根据弦长公式求出AB ,进而列出关于k 的方程,解之即可.【小问1详解】椭圆()2222:10x y C a b a b +=>>经过点1,2M ⎛⎫ ⎪ ⎪⎝⎭,N .则221112a ab ⎧=⎪⎨+=⎪⎩,解得1a b ==,2212x C y ∴+=椭圆的方程为【小问2详解】设l 的方程为:(0)y kx m k =+>l 与圆2212x y +=相切22212m k =∴=+,设点1122,,()()A x y B x y ,2212y kx m x y =+⎧⎪⎨+=⎪⎩由,∴(1+22)2+4B +22−2=0,则Δ>01+2=−4B 1+2212=22−21+22,12223AOB S AB =⨯=,12AB x ∴==-,3,3=,2221m k =+又,425410k k ∴--=,21k =∴,0k > ,1k ∴=,故211m m =⇒=±,1l y x ∴=±的方程为20.如图,在四棱锥S−ABCD 中,底面ABCD 为矩形,4=AD ,AB =2,AC BD O = ,SO ⊥平面ABCD ,SO =13BF FC =uu u r uu u r ,E 是SA 的中点.(1)求直线EF 与平面SCD 所成角的正弦值;(2)在直线SC 上是否存在点M ,使得平面MEF ⊥平面SCD ?若存在,求出点M 的位置;若不存在,请说明理由.【答案】(1)7(2)存在,M 与S 重合【解析】【分析】(1)分别取AB ,BC 中点M ,N ,易证,,SO OM ON 两两互相垂直,以{,,}OM ON OS 为正交基底,建立空间直角坐标系,先求得平面SCD 的一个法向量(,,)m x y z = ,再由cos ,m EF m EF m EF⋅<>=⋅ 求解;(2)假设存在点M ,使得平面MEF ⊥平面SCD ,再求得平面MEF 的一个法向量(,,)n x y z = ,然后由0m n ⋅= 求解.【小问1详解】解:分别取AB ,BC 中点M ,N ,则OM ON ⊥,又SO ⊥平面ABCD ,则,,SO OM ON 两两互相垂直,以{,,}OM ON OS 为正交基底,建立如图所示的空间直角坐标系O xyz -,1(2,1,0),(2,1,0)22A D ---则,),F(1,1,0),所以3(0,,),(0,2,0),(2,1,22EF DC SC =-==- ,设平面SCD 的一个法向量为(,,)m x y z =,2020m SC x y m DC y ⎧⋅=-+-=⎪⎨⋅==⎪⎩ 则,200x y y ⎧-+=⎪∴⎨=⎪⎩,22)x z m ==-∴=- 令则cos ,7m EF m EF m EF⋅<>==⋅ ,,m EF EF SCD <> 与与平面所成角互余,直线EF 与平面SBC所成角的正弦值为7.【小问2详解】假设存在点M ,使得平面MEF ⊥平面SCD,(2,1,(2,,)SM SC λλλλ==-=- 设,1(12,,)22EM ES SM λλ=+=--+ 则,设平面MEF 的一个法向量(,,)n x y z =,()30221312022n EF y z n EM x y z λλ⎧⋅=-=⎪⎪⎨⎛⎫⎛⎫⎪⋅=--+++= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩则,令1y =,则111(,1,2121z x n λλλλ--==∴=++ , 平面MEF ⊥平面SCD,22021m n λλ-∴⋅=-=+ ,0λ∴=,∴存在点,M MEF SCD ⊥使得平面平面,此时M 与S 重合.21.已知数列{}n a 的前n 项和为n S ,且1342n n S n a -=-.(1)证明:数列{}1n a -是等比数列,并求数列{}n a 的通项公式;(2)若()3(1)log 1nn n n b a a =+--,数列{}n b 的前n 项和为n T ,求使得22024n T >的最小正整数n .【答案】(1)证明见解析,131n n a -=+(2)4【解析】【分析】(1)利用n S 与n a 的关系式化简出132n n a a -=-,再构造成()1311n n a a -=--即可证明为等比数列同时求出通项公式;(2)化简可得()(1)1n n n b a n =+--,再通过分组求和可得2n T ,判断2n T 的单调性即可求出22024n T >的最小正整数n .【小问1详解】因为1342n n S n a -=-,所以322n n S a n =+-①当1n =时,1113122a S a ==+-,所以12a =;当2n ≥时,()113122n n S a n --=+--②①-②得133122n n n a a a -=-+,即132n n a a -=-,则()1311n n a a -=--,而110a -≠,所以数列{}1n a -构成以1为首项,3为公比的等比数列,则113n n a --=,所以131n n a -=+.