最新人教版高中数学必修2第一章空间几何体的结构3

合集下载

高中数学 第一章 空间几何体 新人教版必修2

高中数学 第一章 空间几何体 新人教版必修2

1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征(教师用书独具)●1.知识与技能(1)能根据几何结构特征对空间物体进行分类.(2)通过观察实例,认识棱柱、棱锥、棱台的结构特征.(3)能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台的几何结构特征.(2)让学生在观察、讨论、归纳、概括中获取知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.●重点:让学生感受大量空间实物及模型,概括出棱柱、棱锥、棱台的结构特征.难点:棱柱、棱锥、棱台的结构特征的概括.重难点突破:以学生熟知的现实世界中几何体为切入点,教师通过提供丰富的实物模型引导学生对观察到的实物进行分类,考虑到棱柱、棱锥、棱台的结构特征的概括既是本节教学的重点又是本节教学的难点,教师可采用多媒体辅助教学法,利用多媒体演示,让学生通过观察比较,从而发现规律,概括出几何体的结构特征,突破难点.(教师用书独具)●本节内容是立体几何的入门教学,是义务教育阶段“空间与图形”课程的延续与提高,通过本节内容的学习可帮助学生逐步形成空间想象能力.由于本节知识具有概念多、感知性强等特点,教学时建议采用启导法和多媒体辅助教学法.引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,多角度、多层次地揭示空间图形的本质.按照从整体到局部、由具体到抽象的原则,让学生认识棱柱、棱锥、棱台的几何结构特征,进而通过空间图形,培养和发展学生的空间想象能力.●创设问题情境,引出问题:你能根据某种标准对空间几何体进行分类吗?⇒引导学生观察柱、锥、台、球的相关图片得出空间几何体的定义及分类.⇒通过引导学生回答所提问题掌握棱柱、棱锥、棱台的结构特征.⇒通过例1及其变式训练,使学生掌握棱柱、棱锥、棱台的概念.⇒通过例2及其变式训练,引导学生应用概念判别几何体,加深对棱柱结构特征的认识.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.观察下面两组物体,你能说出各组物体的共同点吗?(1)(2)(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成..(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类..观察下列多面体,有什么共同特点?(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都相互平行.观察下列多面体,有什么共同特点?(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.棱锥图形及表示定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥相关概念:底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点分类:①依据:底面多边形的边数②举例:三棱锥(底面是三角形)、四棱锥(底面是四边形)……如图棱锥可记作:棱锥S-ABCD观察下列多面体,分析其与棱锥有何区别联系?(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.棱台的定义、分类、图形及表示下列说法正确的是( ) A.有两个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有三个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形已知条件→联想空间图形→紧扣定义→得出结论选项A错,反例如图a;选项C也错,反例如图b,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;一个多面体至少有四个面,如三棱锥有四个面,不存在有三个面的多面体,所以选项B错;根据棱柱的定义,知选项D正确.D判断一个几何体是何种几何体,一定要紧扣棱柱、棱锥、棱台的结构特征,注意概念中的特殊字眼,切不可马虎大意,如棱柱的概念中的“相邻”,棱锥的概念中的“公共顶点”,棱台的概念中的“棱锥”等.下列说法中正确的是( )①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.A如图1-1-1长方体ABCD—A1B1C1D1.图1-1-1(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分的几何体还是棱柱吗?若是棱柱指出它们的底面与侧棱.观察图形→紧扣概念→得出结论→回答问题(1)这个长方体是棱柱,是四棱柱,因为它满足棱柱的定义.(2)截面BCFE右侧部分是三棱柱,它的底面是△BEB1与△CFC1,侧棱是EF,B1C1,BC.截面左侧部分是四棱柱.它的底面是四边形ABEA1与四边形DCFD1,侧棱是AD,BC,EF,A1D1.1.解答本题的关键是正确掌握棱柱的几何特征,本题易出现认为所分两部分的几何体一个是棱柱,一个是棱台的错误.2.在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置,如此题,底面也可放在前后位置.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).图1-1-2结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.【答案】①③④⑥⑤如图1-1-3,甲、乙、丙是不是棱柱、棱锥、棱台?为什么?甲乙丙图1-1-3图甲有两个面ABC和A2B2C2平行,其余各面都是平行四边形,所以甲图的几何体是棱柱;图乙因一面ABCD是四边形,其余各面都是三角形,所以乙图的几何体是棱锥;图丙是棱台.上述错误答案都是根据相应概念的某一个结论去判断几何体,判断的依据不充分,应该按照几何体的定义去判断,或按照与定义等价的条件去判断.切实理解棱柱、棱锥和棱台的定义是解答此类问题的关键.图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这个几何体不是一个棱柱;图乙中的六个三角形没有一个公共点,故不是棱锥,只是一个多面体;图丙也不是棱台,因为侧棱的延长线不能相交于同一点.1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.图1-1-4 1.如图1-1-4所示的几何体是( )A.五棱锥B.五棱台C.五棱柱D.五面体结合棱柱的概念及分类可知,该几何体是五棱柱.C2.有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台 D.以上都错结合棱锥的特征知B符合题意.B3.下列说法正确的有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而正确的有①②④⑤.①②④⑤4.下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?(1) (2) (3) (4)图1-1-5(1)是棱柱,可记为五棱柱ABCDE-A1B1C1D1E1;(2)不是棱柱,不满足棱柱的结构特征;(3)是棱柱,可记为三棱柱ABC-A1B1C1;(4)是棱柱,可记为四棱柱ABCD-A1B1C1D1.1.棱柱的侧面都是( )A.三角形B.四边形C.五边形 D.矩形由棱柱的性质可知,棱柱的侧面都是四边形.B2.棱锥的侧面和底面可以都是( )A.三角形 B.四边形C.五边形 D.六边形三棱锥的侧面和底面均是三角形.A3.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点 B.八条侧棱、四个顶点C.四条侧棱、八个顶点 D.六条侧棱、八个顶点四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).C图1-1-64.如图1-1-6,能推断这个几何体可能是三棱台的是( ) A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1由于棱台是由平行于底面的平面截棱锥得到的几何体,所以要使结论成立,只需A 1B 1AB=B 1C 1BC =A 1C 1AC便可. 经验证C 选项正确. C5.观察如图1-1-7的四个几何体,其中判断不正确的是( )图1-1-7A.①是棱柱 B.②不是棱锥C.③不是棱锥 D.④是棱台结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B 错误.B6.在如图1-1-8所示的长方体中,连接OA,OB,OD和OC所得的几何体是________.图1-1-8此几何体由△OAB,△OAD,△ODC,△OBC和正方形ABCD围成,是四棱锥.四棱锥7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.5 6 98.用6根长度相等的木棒,最多可以搭成________个三角形.用三根木棒,摆成三角形,用另外3根木棒,分别从三角形的三个顶点向上搭起,搭成一个三棱锥,共4个三角形.9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点.(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.10.如图1-1-9,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.问:(1)依据题意知该几何体是什么几何体?(2)这个几何体有几个面构成,每个面的三角形是什么三角形?图1-1-9(1)三棱锥.(2)这个几何体由四个面构成,即面DEF,面DFP,面DEP,面EFP.