第1课时 菱形的性质

合集下载

1.1 菱形的性质与判定 第1课时 菱形的性质课件+2023—2024学年北师大版数学九年级上册

1.1 菱形的性质与判定 第1课时 菱形的性质课件+2023—2024学年北师大版数学九年级上册

13. (易错题)四边形 ABCD 是菱形,∠ BAD =60°, AB
=6,对角线 AC 与 BD 相交于点 O ,点 E 在 AC 上.若 OE
= 3 ,则 CE 的长为
4 或2
.
14. (贵阳市白云区五中月考)如图,点 P 为菱形 ABCD
对角线 BD 上一点,连接 PA , PC ,点 E 在边 AD 上,且
AB 至点 E ,使 BE = AB ,连接 CE .
(1)求证: BD = EC ;
(1)证明:∵四边形 ABCD 是菱
形,∴ AB = CD , AB ∥ CD ,
又∵ BE = AB ,∴ BE = CD ,∵ BE
∥ CD ,∴四边形 BECD 是平行四边
形,∴ BD = EC .
(2)若∠ E =50°,求∠ BAO 的大小.
60°, BD =7,则菱形 ABCD 的周长为 28 .

(第6题图)
知识点三 菱形的对角线的性质
7. (贵阳中考)菱形的两条对角线长分别是6和8,则此
菱形的周长是( B )
A. 5
B. 20
C. 24
D. 32
8. (2023湘潭中考)如图,菱形 ABCD 中,连接 AC ,
BD ,若∠1=20°,则∠2的度数为( C )
∠ AEP =∠ DCP . 求证: PC = PE .
证明:∵四边形 ABCD 是菱形.
∴ AD = CD ,∠ ADP =∠ CDP ,
∵ DP = DP ,∴△ ADP ≌△ CDP (SAS),
∴ PA = PC ,∠ DAP =∠ DCP ,
又∵∠ AEP =∠ DCP ,∴∠ AEP =∠ DAP ,

1.1+菱形的性质与判定+第1课时菱形的性质+课件+2024-2025学年北师大版数学九年级上册

1.1+菱形的性质与判定+第1课时菱形的性质+课件+2024-2025学年北师大版数学九年级上册
相垂直 ; 菱形也是中心对称图形,对称中心是对角
线的交点.




知识导航
(3)菱形特有的性质:
定理:菱形的四条边 相等 .
定理:菱形的对角线 互相垂直 ,并且每一条对角线
平分一组对角.
注意:菱形的每条对角线把菱形分成两个全等的等腰三
角形,两条对角线将菱形分成四个全等的直角三角形.


典例导思
题型一 利用菱形的性质进行计算学用P1

∴ BF = CF = BC .

∴ CF = CE .
(第4题)
在△ CEM 和△ CFM 中,
∵ CE = CF ,∠ MCE =∠ MCF , CM = CM ,
∴△ CEM ≌△ CFM (SAS).
∴ ME = MF.
典例导思
如答案图,延长 AB , DF ,相交于点 G .
∵ AB ∥ CD ,∴∠ G =∠2.


∴ EH = .
∴ EF =
+ =
+



.


(答案图)
典例导思
题型二 利用菱形的性质进行推理
如图,在菱形 ABCD 中, E , F 分别是 CB , CD 上
的点,且 BE = DF .
(1)求证: AE = AF ;
证明:(1)∵四边形 ABCD 是菱形,
∴ AB = AD ,∠ B =∠ D .
C. 2.5
D. 5
(第1题)
典例导思
2. 如图,在菱形 ABCD 中, AC 与 BD 相交于点 O , AB
的垂直平分线 EF 交 AC 于点 F ,连接 DF ,若∠ BAD =