【小问2详解】131n n a -=+,()()13(1)log 131(1)1n n n n n n b a a n -∴=+--=++--,{}n a 的前2n 项和22133122132n n n n --+=+-(){}(1)1nn --的前2n 项和()0123421n -+-+-+⋯+-()()()()01232221n n n⎡⎤=-++-++⋯+--+-=⎣⎦223132n n T n -∴=+2n T 单调递增且66313337320242T -=⨯+=<,883134329220242T -=⨯+=>所以使得22024n T >最小正整数n 为4.22.已知双曲线()2222:100x y a b a b Γ-=>>,过点P ,且Γ的渐近线方程为y =.(1)求Γ的方程;(2)如图,过原点O 作互相垂直的直线1l ,2l 分别交双曲线于A ,B 两点和C ,D 两点,A ,D 在x 轴同侧.①求四边形ACBD 面积的取值范围;②设直线AD 与两渐近线分别交于M ,N 两点,是否存在直线AD 使M ,N 为线段AD 的三等分点,若存在,求出直线AD 的方程;若不存在,请说明理由.【答案】(1)2213y x -=(2)①[)6+∞,;②不存在,理由见解析【解析】【分析】(1)根据题意求得22,a b ,即可得解;(2)①易知直线1l ,2l 的斜率均存在且不为0,设11233442(,),(),(,),(,)A x y B x y C x y D x y ',1l 的方程为y kx =,则2l 的方程为1=-y x k ,联立2213y kx y x =⎧⎪⎨-=⎪⎩,消元,则0∆>,利用韦达定理求得1212,x x x x +,再根据弦长公式可求得AB ,同理可求得2k 的范围及CD ,再根据12ACBD S AB CD =⋅整理即可得出答案;②设直线AD 的方程为y kx m =+,5566(,),(,)A x y D x y ,联立2213y tx m y x =+⎧⎪⎨-=⎪⎩,消元,根据0∆>求得,t m 的关系,利用韦达定理求得5656,x x x x +,再利用弦长公式求得AD ,易求得,M N 的坐标,即可求出MN ,再根据M ,N 为线段AD 的三等分点,可得3AD MN =,结合AB CD ⊥,可得两个等量关系,从而可得出结论.【小问1详解】解:由题意有b a =b =①,将点P 代入双曲线方程得22361a b -=②,联立①②解得2213a b ⎧=⎨=⎩,故Γ的方程为2213y x -=;【小问2详解】解:①,易知直线1l ,2l 的斜率均存在且不为0,设11233442(,),(),(,),(,)A x y B x y C x y D x y ',1l 的方程为y kx =,则2l 的方程为1=-y x k,联立2213y kx y x =⎧⎪⎨-=⎪⎩,消y 整理得()22330k x --=,直线1l 与双曲线Γ交于两点,故230k -≠且()21230k ∆=->,则23k <,则1212230,3x x x x k +==--,则AB ==,联立22113y x k y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消y 整理得()2223130k x k --=,直线2l 与双曲线Γ交于两点,故2310k -≠且()2212310k k ∆=->,解得213k >,则23434230,31k x x x x k +==--,则CD =,根据对称性可知四边形ACBD 为菱形,其面积12ACBD S AB CD =⋅====2133k << ,∴22116243k k ⎡⎫++∈⎪⎢⎣⎭,,∴(]222221616341(1)2k k k k =∈+++,,∴(]22216301(1)k k -∈+,,[)6ACBD S ∴∈+∞,;②,假设满足题意的直线AD 存在,易知直线AD 斜率存在,设直线AD 的方程为y tx m =+,5566(,),(,)A x y D x y ,联立2213y tx m y x =+⎧⎪⎨-=⎪⎩,整理得()2223230t x tmx m ----=,则()230t -≠且()()222244330t m m t ∆=++->,解得23≠t 且223t m <+,由韦达定理有56225622333km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩,则AD ===,不妨设M 为直线AD 与渐近线y =的交点,联立y tx m y =+⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,M ⎛⎫∴,同理可得N点的坐标为⎛⎫,则MN ==,因为M ,N 为线段AD 的三等分点,3AD MN =,=,整理得22830t m +-=,①AB CD ⊥ ,AO DO ∴⊥,则0AO DO ⋅=,即56560x x y y +=,()()56565656x x y y x x tx m tx m +=+++()()()222225656223211033m tm t x x tm x x m t tm m t t --=++++=++=--,整理得223230t m -+-=,②联立①②得2913t =-,无解,故没有满足条件的直线AD .。