由平面几何体知识可知DE=DF,∠DPE=∠EPF=∠DPF=90°,所以△DEF为等腰三角形,△DFP、△DEP为直角三角形,△EFP为等腰直角三角形.11.如图1-1-10,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,水的形状形成如下图(1)(2)(3)三种形状.(阴影部分)请你说出这三种形状分别是什么名称,并指出其底面.图1-1-10【解】(1)是四棱柱,底面是四边形EFGH和四边形ABCD;(2)是四棱柱,底面是四边形ABFE和四边形DCGH;(3)是三棱柱,底面是△EBF和△HCG.(教师用书独具)多面体的表面展开图画出如图所示的几何体的表面展开图.(1) (2)可假设一个面不动,进行空间想象,展开几何体.表面展开图如图所示:(1) (2)多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是( )将四个选项的平面图形折叠,看哪一个可以复原为正方体.C(教师用书独具)●1.知识与技能(1)会用语言概述圆柱、圆锥、圆台及球的结构特征.(2)理解由柱、锥、台、球组成的简单组合体的结构特征.(3)能运用简单组合体的结构特征描述现实生活中的实际模型.2.过程与方法(1)让学生通过直观感知空间物体,从实物中概括出圆柱、圆锥、圆台及球的几何结构特征.(2)让学生通过直观感知空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力,培养学习教学应用意识.●重点与难点:圆柱、圆锥、圆台及球的几何结构特征和简单组合体的结构特征.重难点突破:以丰富的实物模型为切入点,通过让学生观察、分析实物体,并结合旋转体的概念,抽象概括出圆柱、圆锥、圆台及球的几何结构特征和简单组合体的结构特征,进而在观察思考中形成概念,突出圆锥与圆台间的内在联系,突破重点的同时化解难点.(教师用书独具)●本节内容是上节知识延续与提高,通过本节内容的学习可帮助学生进一步了解空间几何体中圆柱、圆锥、圆台及球的结构特征.由于本节知识具有概念多、感知性强等特点,教学时,建议采用启导法和多媒体辅助教学法,引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,通过整体观察、直观感知,引导学生多角度、多层次地揭示圆柱、圆锥、圆台及球的结构特征.在此基础上,再通过让学生说一说、举一举等方式,明确简单组合体的结构特征,最终达到通过空间图形培养和发展学生的空间想象能力的目的.●创设问题情境,引出问题:圆柱、圆锥、圆台及球是如何定义的?⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?以矩形的一边所在的直线为轴,其余三边旋转形成的面所围成的旋转体.仿照圆柱的定义,你能定义什么是圆锥吗?以直角三角形的一直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.圆锥的结构特征下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?(1)圆台可以是直角梯形以垂直于底边的腰所在的直线为旋转轴,其他三边旋转一周形成的面所围成的几何体.(2)圆台也可以看作是等腰梯形以其底边的中垂线为轴,各边旋转180°形成的面所围成的几何体.(3)类比棱台的定义圆台还可以如下得到:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.球也是旋转体,它是由什么图形旋转得到的?以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体即为球.下图中的两个空间几何体是柱、锥、台、球体中的一种吗?它们是如何构成的?(1) (2)这两个几何体都不是单纯的柱、锥、台、球体,而是由柱、锥、台、球体中的两种或三种组合而成的几何体.(1)概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.下列叙述中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③一个圆绕其直径所在的直线旋转半周所形成的曲面围成的几何体是球;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3紧扣旋转体的定义逐一判断.①错误.应以直角三角形的一条直角边为轴;②错误.应以直角梯形的垂直于底边的腰为轴;③错误.应把“圆”改成“圆面”;④错误,应是平面与圆锥底面平行时.A1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.如图1-1-11,第一排中的图形绕虚线旋转一周,能形成第二排中的某个几何体,请把一、二排中相应的图形用线连起来.图1-1-11(1)—C (2)—B (3)—D (4)—A描述下列几何体的结构特征.图1-1-12结合简单组合体的两种基本构成形式入手分析.图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.组合体是由简单几何体拼接、截去或挖去一部分而成的,因此,要仔细观察组合体的组成,结合柱、锥、台、球的几何结构特征,对原组合体进行分割.如图1-1-13为某竞赛中,获得第一名的代表队被授予的奖杯,试分析这个奖杯是由哪些简单几何体组成的?图1-1-13 奖杯由一个球,一个四棱柱和一个四棱台组成.如图1-1-14所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.图1-1-14过圆锥的轴作截面,利用三角形相似来解决.设圆台的母线长为l,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r.过轴SO作截面,如图所示.则△SO′A′∽△SOA,SA′=3 cm.∴SA′SA=O′A′OA.∴33+l=r4r=14.解得l=9(cm),即圆台的母线长为9 cm.用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.本例中若圆台的上底半径为1 cm,其他条件不变,试求圆台的高.∵圆台的上底半径为1,故下底半径为4.如图所示,在Rt△A′HA中A′H=AA′2-AH2=92-32=6 2.即圆台的高为6 2 cm.图1-1-15(12分)已知AB是直角梯形ABCD中与底边垂直的一腰,如图1-1-15所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.以直角梯形的不同边所在直线为轴旋转,所得到的几何体是不同的.(1)以AB边所在的直线为轴旋转所得旋转体是圆台.如图①所示.3分(2)以BC边所在的直线为轴旋转所得旋转体是一组合体:下部为圆柱,上部为圆锥,如图②所示.6分(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图③所示.9分(4)以AD边所在的直线为轴旋转得到一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.12分①②③④1.根据几何体的结构特征判断几何体的类型,首先要熟练掌握各类几何体的概念,把握好各类几何体的主要特征,其次要有一定的空间想象能力.2.对于不规则的平面图形绕轴旋转问题,要先对原平面图形作适当的分割,再根据柱、锥、台的结构特征进行判断.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.1.下列几何体是组合体的是( )A B C DA是圆柱,B是圆锥,C是球,D是圆台与圆锥的组合体.D2.下列说法正确的是( )A.用平行于底面的平面截圆锥,两平行底面之间的几何体是圆台B.用一张扇形的纸片可以卷成一个圆锥C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱D.球面和球是同一个概念对于B,动手操作一下发现一张扇形的纸片只能卷成一个无底面的圆锥,故B错误;对于C,根据圆柱的结构特征可知,若两个相等的圆面不平行,那么这个物体不是圆柱,故C错误;对于D,由球和球面的定义可知它们不是同一个概念,故D错误.A正确.A3.圆锥的高与底面半径相等,母线等于52,则底面半径等于________.圆锥的轴截面如图所示,由图可知,底面半径r=522-r2.∴r=5.54.说出下列组合体是由哪些简单几何体组成的.①②③图1-1-16图①是由一个四棱柱和一个四棱台组合而成.图②是由一个圆锥和一个圆柱组合而成.图③是由一个圆柱和两个圆台组合而成.1.下列几何体是台体的是( )A B C D台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.D2.圆柱的母线长为10,则其高等于( )A.5 B.10 C.20 D.不确定圆柱的母线长和其高相等.B3.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( )A.圆锥 B.圆柱 C.球 D.棱柱用一个平面去截圆锥、圆柱、球均可以得到圆面,但截棱柱一定不会产生圆面.D图1-1-174.如图1-1-17的组合体的结构特征是( )A.一个棱柱中截去一个棱柱B.一个棱柱中截去一个圆柱C.一个棱柱中截去一个棱锥D.一个棱柱中截去一个棱台该组合体的结构特征是一个棱柱中截去一个棱锥.C5.正方形绕其一条对角线所在直线旋转一周,所得几何体是( )A.圆柱 B.圆锥 C.圆台 D.两个圆锥连接正方形的两条对角线知对角线互相垂直,故绕对角线旋转一周形成两个圆锥.D6.如图1-1-18所示的蒙古包可以看作是由________和________构成的几何体.图1-1-18上半部分为圆锥,下半部分为圆柱.圆锥圆柱7.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线,可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体,其中说法正确的是________.(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.(1)(2)。