18.2.2 第1课时 菱形的性质

18.2.2 第1课时 菱形的性质

以下哪些是菱形
D
C
A
B
平行四边形
平行四边形ຫໍສະໝຸດ 有一组邻边相等的平行四边形叫做菱形.
几何语言:在平行四边形 ABCD 中, ∵ AB = BC ∴平行四边行 ABCD 是菱形.
判断
1.菱形是特殊的平行四形。 2.平行四边形是菱形。
菱形是特殊的平行四边形 平行四边形不一定是菱形.
3.菱形的对边平行且相等。
B O
C
D
口答:
1.在菱形ABCD中,若AC=8,BD=6,
(1)OA=OC=( ),OB=OD=( )
B
(2)AB=BC=AD=CD=( )
2.在菱形ABCD中,若∠BAD=60° (1)∠BAC=( )
(2) ∠ABC=( ),∠ABO=( )
O
A
C
D
例1 如图,在菱形 ABCD 中,对角线 AC、BD 相交于 点 O,BD=12 cm,AC=6 cm,求菱形的周长. 解:∵ 四边形 ABCD 是菱形,∴ AC⊥BD,
A
O
C
∠ABC+∠BAD=∠BAD+∠ADC=180° D
菱形的性质
对角线: 菱形的两条对角线互相垂直平分,并 且每一条对角线平分一组对角
几何语言描述:
∵ 四边形 ABCD 是菱形,
∴∠∠DAADACBC⊥==B∠∠DCB,ADOCBA,,=∠∠OCDA=BC12DAA=C=∠∠,OBCBCB=ADO,.D=12ABD,
B
O
A
C
D
1.菱形的概念: 有一组邻边相等的平行四边形叫做菱形。
菱形是特殊的平行四边形。
2.菱形的性质: (1)菱形的对角相等,邻角互补。 (2)菱形的对边平行且四条边都相等。 (3)菱形的对角线互相垂直平分,并且每一条对角线平 分一组对角。

菱形的性质(第一课时)经典课件

菱形的性质(第一课时)经典课件

关于中垂线对称
菱形的两条中垂线分别垂直平分两条对角线,并且相交于 中心。
菱形中的任意一点关于其中一条中垂线对称,意味着该点 到中垂线的距离相等且与相对的边的中点连线与中垂线垂 直。
05
菱形在实际生活中的应用
建筑设计中的应用
窗户设计
菱形图案的窗户在建筑设计中经常被使用,它能够 增加建筑物的艺术感和视觉效果。
菱形的性质(第一课时)经典课 件

CONTENCT

• 菱形的定义与性质 • 菱形的边长性质 • 菱形的角度性质 • 菱形的对称性 • 菱形在实际生活中的应用
01
菱形的定义与性质
菱形的定义

菱形的性质
对角线互相垂直
四边相等
对角相等
邻边互相垂直
科学实验
在某些科学实验中,菱形形状 的装置或实验器材可以提高实 验的准确性和可靠性。
THANK YOU
感谢聆听
菱形的两条对角线互相 垂直,并且平分对方。
菱形的四条边长度相等。
菱形的对角相等,即相 对的两个角大小相等。
菱形相邻的两边互相垂 直。
菱形与平行四边形的关系
01
菱形是平行四边形的一种特殊情 况,当平行四边形的所有边都相 等时,它就变成了菱形。
02
平行四边形不一定是菱形,但菱 形一定是平行四边形。
02
菱形的对角线互相垂直平分,这 一性质在几何证明中经常被使用 。
80%
角度和边的关系
通过菱形的性质,可以推导出角 度和边的关系,进而证明其他几 何命题。
其他领域中的应用
时尚界
菱形图案在时尚界中广泛流行 ,如服装、饰品和鞋履的设计 中经常出现菱形元素。
艺术创作