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。

A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。

A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。

A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。

A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。

A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。

7. 某商品原价为120元,现在打8折出售,求出售价格。

解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。

8. 某数的5倍减去6等于30,求这个数。

解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。

9. 已知等差数列的首项为3,公差为4,求第10项。

解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。

高二数学第一学期期末试卷

高二数学第一学期期末试卷

高二数学第一学期期末试卷总分150分一、填充题:1.若直线1l :260ax y ++=与直线2l :2(1)(1)0x a y a +-+-=平行但不重合;则a = 。

2. 已知直线1l :y =122x +;直线2l 过点P (2,1-);且1l 与2l 夹角为045;则直线2l 的方程是 。

3.已知点(,2a )(a >0)到直线L :30x y -+=的距离为1;则a = 。

4.若直线34120x y -+=与两坐标轴交点为 A.B ;则以线段AB 为直径的圆的方程是 。

5.椭圆22(2)(1)11692x y -++=的右焦点坐标为 。

6.与双曲线2214y x -=有共同渐近线;且过点(2,2)的双曲线方程是 。

7.若方程22121x y a a -=+-表示的曲线是椭圆;则a 的取值范围是 。

8.设抛物线2(0)y ax a =≠的准线与直线1x =的距离为3;则抛物线方程为 。

9.已知(2,0).(2,0).(,)A B P x y -且22PA PB x =;则P 点的轨迹方程是 。

10.将一张坐标纸折叠一次;使得点(0,2)与(2,0)-重合;且点(2006,2008)与(,)m n 重合;则m n -= 。

11若直线y x k =+与曲线x =k 的取值范围是 。

12.直线32y kx =+与曲线2230y y x --+=只有一个公共点;则k 值为 。

二、选择题:13.已知直线0(0)ax by c abc -+=≠与圆221x y +=相切;则三条边长分别为,,a b c 的三角形是 。

(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不存在14.动圆与圆221x y +=和228120x y x +-+=都外切;则动圆圆心的轨迹是 。