人教版高中数学必修二第一章第一节空间几何体的结构

人教版高中数学必修二第一章第一节空间几何体的结构
E1 F1 A 1 B1
D1 C1
侧 面
E
侧棱 F
D
C B
底面
棱柱的判断标准, 缺一不可。
A
顶点
下面的几何体中,哪些是棱柱?
问题一:棱柱倾斜后的几何体还是棱柱吗?
D
B
倾斜不影响棱柱 的特点与性质。
E
F A
C
E
F
D
C
A
B
问题二:观察长方体共有多少对平行平面?
平行平面共有三对,任意一 对平行平面都可以作为棱柱的 底面。 观察左边的棱柱,共有多少 对平行平面?能作为棱柱的底面 的有几对?
一般地,我们把由若干个平面多边形围成的 几何体叫做多面体。
多面体
旋转体
顶点 棱
D1 A1 B1
C1
A′
O′


C B
A O

由一个平面图形绕它所在平面内的一条 直线旋转所形成的封闭几何体叫做旋转体。 这条定直线叫做旋转体的轴。
例如:
练习:判断下列图形是否为多面体?
那你能对这些多面体进行分类吗?
1.1 空间几何体的结构
人教版 必修2
下列实物可以用哪个空间图形来描述?

如果我们只考虑这些物体的形状和大小,而不考 虑其他因素,那么由这些物体抽象出来的空间图形 就叫做空间几何体。
观察课本第二页图1.1-1,说出它属于哪种空 间几何体,并根据组成几何体的每个面的特点 进行分类。 通过观察,可以发现: (2)、(5)、(7)、(9)、(13)、 (14)、(15)、(16)组成几何体的每个面都 是平面多边形。 (1)、(3)、(4)、(6)、(8)、 (10)、(11)、(12)组成几何体的每个面不 全是平面图形。

【原创】【必修2】空间几何体的结构 第三节

【原创】【必修2】空间几何体的结构 第三节

转一周形成的旋转体.
O
球O
直径
半径 球心
多面体: 若干个平面多边形围成的几何体 面----围成多面体的各个多边形 棱----相邻两个面的公共边 侧棱----相邻两个侧面的公共边 顶点-----棱与棱的公共点
棱纳小结
棱柱 棱锥 圆柱 圆锥 圆台 棱台

(1)棱柱与圆柱统 称为柱体。
(2)棱锥与圆锥统 称为锥体。
(3)棱台与圆 台统称为台体
实例 归纳小结
棱柱 棱锥 圆柱 圆锥 圆台 棱台

结构特征
E’
D’
F’ A’
C’ B’
有两个面互相平行,
其余各面都是四边形, 并且每相邻两个四边形 的公共边都平行。
底 面
ED
侧棱 F
C
A
B
侧面
顶点
棱柱ABCDEF ABCDEF
棱柱 棱锥 圆柱 圆锥 圆台 棱台

E’
观察与思考
空间几何体的定义:
如果只考虑物体的形状和大小,而不考虑 其它因素,那么这些由物体抽象出来的空间图 形就叫做空间几何体
观察与思考
由若观干察平下面列多物边体形的围形成状的和几大何小体,叫试做给多出面相体 应的空间几何体,说说有它们的共同特征。

观察与思考
由观一察个下平列面物图体形的绕形它状所和在大的小平,面试内给的出一相条 定应直的线空旋间转几所何成体的,封说闭说几有何它体们叫的做共旋同转特体征.。
侧面
圆台OO
上底面 母线
O’ O
下底面
棱柱 棱锥 圆柱 圆锥 圆台 棱台