.21.第1课时菱形的性质

.21.第1课时菱形的性质

19.2 菱 形1. 菱形的性质第1课时 菱形的性质1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)一、情境导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.二、合作探究探究点一:菱形的性质【类型一】 菱形的四条边相等如图所示,在菱形ABCD 中,已知∠A =60°,AB =5,则△ABD 的周长是( )A .10B .12C .15D .20解析:根据菱形的性质可判断△ABD 是等边三角形,再根据AB =5可求出△ABD 的周长为C.方法总结:如果菱形的一个内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.【类型二】 菱形的对角线互相垂直如图所示,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD =8cm ,AC =6cm ,求菱形的周长.解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形的性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.解:因为四边形ABCD 是菱形,所以AC ⊥BD ,AO =12AC ,BO =12BD .因为AC =6cm ,BD =8cm ,所以AO =3cm ,BO =4cm.在Rt △ABO 中,由勾股定理得AO 2+BO 2=AB 2,即32+42=AB 2.∴AB=5cm . ∴菱形的周长=4AB =4×5=20cm .方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解.【类型三】 菱形的对称性如图,在菱形ABCD 中,CE ⊥AB于点E ,CF ⊥AD 于点F .求证:AE =AF .解析:要证明AE =AF ,需要先证明△ACE ≌△ACF .证明:连接AC .∵四边形ABCD 是菱形,根据菱形的对称性可知AC 平分∠BAD ,即∠BAC =∠DAC .∵CE ⊥AB ,CF ⊥AD ,∴∠AEC =∠AFC =90°.在△ACE 和△ACF 中,⎩⎪⎨⎪⎧∠AEC =∠AFC ,∠EAC =∠F AC ,AC =AC ,∴△ACE ≌△ACF ,∴AE =AF .方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.探究点二:菱形的面积的计算方法如图所示,在菱形ABCD 中,点O 为对角线AC 与BD 的交点,且在△AOB 中,OA =5,OBABCD 两对边的距离h .解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.解:因为四边形ABCD 为菱形,所以AO⊥BO ,即∠AOB=90°.由勾股定理得AO 2+BO 2=AB 2,即52+122=AB 2,所以AB=13.即S △AOB =12OA ·OB =12×5×12=30,所以S 菱形ABCD =4S △AOB =4×30=120.又因为 S 菱形ABCD =AB ·h =13h ,所以13h =120,得h=12013. 方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.三、板书设计 1.菱形的性质 菱形的四条边都相等; 菱形的两条对角线互相垂直.2.菱形的面积S 菱形=边长×对应高=12ab (a ,b 分别是两条对角线的长)本节课不仅安排了菱形性质的探究,而且穿插了菱形两种面积公式的探究,课堂中为了突出学生的主体地位,留给学生充足的时间思考交流,发挥学生的主体地位,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展.。

初中数学华东师大版八年级下册19.第1课时菱形的性质课件

初中数学华东师大版八年级下册19.第1课时菱形的性质课件
第19章 矩形、菱形和正方形 19.2.1 菱形的性质 第1课时 菱形的性质
学习目标
概念剖析
典型例题
当堂检测
课堂总结
1.知道菱形的概念及其与平行四边形的关系 2.掌握菱形的性质定理的简单应用
学习目标
概念剖析
典型例题
当堂检测
课堂总结
做一做:将一张矩形的纸对折,再对折,然后沿着图中的虚线剪下,打开, 你发现这是一个什么样的图形?
该四边形的四 条边相等
这种特殊的平行四边形是菱形. 菱形的定义:有一组邻边相等的平行四边形是菱形.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
几何语言:如图,对于平行四边形ABCD,若AB=BC,则这个平行四边形叫做
菱形.
A
D
B
C
作为一种特殊的平行四边形,菱形具有平行四边形的一般性质,同时 也具有一些特殊的性质.
∵CE⊥AB,CF⊥AD,
∴∠AEC=∠AFC=90°.
又∵AC=AC,
归纳:菱形是轴对称图形,它的对
∴△ACE≌△ACF.
角线所在的直线都是它的对称轴,
∴AE=AF.
每条对角线平分一组对角.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
3.如图,菱形ABCD中,O是对角线AC上一点,连接OB,OD,求证:OB=OD.
求证:OA=EB.
证明:∵四边形ABCD为菱形, ∴AD∥BC,AD=BA,∠ABC=∠ADC=2∠ADB , ∴∠DAE=∠AEB,
A
D
O
∵AB=AE,∴∠ABC=∠AEB, ∴∠ABC=∠DAE,
B
EC
∵∠DAE=2∠BAE,∴∠BAE=∠ADB.

