电磁场与电磁波(第4版)习题第4章
电磁场与电磁波(第4版)第4章部分习题参考解答
GG G G G G − j(k x + k y + k z ) ∇ 2 E (r ) = E0∇ 2 e − jk ⋅r = E0∇ 2 e x y z
G ⎛ ∂2 ∂2 ∂ 2 ⎞ − j(k x + k y + k z ) = E0 ⎜ 2 + 2 + 2 ⎟ e x y z ⎝ ∂x ∂y ∂z ⎠ G − j(k x + k y + k z ) G G 2 = (− k x2 − k y − k z2 ) E0 e x y z = − k 2 E (r ) G G G G 代入方程 ∇ 2 E (r ) + ω 2 με E (r ) = 0 ,得 G G − k 2 E + ω 2 με E = 0
G G ω ∂2 ω G (3) ∇ 2 E = ey E0∇ 2 cos(ωt + z ) = ey E0 2 cos(ωt + z ) ∂z c c
ω G ω = −ey ( ) 2 E0 cos(ωt + z ) c c
G ∂2 E G ∂2 ω ω G = e E cos(ωt + z ) = −eyω 2 E0 cos(ωt + z ) y 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ey ( ) 2 E0 cos(ωt + z ) − 2 ⎢ −e yω 2 E0 cos(ωt + z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦
电磁场与电磁波(第四版)习题解答
电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。
解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
《电磁场与电磁波》(第四版)课后习题解答(全)
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波 第4章 静态场的边值问题
设 q’ 距球心为b,则 q 和 q’ 在球外 任一点(r,,)处产生的电位为
第四章 静态场的边值问题
1 ( q q) 4π 0 R R
1(
q
4π 0 r 2 d 2 2rd cos
q
)
r 2 b2 2rb cos
径为a 的圆的反演点。
第四章 静态场的边值问题
将式(4-2-3)代入(4-2-2),可得球外任意点(r,,)的电位
q (
1
a
)
4π 0 r 2 d 2 2rd cos d r 2 b2 2rb cos
(4-2-5)
若导体球不接地且不带电,则当球外放置点电荷 q 后,它的
电位不为零,球面上净电荷为零。此情形下,为满足边界条件,
第四章 静态场的边值问题
第四章 静态场的边值问题
在给定的边界条件下求解泊松方程或拉普拉斯方程称为边 值问题。根据场域边界面上所给定的边界条件的不同,边值问 题通常分为 3 类:
第一类边值问题,给定位函数在场域边界面上的值; 第二类边值问题,给定位函数在场域边界面上的法向导数值; 第三类边值问题又称混合边值问题,一部分边界面上给定的 是位函数值,另一部分边界面上给定的是位函数的法向导数 值。
4.3.1 直角坐标系中的分离变量
直角坐标系中,标量拉普拉斯方程为
2 2 2
0 x2 y2 z2
(4-3-1)
第四章 静态场的边值问题
设 (x,y,z) = X (x)Y(y)Z(z),代入方程(4-3-1),整理可得
1 X
d2 X dx2
1 Y
d 2Y dy2
1 Z
d2Z dz2
电磁场与电磁波课后习题及答案四章习题解答
如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
电磁场与电磁波第四课后思考题答案第四版全谢处方饶克谨高等教育出版社
电磁场与电磁波第四课后思考题答案第四版全谢处⽅饶克谨⾼等教育出版社2.1点电荷的严格定义是什么?点电荷是电荷分布的⼀种极限情况,可将它看做⼀个体积很⼩⽽电荷密度很的带电⼩球的极限。
当带电体的尺⼨远⼩于观察点⾄带电体的距离时,带电体的形状及其在的电荷分布已⽆关紧要。
就可将带电体所带电荷看成集中在带电体的中⼼上。
即将带电体抽离为⼀个⼏何点模型,称为点电荷。
2.2 研究宏观电磁场时,常⽤到哪⼏种电荷的分布模型?有哪⼏种电流分布模型?他们是如何定义的?常⽤的电荷分布模型有体电荷、⾯电荷、线电荷和点电荷;常⽤的电流分布模型有体电流模型、⾯电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极⼦的电场强度⼜如何呢?点电荷的电场强度与距离r 的平⽅成反⽐;电偶极⼦的电场强度与距离r 的⽴⽅成反⽐。
2.4简述和所表征的静电场特性表明空间任意⼀点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是⽆旋场。
2.5 表述⾼斯定律,并说明在什么条件下可应⽤⾼斯定律求解给定电荷分布的电场强度。
关,即在电场(电荷)分布具有某些对称性时,可应⽤⾼斯定律求解给定电荷分布的电场强度。
2.6简述和所表征的静电场特性。
表明穿过任意闭合⾯的磁感应强度的通量等于0,磁⼒线是⽆关尾的闭合线,表明恒定磁场是有旋场,恒定电流是产⽣恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可⽤该定律求解给定的电流分布的磁感应强度。