结构特征
用一个平行于棱
D’
锥底面的平面去截棱
D

人教版高中数学必修二《1.1空间几何体的结构》

人教版高中数学必修二《1.1空间几何体的结构》
1.1空间几何体的结构
(第一课时)
引入
在我们的周围存在着各种各样的物体,它们都 占据着空间的一部分,如果我们只考虑这些物体 的形状和大小,而不考虑其他因素,那么由这些 物体抽象出来的空间图形就叫做空间几何体.
生活到数学
你能将下列物体抽象出相应的空间几何体吗?
(1)
(2)
(3)
(4)
(5)
(6)
(7)
第二次“寻同找异” 多面体
共同结 构特征 (从面 的形状 结 考虑) 构 特 不同结 征 构特征 (从面 的形状 考虑)
每个面都是平面多边形
棱柱
棱台 棱锥
第三次“寻同找异”
思考:你能找出棱柱的共同结构特征吗?(从面的形状 考虑)
有两个面是多边形,其余各面都是平行四共同 结构 特征 有两个面是多 有两个面互 边形,其余各 相平行,其余各 面都是平行四 面都是四边形, 边形 并且每相邻两个
选做题:你能以运动的观点来认识棱柱 吗?借此你能通过运动的观点来描述空 间几何体中除多面体之外的另一类几何 体吗?
祝同学们 学习进步!
四边形的公共边 都互相平行,由 两个多边形面平 这些面所围成的 行,其余各面是 多面体叫棱柱.
棱锥
棱台
结 构 特 征
面 的 位 置
每相邻两个四边 形的公共边平行 的相交 底面是三角形、 四边形、五边 形…的棱柱分别 叫做三棱柱、四 棱柱、五棱柱…
不同 结构 特征
底 面 的 形 状
底面
侧面 侧棱 顶点 棱柱中,两个互相平行的面叫做棱柱的底面. 其余各面叫做棱柱的侧面. 两个侧面的公共边叫做棱柱的侧棱. 侧面与底面的公共顶点叫做棱柱的顶点.
第三次“寻同找异”
棱柱 文 字 语 言 共 同 结 构 特 征