(A)抛物线 (B)圆 (C)双曲线的一支 (D)椭圆15.若,62ππα⎡⎫∈⎪⎢⎣⎭;则直线2cos 310x y α++=的倾斜角的取值范围是 。

2023最新高二数学上册期末考试试卷及答案

2023最新高二数学上册期末考试试卷及答案

2023最新高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)1、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C )A.p:∃x∈R,sinx≥1⌝B.p:∀x∈R,sinx≥1⌝C.p:∃x∈R,sinx>1⌝D.p:∀x∈R,sinx>1⌝2.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B ).A .160B .180C .200D .2203.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( C ).A .5B .13C .13D .374.若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线x 2a 2y 2b 2的离心率为( D )A. B. C.D. 735443535.在△ABC中,能使sinA >成立的充分不必要条件是( C )32A .A∈ B .A∈ C .A∈(0,π3)(π3,2π3)(π3,π2)D .A∈(π2,5π6)6.△ABC 中,如果==,那么△ABC 是( B ).Aatan Bbtan Cc tan A .直角三角形B .等边三角形 C .等腰直角三角形D .钝角三角形7.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( B )A .1∶2B .1∶1C .3∶1D .2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A. B.5553C. D. 255359.当x >1时,不等式x +≥a 恒成立,则实数a 的取值范围是( D 11-x ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组,所表示的平面区域被直线y =kx +分为⎪⎩⎪⎨⎧4≤ 34 ≥30≥y x y x x ++34面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A.B. C. D. (0,22)(0,33)(0,55)(0,66)解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈。

西城区2023-2024学年第一学期期末高二数学试题及答案

西城区2023-2024学年第一学期期末高二数学试题及答案

北京市西城区2023—2024学年度第一学期期末试卷高二数学 2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y -+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz -中,点()4,2,8A -到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.136.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b-=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D -中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.C.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y -+-=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡--⎣C.22⎡--+⎣D.2⎡-+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A -且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+-m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D -中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;①不存在符合条件的点F ,使得BF DE ⊥;①异面直线1A D 与1EC 所成角的余弦值为5; ①三棱锥1F A DE -的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C -中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A --的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y -+=上.(1)求C 的方程;(2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y -+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率;(2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD -中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知. 条件①:PB BD =;条件①:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值.设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.北京市西城区2023—2024学年度第一学期期末试卷高二数学参考答案 2024.1一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩ 令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB mAB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r , 则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C 的离心率c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=.所以MQ ===. 因为[]13,3x ∈−,所以当195x =时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,5⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD ====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩ 取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP n d n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BMn BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AM k x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−− ()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()1212010220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。

第一学期高二年级期末考试试卷(数学)及答案

第一学期高二年级期末考试试卷(数学)及答案

第一学期高二年级期末考试试卷(数学)考试时间:120分钟 总分:150分注:本巻是文理综合巻,请同学们看清题,标(文)的文科做,标(理)的理科做,多做无效。

一、选择题:(每小题5分,共60分)1.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( ).A .30 B.45 C.60 D.1352.直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离3.原点到直线052=-+y x 的距离为( ) A .1 B .3 C .2 D .54.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x5.抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)6.(文)椭圆221168x y +=的离心率为A .13B .12CD .26.(理)若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )A. 2B. 1C. 32D.7.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( ) A.x y 2±= B .x y 2±= C .x y 22±= D.x y 21±= 8.在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点,则异面直线AC 和MN 所成的角为( )A .30°B .45°C .90°D .60° 9.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .7410.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为 ( )(A )22136108x y -= (B ) 221927x y -= (C )22110836x y -= (D ) 221279x y -= 11、已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A. (41,-1)B. (41,1)C. (1,2)D. (1,-2)12.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一1 A点,则FP OP ∙的最大值为( )A.2B.3C.6D.8二、填空题:(每小题5分,共20分)13.己知222212:1:349O x y O x y +=+=圆与圆(-)(+),则12O O 圆与圆的位置关系为 .14.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 .15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 。

上学期高二的数学期末考试试题和答案

上学期高二的数学期末考试试题和答案

上学期高二的数学期末考试试题和答案
1. 选择题:
1) 一组数据的方差是4,标准差是2,这组数据的个数为多少?
答案:方差等于标准差的平方,所以标准差的平方为4,标准
差为2,解得数据的个数为4。

2) 已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。

答案:将x替换为-1,得到f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 + (-3) - 5 = -6。

2. 解答题:
1) 解方程组:
{ 2x + 3y = 7
{ 4x - y = 1
答案:通过消元法或代入法,解得x = 1,y = 1。

2) 某公司的年利润达到100万元,年利润增长率为5%,求该
公司当年的利润是多少?
答案:设当年的利润为x万元,根据题意列方程:x * (1 + 0.05) = 100,解得x ≈ 95.24万元。