菱形的性质与判定第一课时(菱形的性质)

菱形的性质与判定第一课时(菱形的性质)

B
D
(2)菱形ABCD的面积=△ABD的面积+△CBD的面积
=2×△ABD的面积
C
菱形的面积等于两条对角线乘积 1 2 BD AE 的一半 2 1 2 10 12 120 cm 2 . 2


D A
O
C
解得:
B
菱形的周长为20cm ,面积为24cm2
三、课堂小结
定理:菱形的四条边都相等. 定理:菱形的两条对角线互相垂直,并且 每条对角线平分一组对角.
结论: 菱形是轴对称图形,有2条对称轴, 它们互相垂直。
首先它具有平行四边形的一切特征.
特殊的特征:
1、菱形的四条边相等.
思考:菱形的对角线有什么特征呢?
2、菱形的对角线互相垂直。
定理:菱形的四条边都相等.
已知:如图,四边形ABCD是菱形.
求证:AB=BC=CD=DA. 分析:由菱形的定义,利用平行四边形性 质可使问题得证. 证明: ∵ 四边形ABCD是菱形, ∴AB=AD,四边形ABCD是平行四边形. ∴AB=CD,AD=BC. ∴ AB=BC=CD=AD. B A D C
O B
C
已知:如图,四边形ABCD是边长为13cm的菱形,其中对角线BD 长10cm. 求:(1).对角线AC的长度; (2).菱形ABCD的面积. 解:(1) ∵四边形ABCD是菱形, A E
∴∠AED=900,
AE
∴AC=2AE=2×12=24(cm).
1 1 DE BD 10 5cm . 2 2 AD 2 DE 2 132 52 12cm .
定理:菱形的两条对角线互相垂直。 已知:如图,AC,BD是菱形ABCD的两条对角线,AC,BD相 交于点O. 求证: AC⊥BD. 证明: ∵四边形ABCD是菱形, ∴AD=CD,AO=CO. ∵DO=DO, ∴△AOD≌△COD(SSS). ∴∠AOD=∠COD=900. ∴AC⊥BD. A D

第1章第1课时 菱形的性质PPT课件(北师大版)