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

最新人教版高中数学必修2第一章《空间几何体的结构》互动课堂

最新人教版高中数学必修2第一章《空间几何体的结构》互动课堂

互动课堂疏导引导1.棱柱的结构特征棱柱是多面体中最简单的一种,对棱柱的概念应正确理解,准确把握,它有两个本质特征:(1)有两个面(底面)互相平行,(2)其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.因此,棱柱有两个面互相平行,其余各面都是平行四边形.但是要注意“有两个面互相平行,其余各面都是平行四边形的几何体”不一定是棱柱,如图所示的几何体有两个面平行,其余各面都是平行四边形,但不满足“每相邻两个侧面的公共边互相平行”,所以它不是棱柱. 案例1 下列命题中正确的是( )A.四棱柱是平行六面体B.直平行六面体是长方体C.六个面都是矩形的六面体是长方体D.底面是矩形的四棱柱是长方体【探究】 四个侧面都是矩形的棱柱是直平行六面体,两个底面是矩形的直平行六面体是长方体.故选C.【规律总结】 在四棱柱中,有以下关系应掌握好.直平行六面体−−−→−底面是矩形长方体−−−−→−底面是正方形正四棱柱−−→−棱相等正方体2.棱锥的结构特征(1)棱锥是多面体中重要的一种,它有两个本质特征:①有一个面是多边形;②其余的各面是有一个公共顶点的三角形,二者缺一不可.因此棱锥有一个面是多边形,其余各面都是三角形.但是要注意“有一个面是多边形,其余各面都是三角形”的几何体未必是棱锥,如图此多面体有一面是四边形,其余各面都是三角形,但它不是棱锥.一个棱锥至少有四个面,所以三棱锥也叫四面体.(2)特殊的棱锥——正棱锥如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心,这样的棱锥叫正棱锥.判断一棱锥是否是正棱锥必须满足下面两个条件:一是底面是正多边形,二是顶点在底面上的射影必是底面正多边形的中心.这也是掌握正棱锥定义的两个要点.案例2 请探究一下什么样的平面图形可以折叠成正方体,什么样的平面图形可以折叠成四个面都是全等三角形的三棱锥.【探究】 构成正方体的平面图形有很多种,可以用硬纸板先粘一个正方体,再分解.举例说明:如图1、图2.图1 图2这样的图还有很多,同学们可以多做几个,练习空间想象能力.如图3,一个正三角形有三条中位线分开可以折成所求的图形,还有另外几种.图3【规律总结】 学习棱柱、棱锥应该从最简单的情况入手,正方体、正四面体正是最理想的载体,这个问题主要要求把握多面体的基本情况,运用纸张折叠,结合想象,掌握这两类简单几何体的性质与构成.3.圆柱、圆锥、圆台、棱台的结构特征定义:①以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.②以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥.③用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的几何体叫做棱台. ④用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几何体叫做圆台. 疑难疏引 (1)对于棱台,应明确:①棱台的侧棱延长后相交于一点,否则,一定不是棱台;②棱台的上、下底面是相似多边形,且相互平行;③棱台的侧面是梯形;④过棱台的侧棱的截面是梯形.(2)圆柱、圆锥、圆台是从平面图形旋转来定义的,由于用来旋转的平面图形的不同,得到三种不同的旋转体.一定要注意它们旋转形成的过程,不能简单地说以直角三角形的一边为轴旋转形成的几何体叫圆锥,也不能说以直角梯形的一腰为轴旋转形成的几何体叫圆台,必须具体指出哪条边为轴才可以.从圆柱、圆锥、圆台的形成过程可以看出,它们的轴一定垂直于底面.并且平行于底面的截面都是圆;它们的轴截面分别是全等的矩形、等腰三角形、等腰梯形.(3)柱、锥、台的关系当圆台的上底逐渐变小,半径趋近于零时,圆台趋向于圆锥;当圆台上底逐渐变大,半径与下底半径相同时,圆台变为圆柱.同样的,棱台、棱锥、棱柱也有这样的关系. 案例3 将圆台还原成圆锥,圆锥的轴截面图如图,O 2、O 1、O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥顶点,并令VO 2=h ,O 2O 1=h 1,O 1O=h 2,则,417151211h h h h h h h h h =⇒⎪⎪⎭⎪⎪⎬⎫=++=+h 2=2h ⇒h 1∶h 2=2∶1.【规律总结】 “还台为锥”是解决棱台及圆台问题的常用方法.4.球的结构特征疑难疏引 (1)球是一种常见的几何体.球与棱柱、棱锥等多面体不同,它是一种旋转体,是由半圆绕着它的直径旋转来定义的.它只有一个面,即整个球面.从球的概念中,可以知道球面上任何一点到球心(即半圆的圆心)的距离都等于定长;反过来,凡是到球心的距离等于定长的点都在球面上.我们在初中阶段已经知道“在一个平面内和一定点的距离等于定长的点的集合(点的轨迹)是一个圆”,把这个定理推广到空间,就是“和一定点距离等于定长的点的集合是一个球面”.(2)球和球面是两个不同的概念,球面仅仅指球的表面,而球(球体)不仅包括球的表面,同时还包括球面所包围的空间.因此,用一个平面去截一个球,截面是圆面;而用一个平面去截一个球面,截面是圆.(3)球的截面性质①球心和截面圆心的连线垂直于截面;②球心到截面的距离d 与球的半径R 及截面圆的半径r 有如下关系:22d R r -=(如上图)(4)球与其他几何体形成的组合体问题球与其他几何体组成的几何体通常在试题中以相切或相接的形式出现,解决此类问题常常利用截面来表现这两个几何体之间的关系,从而将空间问题转化成平面问题.作适当的截面(如轴截面等),对于球内接长方体、正方体,则截面一要过球心,二要过长方体或正方体的两条对角线,才有利于解题.案例4 用一个平面截半径为5 cm 的球,球心到载面距离为4 cm ,求截面圆的面积.【探究】 如图,设AK 为截面圆的半径,则OK ⊥AK.在Rt △OAK 中,OA=5,OK=4. ∴3452222=-=-=AK OA AK (cm)∴截面圆的面积为π×32=9π cm 2.【规律总结】 有关球的计算问题,画出球的大圆截面图即可.案例5 如图所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和.【探究】 此题的关键在于作截面.一个球在正方体内,一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如右图的截面图.球心O 1和O 2在AC 上,过O 1、O 2分别作AD 、BC 的垂线交于E 、F 两点.则由AB=1,AC=3,得AO 1=3r,CO 2=3R.∴r+R+3 (r+R)=3. ∴233133-=+=+r R . 【规律总结】 解决有关组合体的计算问题,灵活而巧妙地作出截面图是关键.5.简单组合体的结构特征(1)现实生活中,除了柱、锥、台、球等基本几何体外,还有许多几何体是由柱、锥、台、球等基本几何体组合而成,这些几何体叫组合体.(2)我们可以把日常生活中的房屋、机械零件、日常用品等分解成简单几何体,并用简单几何体的性质进行分析度量.如,求螺母、螺栓的体积、面积等.案例 6 (1)连结正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.(2)连结上述所得的几何体的相邻各面的中心,试问所得的几何体又是几面体?【探究】 连结相应点后,得出图形如图,再作出判断.(1)先画出正方体,然后取各个面的中心,并依次连成线观察即可.如图,正方体ABCD-A 1B 1C 1D 1,O 1、O 2、O 3、O 4、O 5、O 6分别是各表面的中心.由点O 1、O 2、O 3、O 4、O 5、O 6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图中的右图所示.(2)六面体(正方体).【规律总结】 为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O 1O 5、O 6O 5、O 5O 2、O 5O 4应画成虚线.本题中的八面体,事实上是正八面体——八个面都是有相同边数的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.事实上,由正方体的部分顶点可构成多种形状的简单几何体.如多面体ACB1D1便为四面体,即三棱锥,它是面数最少的空间几何体,而且该四面体也是正四面体;又如多面体A1ABD也是四面体,它是一个直角四面体,它也可看作是由正方体截下一个角所得的几何体,且截面是一个锐角三角形.案例7 在图中找出常见的几何体(至少3种),并画出来.【探究】从所给图形知,其中包含着圆柱、圆锥、圆台和球,因此只要画出这些简单几何体即可,画图时注意体现立体感,即被挡着的线应画成虚线或不画.如图所示:【规律总结】空间中的图形多种多样,要识别它们需要对基本图形,如柱、锥、台、球有正确的认识,熟记定义,学会用定义进行判断、查找.特别是对简单几何体应相当熟悉,把握各自的特征,能从整体中分离出个体.活学巧用1.在棱柱中( )A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行解析:由棱柱的结构特征知D正确.答案:D2.请思考如下问题:长方体是柱体吗?哪个面是底面?如果是柱体,是哪类棱柱?长方体有什么特点?正方体呢?解析:长方体是棱柱,是四棱柱,所有面都是矩形,三对对面都可以看作底面,另外四个面看作侧面.正方体更特殊,所有棱都相等,侧面都是全等的正方形.正方体也叫正六面体,它有6个面,12条棱,8个顶点.3.斜四棱柱侧面最多可有几个面是矩形( )A.0个B.1个C.2个D.3个解析:如图所示.在斜四棱柱AC′中,若AA′不垂直于AB,则DD′也不垂直于DC,所以四边形ABB′A′和四边形DCC′D′就不是矩形.答案:C4.下列命题中正确的是( )A.有一条侧棱与底面两边垂直的棱柱是直棱柱B.有一个侧面是矩形的棱柱是直棱柱C.有两个侧面是矩形的棱柱是直棱柱D.有两个相邻侧面是矩形的棱柱是直棱柱解析:两个相邻侧面的公共边是棱柱的侧棱.它分别垂直于矩形的两条相交的边,也就垂直于这两条边所在的底面,根据定义,棱柱是直棱柱.答案:D5.判断图中所示物体是不是锥体,为什么?解析:因为棱锥定义中要求:各侧面有一个公共顶点,但图中侧面ABC与CDE则没有公共顶点,故该物体不是锥体.6.在四棱锥的四个侧面中,直角三角形最多可有__________个.( )A.1B.2C.3D.4解析:在如图所示的长方体ABCD—A1B1C1D1中,取四棱锥A1—ABCD,则此四棱锥的四个侧面都是直角三角形.答案:D7.下列命题中正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点解析:如图,面ABC∥面A1B1C1,但图中的几何体每相邻两个四边形的公共边并不都互相平行,故不是棱柱.A、B都不正确.棱锥是有一个面是多边形,其余各面都是有一个公共顶点的三角形即必须有一个公共顶点的几何体.如图,每个面都是三角形但形成的几何体不是棱锥.C不正确.棱台是用一个平行于底面的平面去截棱锥而得到,其各侧棱的延长线必交于一点,故D是正确的.答案:D8.下列命题中的真命题是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径解析:以直角梯形垂直于底的腰为轴旋转所得的旋转体是圆台,所以B不对;圆柱、圆锥、圆台的底面都是圆面而不是圆,所以C不对;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D不对.答案:A9.有下列命题:(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)解析:由母线的定义知(2)(4)正确.答案:D10.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆.其中正确命题的个数为( )A.0B.1C.2D.3解析:命题①、②都对,命题③一个平面与球相交,其截面是一个圆面.答案:C11.有下列说法:①球的半径是球面上任意一点与球心的连线段;②球的直径是球面上任意两点间的连线段;③用一个平面截一个球,得到的是一个圆;④不过球心的截面截得的圆叫做小圆.其中正确命题的序号是__________。

新人教版高中数学必修二全册教学课件ppt

新人教版高中数学必修二全册教学课件ppt

答案
返回
题型探究
重点难点 个个击破
类型一 旋转体的结构特征 例1 判断下列各命题是否正确: (1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线; 解 错. 由圆柱母线的定义知,圆柱的母线应平行于轴.
解析答案
(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几 何体是圆台; 解 错. 直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与 一个圆锥组成的简单组合体,如图所示.
答案
球的结构特征

图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?