3. 计算题:
1) 计算 2^3 - 3 * (4 + 5)的值。

答案:先计算括号内的值得到9,然后计算指数运算得到2^3 = 8,最后计算减法得到8 - 3 * 9 = 8 - 27 = -19。

2) 计算log2(8) + log4(16)的值。

答案:根据换底公式,log2(8) = log10(8) / log10(2) = 3 / 0.301 = 9.967,log4(16) = log10(16) / log10(4) = 4 / 0.602 = 6.645,所以计算结果为9.967 + 6.645 ≈ 16.612。

以上为上学期高二的数学期末考试试题和答案。

高二数学上学期期末考试试卷含答案(共3套)

高二数学上学期期末考试试卷含答案(共3套)

高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。

高二数学上学期期末考试试题

高二数学上学期期末考试试题

高二数学上学期期末考试说明:本套试题分Ⅰ、Ⅱ卷,第Ⅰ卷60分,第Ⅱ卷90分,共150分,时间120分钟。

第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)直线3x -4y +5=0关于y 轴对称的直线的方程为( )(A )3x+4y-5=0 (B )3x+4y+5=0(C )-3x+4y-5=0 (D )-3x+4y+5=0(2)双曲线4322y x =1的两条准线的距离等于( )(A )776 (B )773 (C )518 (D )516(3)若直线Ax+By+C=0通过第二、三、四象限,则系数A 、B 、C 需满足的条件是() (A )A 、B 、C 同号 (B )AC <0且BC <0(C )C=0且AB <0 (D )A=0且BC <0(4)方程(x-y )2+(xy-1)2=0的曲线是( )(A )一条直线和双曲线 (B )一条直线或双曲线(C )双曲线 (D )两个点(5)已知直线x=a (a >0)和圆(x-1)2+y 2=4相切,那么a 的值是( )(A )5 (B )4 (C )3 (D )2(6)如图所示,正方体ABCD —A 1B 1C 1D 1中,直线BC 1和AC(A )相次且垂直 (B )相次但不垂直(C )异面且垂直 (D )异面但不垂直(7)若P (3cos α,3sin α,1),Q (2cos θ,2sin θ,1),则│PQ │的取值范围是( ) (A )[ 0,5 ] (B )[ 0,25 ] (C )[ 1,5 ] (D )[ 1,25 ](8)如图所示,四边形ABCD 为矩形,PA ⊥平面ABCD ,则下列各组向量中,数量积不为零的是( )(A )PA 与BD (B )PD 与AB(C )PC 与BD (D )PB 与BC(9)a ,b 为异而直线,a ⊂α,b ⊂β,α∩β=m 必定( )(A )与a 、b 都相交 (B )至少与a 、b 中的一条相交(C )与a 、b 都不相交 (D )至多与a 、b 中的一条相交(10)已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒1⊥m ②α⊥β⇒1∥m ③1∥m ⇒α⊥β ④1⊥m ⇒α∥β 其中正确的两个命题是( )(A )①与② (B )③与④ (C )②与④ (D )①与③(11)平面直角坐标系中,O 为坐标原点,已知两点A (2,0),B (0,1),若点C 满足 OC =sin αOA +cos αOB ,其中α∈R ,则点C 的轨迹方程为( )(A )x-2y+2=0 (B )1422=+y x (C )x 2+y 2=4 (B )1422=-y x (12)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OB OA ⋅=( )(A )43 (B )-43 (C )3 (D )-3 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

高二上册数学期末试卷(含答案)

高二上册数学期末试卷(含答案)