第1章第1课时 菱形的性质PPT课件(北师大版)
解:∵四边形 ABCD 是菱形, ∴AB∥CD,∴∠1=∠ACD. ∵∠1=∠2,∴∠2=∠ACD. ∴MC=MD. ∵ME⊥CD,∴CD=2CE. ∵CE=1,∴CD=2.∴BC=CD=2.
知识点 2 菱形面积的计算 ☞ 例 3 如图,在菱形 ABCD 中,对角线 AC,BD 相 交于点 O,AB=5,AC=6,过点 D 作 AC 的平行线交 BC 的延长线于点 E,求△BDE 的面积.
6.(2018·贵州贵阳)如图,在菱形 ABCD 中,E 是 AC 的中点,EF∥CB,交 AB 于点 F,如果 EF=3,那 么菱形 ABCD 的周长是( A )
A.24 B.18 C.12 D.9
7.(2018·辽宁锦州)如图,菱形 ABCD 的对角线 AC, BD 相交于点 O,过点 A 作 AH⊥BC 于点 H,连接 OH. 若 OB=4,S 菱形 ABCD=24,则 OH 的长为 33 .
第1课时 菱形的性质
核心提要 典例精炼 变式训练 基础演练 能力拔高 拓展培优
1.有一组邻边相等的平行四边形叫做菱形. 2.菱形的四条边相等, 对角角线线互相垂直,并且每 一条 对角线平分一组对角. 3.菱形是 轴轴对称图形,它有 2 条对称轴. 4.菱形的面积是 对角线乘积的一半.
知识点 1 菱形性质的运用 ☞ 例 1 如图,在菱形 ABCD 中,AB=5,∠BCD= 120°,则△ABC 的周长等于( B )
BE 的长.
解:菱形 ABCD 的面积为21×16×12=96(cm2). ∵四边形 ABCD 是菱形, ∴AC⊥DB, ∴CD= 62+82=10(cm). ∵S△BCD=12S 菱形 ABCD,∴12CD·BE=48, 即12×10BE=48,解得 BE=458. ∴菱形 ABCD 的面积为 96cm2图,在菱形 ABCD 中,过点 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.3.2菱形
第1课时菱形的性质
教学目标
【知识与技能】
1.理解并掌握菱形的定义及性质定理1、2;会用这些定理进行有关的论证和计算.
2.培养学生的观察能力、动手能力、自学能力、计算能力、逻辑思维能力.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
【过程与方法】
经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.
【情感态度】
培养学生主动探究的习惯和严密的思维意识、审判观、价值观.并在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点.【教学重点】
菱形的性质定理1、2.
【教学难点】
定理的证明方法及运用.
教学过程
一、创设情境,导入新课
1.(复习)什么叫做平行四边形?什么叫矩形?
平行四边形和矩形之间的关系是什么?
2.观察下列图片中的图形,它是什么特殊的平行四边形?
【教学说明】
复习矩形的性质,了解矩形和平行四边形之间的关系,再通过观察图片,认识菱形的形象,从而联系菱形与平行四边形之间的关系.
二、合作探究,探索新知
1.我们已经学习了一种特殊的平行四边形--矩形,其实还有另
外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】菱形(1)是平行四边形;(2)一组邻边相等.
【教学说明】
通过动画演示,直观展示菱形与平行四边形之间的关系,从而得到菱形的定义,然后强调指出菱形是特殊的平行四边形.
2.探究:菱形的性质,让学生动手利用折纸、剪切的方法,探究、归纳.
方法一:如图1,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形;
方法二:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形(如图2) .
总结:菱形的性质:
①菱形的四条边都相等.
②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
【教学说明】
通过动手操作,然后观察猜想,再进行推理论证,最后总结归纳,得出菱形的性质.
3.探索
菱形的面积公式是什么?如何证明这个公式?
(提示:四个全等的直角三角形.)
【教学说明】
这是对菱形性质的进一步推理应用,同时也是掌握菱形的面积与对角线关系的重要公式,要让学生明确推理的过程,并且明确菱形面积的两种求法之间的关系.
三、示例讲解,掌握新知
【例】已知:如图,四边形ABCD是菱形,F是
AB上一点,DF交AC于E.求证:∠AFD=∠CBE.
证明:∵四边形ABCD是菱形,
∴CB=CD, CA平分∠BCD,∴∠BCE=∠DCE.
又CE=CE,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC,∴∠AFD =∠CBE.
【教学说明】
这是对菱形性质的应用,要让学生先回顾菱形的性质,然后明确解题思路,再结合三角形全等来进行解决,最后教师要对思路和方法进行总结.
四、练习反馈,巩固提高
1.菱形ABCD中,若对角线长AC=8 cm,BD=6 cm,则边长AB =5 cm.
2.如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=35° .
第2题图第3题图
3.如图,在△ABC中,AB=AC,四边形ADEF是菱形,求证:BE=CE.
证明:∵四边形ADEF是菱形,∴DE=EF,AB∥EF,DE∥AC,
∴∠B=∠CEF,∠C=∠BED,
∵AB=AC,∴∠B=∠C,∴∠BED=∠CEF,
在△DBE和△FCE中,{∠BED=∠CEF,∠B=∠C,DE=FE,∴△DBE≌△FCE,∴BE =CE.
五、师生互动,课堂小结
1.菱形定义:有一组邻边相等的平行四边形叫做菱形
2.菱形的性质:
(1)菱形的四条边都相等.
(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
课后作业
完成同步练习册中本课时的练习.。

相关文档
最新文档