上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆
柱是怎样形成的呢?与圆柱有关的几个概念是
为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转
体叫做圆台
相关概念:
圆台的轴: 旋转轴
圆台的底面: 垂直于轴 的边旋转一周所形成的圆面
圆台的侧面: 不垂直于轴 的边旋转一周所形成的曲面 图中圆台表示为:
母线:无论旋转到什么位置,不垂直于轴的边

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计空间几何体的结构是新课程立体几何的重要组成部分之一。

该课程的设计思想是以培养学生的几何直观能力、抽象概括能力、合情推理能力和空间想象能力为指导思想,运用建构主义教学原理,通过观察实物抽象出空间图形、用文字描述空间图形和用数学语言定义空间图形的三部曲来构建课堂主框架。

整个设计旨在增强学生参与数学研究的意愿,提高学生自主研究、分析问题和解决问题的能力,培养学生合作研究的意识。

空间几何体是在土木建筑、机械设计、航海测绘等实际问题中广泛应用的基础内容。

与传统的立体几何体系相比,人教A版对立体几何的体系结构作了重大改革。

新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面。

这种安排降低了立体几何研究入门难的门槛,强调几何直观,淡化几何论证,可以激发学生研究立体几何的兴趣。

本节课的教学方法主要为观察、比较、分析、抽象概括、讨论和实践操作。

教学手段包括图片、实物模型、板书、PPT等多种形式。

在教学过程中,教师应该注重引导学生观察、思考、提问和交流,鼓励学生自主探究,培养学生的创新意识和思考能力。

本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节。

课标要求学生认识柱、锥、台、球及其简单组合体的结构特征,并能应用这些特征描述现实生活中简单物体的结构,发展几何直观能力。

教材首先让学生观察现实世界中的实物图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征。

《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时。

本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于研究的深度和概括程度。

笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理。

高中数学必修二全册课件ppt人教版

高中数学必修二全册课件ppt人教版

解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱

平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……

最新人教版高中数学必修2第一章《空间几何体的结构》温故知新

最新人教版高中数学必修2第一章《空间几何体的结构》温故知新

第一章空间几何体1.1 空间几何体的结构温故知新新知预习1.有两个面互相平行,其余面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做__________.两个互相平行的面叫做棱柱的__________,简称__________,其余各面叫做棱柱的__________,相邻侧面的公共边叫做棱柱的__________,侧面与底面的公共顶点叫做棱柱的__________.2.有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的几何体叫做__________.棱锥中的多边形叫做棱锥__________,有公共顶点的三角形叫做棱锥的__________,相邻侧面的公共边叫做棱锥的__________,棱锥中各侧面的公共点叫做棱锥的__________.3.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫__________,简称球.4.由柱、锥、台、球等基本几何体组成的几何体叫__________.知识回顾生活链接蜜蜂筑造蜂房蜂房的结构不仅有条理、有对称性,而且最省材料,这种“最省”实际上是极值问题.历史上不少学者注意到蜂房的奇妙结构.蜂房上有许多巢,取一个巢来看,它是底面为正六角形的多面体,其上底是由三个全等的菱形组成(如图所示).早在公元300年前后,亚历山大的巴普士就研究过蜂房的形状,他认为六棱柱的巢的结构是最经济的结构.开普勒曾说过这种充满空间的对称的蜂房的角应该和菱形12面体(各个面都是菱形的12面体)的角一样.18世纪法国天文学家马拉尔弟经过实际测量后指出蜂巢顶部菱形的两角分别是109°28′和70°32′.1743年,美国数学家马克劳林用初等数学方法得到菱形的钝角是109°28′16′,锐角是70°31′44′,与实际的测量的值一致.。

最新人教版数学必修2第一章1.1空间几何体的结构课件资料讲解

最新人教版数学必修2第一章1.1空间几何体的结构课件资料讲解

1、定义:以直角三角形的直角边所在直
S
线为旋转轴,其余两边旋转而成的曲面所
围成的几何体叫做圆锥。
直角三角形 (1)旋转轴叫做圆锥的轴。
O
A
(2) 垂直于轴的边旋转而成
的曲面叫做圆锥的底面。
(3)不垂直于轴的边旋转而 成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置不 垂直于轴的边都叫做圆锥的母线。
2、圆锥的表示
二、棱锥的结构特征
观察下列几何体,有什么相同点?
1、棱锥的概念
有一个面是多边形,其余各面是有一 个公共顶点的三角形, 由这些面所围成 的几何体叫做棱锥。
这个多边形面叫做棱锥的底面。
有公共顶点的各个三角形叫 做棱锥的侧面。
各侧面的公共顶点叫做 棱锥的顶点。
相邻侧面的公共边叫做棱锥 的侧棱。
S
棱锥的顶点
棱锥的侧棱
D
棱锥的侧面
E A
C 棱锥的底面
B
S
A
BC
D
2、棱锥的分类: 按底面多边形的边数,可以分为三
棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如棱锥S-ABCD。
三、圆柱的结构特征
O1
矩形
O
1、定义:以矩形的一边所在直 线为旋转轴,其余三边旋转形成的 曲面所围成的几何体叫做圆柱。
一、 观察下列几何体并思考:具备哪 些性质的几何体叫做棱柱?
D1
C1
A1
B1
A1
C1 B1
A1 B1
E1 D1 C1
D A
C BA
C A
BB
E D
C
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。

2020最新人教版高一数学必修2电子课本课件【全册】

2020最新人教版高一数学必修2电子课本课件【全册】

第一章 空间几何体
2020最新人教版高一数学必修2电 子课本课件【全册】
1.1 空间几何体的结构
2020最新人教版高一数学必修2电 子课本课件【全册】
1.2 空间几何体的三视图和直 观图
2020最新人教版高一数学必修2电 子课本课件【全册】
阅读与思考 画法几何与蒙日
2020最新人教版高一数学必修2电 子课本课件【全册】
1.3 空间几何体的表面积与体 积
2020最新人教版高一数学必修2电 子课本课件【全册】
探究与发现 祖暅原理与柱体 、椎体、球体的体积
2020最新人教版高一数学必修2电 子课本课件【全册】
实习作业
2020最新人教版高一数学必修2 电子课本课件【全册】目录