高二上册数学期末试卷一、选择题(本大题共10小题,每小题5分,共50分)1.若m>0且1≠m , 则a=b 是m a=m b 的 (A )充分不必要条件 (B )必要不充分条件(C )充要条件(D )既不充分也不必要条件2.图示算法的运算结果是(A )2005 (B )2006 (C )2007 (D )2008 3.函数xx y 1-=的单调递增区间是 (A )R (B )),0(+∞ (C ))0,(-∞ (D )),0(+∞和)0,(-∞ 4.抛掷一枚质地均匀的硬币,如果连续抛掷5次,那么第3次出现正面朝上的概率是 (A )21 (B ) 53 (C ) 52 (D ) 515.若椭圆12222=+by a x (0>>b a )的焦点到相应准线的距离大于椭圆的长轴长,则椭圆离心率的取值范围是(A )(0,13-) (B )(13-,1) (C )(0,12-) (D )(12-,1)6.方程2223sin cos 1x y αα+=([]0,απ∈)不能表示的曲线是(A )抛物线 (B )双曲线 (C )椭圆 (D )两条直线 7.方程π=+-+++2222)1()1(y x y x 所表示的曲线是 (A )线段 (B )椭圆 (C )双曲线 (D )抛物线 8.图示程序运行后的结果为(A )14 (B )16 (C )18 (D )209.下列四个命题中,假命题的个数是 (1)13,2-≥+∈∀x x R x ;(2)若事件A 与B 互为对立事件,P(A)=0.4,则P(B)=0.6; (3)线性回归方程中的系数a b ,是可正可负的; (4)α∩β=l ,则∃直线a ,a ⊥α且a ⊥β。

(A )0个 (B )1个 (C )2个 (D )3个 10.与下列伪代码对应的数学表达式是( ) (A )d =1+2+3+…+n (B )d =2+n1...3121+++ (C )d =n n )1(1...4313212111-++⨯+⨯+⨯+(D )d =1+n1...3121+++ S1 输入A=43 , B=45 ,C=47 ;S2 计算m =26++⨯C B AS3 输出 m .I ←1While I ≤3 I ←I+2 S ←6+2I I ←I-1 End While Print SRead nd ←1For I from 1 to nd ← d +I1 End for Print d二、填空题(本大题共6小题,每小题5分,共30分)11.已知 6)(,)(0/2==x f x x f ,则0x = _________。

高二数学上学期期末考试题及答案

高二数学上学期期末考试题及答案

高二数学上学期期末考试题一、 选择题:(每题5分,共60分)2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )(A )18, (B )6, (C )23, (D )2433、与不等式xx --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)32--x x ≥0, (D)(x-3)(2-x)>0 6、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( )(A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π (C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π43 7、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )(A )3x+4y –5=0, (B)3x+4y+5=0,(C)-3x+4y –5=0, (D)-3x+4y+5=08、直线y=x+23被曲线y=21x 2截得线段的中点到原点的距离是 ( ) (A )29 (B )29 (C )429 (D )229 11、双曲线: 的准线方程是191622=-x y ( ) (A)y=±716(B)x=±516 (C)X=±716 (D)Y=±516 12、抛物线:y=4ax 2的焦点坐标为 ( )(A )(a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a161,0)二、填空题:(每题4分,共16分)13、若不等式ax 2+bx+2>0的解集是(–21,31),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 .15、已知圆的方程⎩⎨⎧-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .16、已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 .三、 解答题:(74分)17、假如a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上随意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。