0002页 0092页 0189页 0301页 0354页 0407页 0472页 0474页 0498页 0540页 0556页 0586页 0772页 0827页 0882页 0935页
第一章 空间几何体 1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积 实习作业 复习参考题 2.1 空间点、直线、平面之间的位置关系 2.3 直线、平面垂直的判定及其性质 小结 第三章 直线与方程 探究与发现 魔术师的地毯 3.3 直线的交点坐标与距离公式 小结 第四章 圆与方程 阅读与思考 坐标法与机器证明 4.3 空间直角坐标系 小结
2020最新人教版高一数学必修2电 子课本课件【全册】
小结
2020最新人教版高一数学必修2电 子课本课件【全册】

人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构教案(3)

人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构教案(3)

1.1 空间几何体的结构教案教学目标:1.知识目标: 能根据几何结构特征对空间物体进行分类;掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;2.能力目标:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。

3.情感目标:通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:七种空间几何体的结构特征。

教学难点:七种空间几何体的分类及简单组合体的判断。

教学方式:多媒体教学过程:一、知识回顾1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?二、知识探究思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型?思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?(多面体)思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?(旋转体)空间几何体的定义:如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体。

多面体的是定义:由若干平面多边形围成的几何体叫做多面体。

旋转体的定义:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.三、几种基本空间几何体的结构特征1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。

新人教版高中数学必修二全册课件ppt

新人教版高中数学必修二全册课件ppt

(1)三棱柱有 6 个顶点,三棱锥有 4 个顶点;
(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的
母线;
本 课
(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几
时 栏
何体是圆台;

(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角
开 关
做圆柱侧面的母线.圆柱用表示它的轴的字母表示,如下图中的圆
柱表示为圆柱 O′O.
研一研·问题探究、课堂更高效
问题 2 如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截 面分别是什么图形?



栏 目
答 分别是圆面、矩形.


研一研·问题探究、课堂更高效
探究点二 圆锥的结构特征 问题 1 类比圆柱的定义,结合下图你能给圆锥下个定义吗?
5.简单组合体
(1)概念:由 简单几何体 组合而成的几何体叫做简单组
合体.常见的简单组合体大多是由具有柱、锥、台、球等


几何结构特征的物体组成的.


(2)基本形式:一种是由简单几何体 拼接 而成,另一种是


由简单几何体 截去 或 挖去 一部分而成.

研一研·问题探究、课堂更高效
[问题情境]

举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形
课 时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我

们就来学习旋转体与简单组合体的结构特征.

研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征

(完整版)人教版高中数学必修二空间几何体

(完整版)人教版高中数学必修二空间几何体

1.1空间几何体的结构1.1.1棱柱、棱锥、棱台的结构特征[提出问题]观察下列图片:问题1:图片(1)(2)(3)中的物体的形状有何特点?提示:由若干个平面多边形围成.问题2:图片(4)(5)(6)(7)的物体的形状与(1)(2)(3)中有何不同?提示:(4)(5)(6)的表面是由平面与曲面围成,(7)的表面是由曲面围成的.问题3:图片(4)(5)(6)(7)中的几何体是否可以看作平面图形绕某定直线旋转而成?提示:可以.[导入新知]1.空间几何体概念定义空间几在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考何体虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴2.多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCD-A′B′C′D′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底面的公共顶点棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S-ABCD底面(底):多边形面侧面:有公共顶点的各个三角形面侧棱:相邻侧面的公共边顶点:各侧面的公共顶点棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面下底面:原棱锥的底面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点[化解疑难]1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分.2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1](1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析](1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]1.下列四个命题中,假命题为()A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D是正确的.棱锥、棱台的结构特征[例2](1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析](1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[活学活用]2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.多面体的平面展开图[例3]如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.2C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.1.柱、锥、台结构特征判断中的误区[典例]如图所示,几何体的正确说法的序号为________.(1)这是一个六面体;(2)这是一个四棱台;(3)这是一个四棱柱;(4)此几何体可由三棱柱截去一个三棱柱得到;(5)此几何体可由四棱柱截去一个三棱柱得到.[解析](1)正确,因为有六个面,属于六面体的范围;(2)错误,因为侧棱的延长线不能交于一点,所以不正确;(3)正确,如果把几何体放倒就会发现是一个四棱柱;(4)(5)都正确,如图所示.[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:选A如图∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.[随堂即时演练]1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:选D由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=2012,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.[课时达标检测]一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:选D对于A,如正方体可以有六个面平行,故A错;对于B,如长方体并不是所有的棱都相等,故B错;对于C,如三棱柱的底面是三角形,故C错;对于D,由棱柱的概念,知两底面平行,侧棱也互相平行.故选D.4.(2011·广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 57.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定三、解答题9.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)是上海世博会中国馆,其主体结构是四棱台.(2)是法国卢浮宫,其主体结构是四棱锥.(3)是国家游泳中心“水立方”,其主体结构是四棱柱.(4)是美国五角大楼,其主体结构是五棱柱.10.(2011·山东高考改编)给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的1,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三4角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.1.1.2圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征旋转体[提出问题]如图,给出下列实物图.问题1:上述三个实物图抽象出的几何体与多面体有何不同?提示:它们不是由平面多边形围成的.问题2:上述实物图抽象出的几何体中的曲面能否以某平面图形旋转而成?提示:可以.问题3:如何形成上述几何体的曲面?提示:可将半圆、直角梯形、直角三角形绕一边所在直线为轴旋转而成.[导入新知]旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆柱OO′圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆锥SO圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为圆台OO′球以半圆的直径所在直线为旋转轴,半圆面旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为球O[化解疑难]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的中线所在的直线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[提出问题]中国首个空间实验室“天宫一号”于2011年9月29日16分成功发射升空,并与当年11月与“神舟八号”实现无人空间对接,下图为天宫一号目标飞行器的结构示意图.其主体结构如图所示:问题1:该几何体由几个几何体组合而成?提示:4个.问题2:图中标注的①②③④部分分别为什么几何体?提示:①为圆台,②为圆柱,③为圆台,④为圆柱.[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径,其中正确说法的序号是________.[解析](1)不正确,因为当直角三角形绕斜边所在直线旋转得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;(2)正确,以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)正确,如图所示,经过圆锥任意两条母线的截面是等腰三角形;(4)正确,如图所示,圆锥侧面的母线长有可能大于圆锥底面圆半径的2倍(即直径).[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]1.给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.解析:(1)正确,圆柱的底面是圆面;(2)正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;(3)不正确,圆台的母线延长相交于一点;(4)不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.答案:(1)(2)简单组合体[例2]观察下列几何体的结构特点,完成以下问题:(1)图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①;(2)图②所示几何体结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②;(3)图③所示几何体是由哪些简单几何体构成的?并说明该几何体的面数、棱数、顶点数.[解析](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]2.下列组合体是由哪些几何体组成的?解:(1)由两个几何体组合而成,分别为球、圆柱.(2)由三个几何体组合而成,分别为圆柱、圆台、圆柱.(3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.1.旋转体的生成过程[典例]如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程]分别以边AD、AB、BC、CD所在直线为旋转轴旋转已知四边形ABCD为直角梯形以边AD所在直线为旋转轴旋转―→以边AB所在直线为旋转轴旋转―→以边CD所在直线为旋转轴旋转―→以边BC所在直线为旋转轴旋转[规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图(1)所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图(2)所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图(3)所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图(4)所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图(3)所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.[随堂即时演练]1.(2012·临海高一检测)圆锥的母线有()A.1条B.2条C.3条D.无数条答案:D2.右图是由哪个平面图形旋转得到的()解析:选A图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.3.等腰三角形绕底边上的高所在直线旋转180°,所得几何体是________.答案:圆锥4.如图所示的组合体的结构特征为________.解析:该组合体上面是一个四棱锥,下面是一个四棱柱,因此该组合体的结构特征是四棱锥和四棱柱的一个组合体.答案:一个四棱锥和一个四棱柱的组合体5.如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.解:如图所示,这个组合体是由一个圆锥和一个半球体拼接而成的.[课时达标检测]一、选择题1.下列命题中正确的是()①圆锥的轴截面是所有过顶点的截面中面积最大的一个;②圆柱的所有平行于底面的截面都是圆;③圆台的两个底面可以不平行.A.①②B.②C.②③D.①③解析:选B①中当圆锥过顶点的轴截面顶角大于90°时,其面积不是最大的;③圆台的两个底面一定平行.故①③错误.2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥解析:选D从较短的底边的端点向另一底边作垂线,两条垂线把等腰梯形分成了两个直角三角形,一个矩形,所以一个等腰梯形绕它的较长的底边所在直线旋转一周形成的是由一个圆柱,两个圆锥所组成的几何体,如图:3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3解析:选B①中应以直角三角形的直角边所在直线为轴,②中应以直角梯形中的直角腰所在直线为轴,④中应用平行于底面的平面去截,③正确.5.如图所示的几何体,关于其结构特征,下列说法不.正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:选D该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.二、填空题6.下列7种几何体:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转体
我们把由一个平面图形绕它所在 平面内的一条定直线旋转形成的 封闭几何体叫做旋转体。
圆锥
圆柱 球
为台体。
圆锥与棱锥统 称为锥体。

圆柱、圆锥、圆台的性质
1、底面都是圆
并且平行于底面的截面都是 圆
2 圆柱、圆锥、圆台过轴的截 面(轴截面)分别是矩形、等腰 三角形、等腰梯形
5、下列表达不正确的是(
B )
A 用平行于圆锥底面的平面截圆锥, 截面和底面之间的部分是圆台 B 以直角梯形的一腰为旋转轴, 另一腰为母线的旋转面是圆台的侧面 C 圆柱、圆锥、圆台的底面都是圆.
D 圆台的母线延长后与轴交于同一点
6、有下列命题: (1)在圆柱的上下底面圆周上各取一点, 则这两点的连线是圆柱的母线; (2)圆锥顶点与底面圆周上任意一点的 连线是圆锥的母线; (3)在圆台上下底面的圆周上各取一点, 则这两点的连线是圆台的母线; (4)圆柱的任意两条母线所在的直线 是互相平行的。 其中正确的是( D ) A(1)(2) B(2)(3) C(1)(3) D (2)(4)
(1)
(2)
(3)
(4)
练习一 1、一个等腰梯形绕着两底边中点的 连线所在的直线旋转180度形成的封闭 圆台 曲面所围成的几何体是______ 2.一个矩形绕着一边的中垂线旋转 180度形成的封闭曲面所围成的几何体 圆柱 是____
3、一个等腰三角形绕着底边上的 高所在的直线旋转180度形成的封闭曲 圆锥 面所围成的几何体是__
把一个圆锥截成 圆台,已知圆台的上、 下底面半径的比是1:4,母线长为10cm, A 求圆锥的母线长。
解:

设圆锥的母线长为 y ,则有 (y-10):y= OD : OB 1: 4
D
O
E
4(y-10)=y
B
O
C
40 y (cm) 3 40 答:圆锥的母线长为 cm. 3
10cm D
圆柱、圆锥、圆台的关系
圆 柱
上底面变小 上底面扩大到 与下底面相等
圆 上底面缩小到一个点 圆 台 锥 上底面扩大
柱、锥、台、球的结构特征.gsp
圆:
在一个平面内,到定点的
距离等于定长的点的集合
O
球面: 在空间中,到定点的距
离等于定长的点的集合
(2)
2. 说出下列图形绕虚线旋转一周,可 以形成怎样的几何体?
1.棱柱的定义:
有两个面互相平行,其余各面都是四边形,并
且每相邻两个四边形的公共边都互相平行,由
这些面所围成的几何体叫做棱柱。
2.棱锥的定义
有一个面是多边形,其余各面是有一个公共 顶点的三角形, 由这些面所围成的多面体叫 做棱锥。
3、棱台的概念:
用一个平行于棱锥底面的平面去截棱锥, 底面和截面之间的部分叫做棱台。
A
O
E
B
O
C
小结:
圆柱、圆锥、圆台、球的结构特征
课后练习 P8 练习 2 P10 习题 2 作业:
把一个圆锥截成圆台,截去的圆锥与圆 台的母线长比为2:1,圆台的上底面半径为 6cm,问下底面半径比上底面半径多多少?
4.下列表达不正确的是 ( B ) A 以矩形的一边所在直线为旋转轴,其余 三边旋转形成的曲面所围成的几何体叫圆柱 B 以直角三角形的一条边所在直线为旋转 轴,其余两边旋转形成的曲面围成的几何体 叫圆锥 C 以直角三角形的一条直角边所在直线为 旋转轴,其余两边旋转形成的曲面围成的几 何体叫圆锥 D 以等腰三角形的底边上的高所在直线为旋 转轴,其余各边旋转形成的曲面围成的几何 体叫圆锥
相关文档
最新文档