高二(上学期)期末数学试卷及答案解析

高二(上学期)期末数学试卷及答案解析

高二(上学期)期末数学试卷及答案解析(时间120分钟,满分150分)一、单选题(本大题共8小题,共40.0分)1.倾斜角为135°,在轴上的截距为的直线方程是()A. B. C. D.2.设双曲线上的点到点的距离为15,则点到的距离是()A. 7B. 23C. 7或23D. 5或233.命题甲:双曲线C的渐近线方程是:y=±;命题乙:双曲线C的方程是:,那么甲是乙的()A. 分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4.对抛物线y2=4x,下列描述正确的是()A. 开口向上,焦点为(0,1)B. 开口向上,焦点为C. 开口向右,焦点为(1,0)D. 开口向右,焦点为5.已知a、b表示两条不同的直线,α,β表示两个不同的平面.下列选项中说法正确的是()①若a∥b,b⊂α,则a∥α②若a⊥α,b⊥a,则b∥α③若a⊥α,b⊥β,a∥b则α∥β④若α∥β,a⊂α,b⊂β,则a∥bA. ①②B. ③④C. ②③D. ③6.已知圆,则过点的最短弦所在直线的方程是()A. B. C. D.7.已知曲线C的方程为+=1,给定下列两个命题:p:若9<k<25,则曲线C为椭圆;q:若曲线C是焦点在x轴上的双曲线,则k<9;那么,下列命题为真命题的是()A. B.C. D.8.椭圆+=1上的点到直线(t为参数)的最大距离是()A. 3B.C. 2D.二、多选题(本大题共4小题,共20.0分)9.一个正方体纸盒展开后如图所示,则在原正方体纸盒中下列结论正确的是()A. B. 与所成的角为60°C. D. 与所成的角为60°10.已知双曲线,则下列说法正确的是()A. 离心率的最小值为4B. 当m=2时,离心率最小C. 离心率最小时,双曲线的标准方程为D. 离心率最小时,双曲线的渐近线方程为11.如图,在正方体ABCD-A1B1C1D1中,E为A1B的中点,F为线段BC上的动点(不包括端点),则()A. 对任意的F点,三棱锥F-ADE与三棱锥A1-ADE的体积相等B. 对任意的F点过D,E,F三点的截面始终是梯形C. 存在点F,使得EF∥平面A1C1DD. 存在点F,使得EF⊥平面BDC112.已知抛物线的焦点为,,是抛物线上两点,则下列结论正确的是()A. 点的坐标为B. 若直线过点,则C. 若,则的最小值为D. 若,则线段的中点到轴的距离为三、单空题(本大题共4小题,共20.0分)13.过原点且倾斜角为60°的直线被圆所截得的弦长为.14.设点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB相交,则l的斜率k的取值范围是.15.将边长为的正方形沿翻折成直二面角,若四点在同一个球面上,则该球的体积等于_______________.16.以椭圆=1的右焦点为圆心,且与双曲线=1的两条渐近线都相切的圆方程为______.四、解答题(本大题共6小题,共70.0分)17.已知直线经过两条直线和的交点,且与直线垂直,求直线的方程.18.已知圆和点(1)若过点有且只有一条直线与圆相切,求实数的值,并求出切线方程;(2)若,过点作圆的两条弦,且互相垂直,求的最大值。

第一学期高二期末考试数学试卷含答案

第一学期高二期末考试数学试卷含答案

第一学期高二期末第一学期期末考试数学试题【满分150分,考试时间为120分钟】一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.函数2()4f x x =的导函数是( ) A .'()2f x x = B .'()4f x x =C .'()8f x x =D .'()16f x x =2.已知命题p :13x <<,q :31x >,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.双曲线2228x y -=的实轴长是( )A .2B .C .4D .4.某三棱锥的三视图如图所示,则该三棱锥的体积是 ( ) A .16B .13C .23D .15.函数)(x f y =的导函数)('x f y =的图象如图所示,则函数)(x f y =的图象可能是( )6.直线01=-+y ax 平分圆0134222=-+-+y x y x 的面积,则a=( )A .1B .3C D .27.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=8.函数14ln )(+-=x x x f 递增区间为( ) A .)41,0(B .)4,0(C .)41,(-∞D .),41(+∞9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A .25B .246+C .27+D .2610.如图,已知直线与抛物线)0(22>=p px y 交于A ,B 两点,且OA ⊥OB,OD ⊥AB 交AB 于点D ,点D的坐标(4,2),则p=( )。

浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案

浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案

杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题5分,共65分,每小题所给的四个选项中只有一个是正确的) 1. 下列语句中是命题的是
A .周期函数的和是周期函数吗?
B .145sin =︒
C .0122>-+x x
D .梯形是不是平面图形呢? 2.命题“若b a >,则c b c a +>+”的逆否命题为( )
A .若b a <,则c b c a +<+.
B .若b a ≤,则c b c a +≤+.
C .若c b c a +<+,则b a <.
D .若c b c a +≤+,则b a ≤.
3.已知q 是r 的必要不充分条件,s 是r 的充分且必要条件,那么s 是q 成立的( )
A .必要不充分条件
B .充要条件
C .充分不必要条件
D .既不充分也不必要条件 4.命题p :存在实数m ,使方程2
10x mx ++=有实数根,则“非p ”形式的命题是( )
A .存在实数m ,使得方程210x mx ++=无实根.
B .不存在实数m ,使得方程210x mx ++=有实根.
C .对任意的实数m ,使得方程2
10x mx ++=有实根. D .至多有一个实数m ,使得方程2
10x mx ++=有实根. 5.抛物线24y x =的焦点坐标是
A .(1,0)
B .(0,1)
C .1(,0)16
D .1
(0,)16
6. 双曲线19422=-y x 的渐近线方程是
A .x y 23±=
B .x y 32±=
C .x y 4
9
±=
D .x y 9
4±=
7.已知椭圆2215x y m +=的离心率5
e =,则m 的值为
A .3
B .
3
C D .253或3
8.双曲线14122
2
22=--+m y m x 的焦距是( )
A .4
B .22
C .8
D .与m 有关
9. 顶点在原点,坐标轴为对称轴的抛物线过点()2,3-,则它的方程是( )
A .2
92x y =-
或243y x = B .292y x =-或24
3x y = C .243x y = D .2
92
y x =-
10.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )
A

2
B

3
C .
12
D .
13
11.(文)已知函数()a f x x =,若(1)4,f '-=-则a 的值等于( )
A .4 B.-4 C . 5 D.-5. (理)设(2,1,3)a x =,(1,2,9)b y =-,若a 与b 为共线向量,则
A .1x =,1y =
B .12x =,1
2
y =-
C .16x =,32y =-
D .16x =-,3
2
y =
12、(文)已知两条曲线12-=x y 与31x y -=在点0x 处的切线平行,则0x 的值为( )
( A ) 0 ( B ) 32-
( C ) 0 或 3
2
- ( D ) 0 或 1 (理).在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若→

--=a B A 11,→

--=b D A 11,
→→
--=c A A 1, 则下列向量中与→
--M B 1相等的向量是
A .→
→→+--c b a 2121 B .→→→++c b a 2121 C .→→→+-c b a 2121 D .→→→++-c b a 2121
13.(理)已知动点P (x ,y )满足2)2()2(2222=+--++y x y x ,则动点P 的轨迹是 A.双曲线 B.双曲线左支 C. 双曲线右支
D. 一条射线
(文)已知函数()y f x =的导函数的图象如图甲所示, 则()y f x =的图象可能是( )
A
B C D
二、填空题(每小题5分,共20分)
14. 写出命题“x R ∀∈, 2
410ax x ++>”的否定形式: .
15、已知椭圆122
22=+b
y a x ,)0(>>b a ,A 为左顶点,B 为短轴端点,F 为右焦点,且
BF AB ⊥,则这个椭圆的离心率等于 。

16. 设p 、q 是两个命题,若p 是q 的充分不必要条件,那么“非p”是“非q”的 条件.
17.(文)曲线32x x y -=在点(1,1)处的切线方程为___ _______.
(理)z 轴上一点M 到点(1,0,2)A 与(1,3,1)B -的距离相等,则M 的坐标为
三、解答题(本大题共5题,共60分,解答题应写出文字说明、演算步骤或证明过程.) 18. (本小题满分12分)把命题“全等三角形一定相似”写成“若p,则 q ”的形式,并写出它的逆命题,否命题与逆否命题。

并判断它们的真假。

19.(本小题满分12分)设椭圆的中心在原点,焦点在x 轴上,离心率2
3
=e ,且过点)23,0(P ,
求这个椭圆的方程.
20.已知F 1、F 2为双曲线)0,0(122
22>>=-b a b
y a x 的焦点.
过F 2作垂直x 轴的直线交双曲线于点P ,且∠PF 1F 2=30︒, 求双曲线的渐近方程.
21. (文)(本小题满分15分)求59623-+-=x x x y 的单调区间、极值、最值。

(理)(本小题满分15分).如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点.
(Ⅰ)证明:AD ⊥D 1F; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明:面AED ⊥面A 1FD 1.。

相关文档
最新文档