如果电路分布存在某种对称性,则可⽤该定理求解给定电流分布的磁感应强度。
2.8简述电场与电介质相互作⽤后发⽣的现象。
在电场的作⽤下出现电介质的极化现象,⽽极化电荷⼜产⽣附加电场2.9极化强度的如何定义的?极化电荷密度与极化强度⼜什么关系?单位体积的点偶极矩的⽮量和称为极化强度,P 与极化电荷密度的关系为极化强度P 与极化电荷⾯的密度2.10电位移⽮量是如何定义的?在国际单位制中它的单位是什么电位移⽮量定义为其单位是库伦/平⽅⽶(C/m 2)2.11 简述磁场与磁介质相互作⽤的物理现象?ερ/=??E 0=??E ερ/=??E 0=??E ??V S ε00=??B JB 0µ=??0=??B JB 0µ=??CP =-p ρnsp e ?=P ρEP E D εε=+=0在磁场与磁介质相互作⽤时,外磁场使磁介质中的分⼦磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产⽣附加磁场,从⽽使原来的磁场分布发⽣变化,磁介质中的磁感应强度B 可看做真空中传导电流产⽣的磁感应强度B 0 和磁化电流产⽣的磁感应强度B ’ 的叠加,即 2.12 磁化强度是如何定义的?磁化电流密度与磁化强度⼜什么关系?单位体积内分⼦磁矩的⽮量和称为磁化强度;磁化电流体密度与磁化强度:磁化电流⾯密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?2,14 你理解均匀媒质与⾮均匀媒质,线性媒质与⾮线性媒质,各向同性与各向异性媒质的含义么?均匀媒质是指介电常数或磁介质磁导率处处相等,不是空间坐标的函数。
第四章第2节电磁场与电磁波练习(word版含答案)
2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。
关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。
电磁场与电磁波及其应用 第四章
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。
《电磁场与电磁波》习题参考答案..
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社
1 1 ( ) 2 d y dz ( ) 2 d y dz 2 2 1 2 1 2 1 2 1 2
1 1 2 x 2 ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2 1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
1 r 42 32 5 、 tan (4 3) 53.1 、 2 3 120 故该点的球坐标为 (5,53.1 ,120 ) 1.9 用球坐标表示的场 E e 25 , r r2 (1)求在直角坐标中点 (3, 4, 5) 处的 E 和 E x ;
(2) 在球坐标系中
故 PP 为一直角三角形。 1 2P 3
1 1 1 R1 2 R 2 3 R 1 2 R 2 3 1 7 6 9 17.13 2 2 2 1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。 解 rP ex 3 e y ez 4 , rP ex 2 e y 2 ez 3 ,
(2)三角形的面积
S
则
RPP rP rP ex 5 e y 3 ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) cos 1 ( ) 32.31 RPP 35 e R 3 y cos 1 ( y P P ) cos 1 ( ) 120.47 RPP 35 e R 1 z cos 1 ( z PP ) cos 1 ( ) 99.73 RPP 35 给定两矢量 A ex 2 e y 3 ez 4 和 B ex 4 e y 5 ez 6 ,求它们之间的夹角和
电磁场与电磁波(第四版)课后答案谢处方
球内电荷不仅在球壳内表面上感应电荷 ,而且在球壳外表面上还要感应电荷 ,所以球壳外表面上的总电荷为2 ,故球壳外表面上的电荷面密度为
3.6两个无限长的同轴圆柱半径分别为 和 ,圆柱表面分别带有密度为 和 的面电荷。(1)计算各处的电位移 ;(2)欲使 区域内 ,则 和 应具有什么关系?
解电荷 在 处产生的电场为
电荷 在 处产生的电场为
故 处的电场为
2.6一个半圆环上均匀分布线电荷 ,求垂直于圆平面的轴线上 处的电场强度 ,设半圆环的半径也为 ,如题2.6图所示。
解半圆环上的电荷元 在轴线上 处的电场强度为
在半圆环上对上式积分,得到轴线上 处的电场强度为
2.7三根长度均为 ,均匀带电荷密度分别为 、 和 地线电荷构成等边三角形。设 ,计算三角形中心处的电场强度。
细圆环的半径为 ,圆环平面到球心的距离 ,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为
故整个球面电流在球心处产生的磁场为
2.11两个半径为 、同轴的相同线圈,各有 匝,相互隔开距离为 ,如题2.11图所示。电流 以相同的方向流过这两个线圈。
(1)求这两个线圈中心点处的磁感应强度 ;
解(1)
(2)连接点 到点 直线方程为
即
故
由此可见积分与路径无关,故是保守场。
1.20求标量函数 的梯度及 在一个指定方向的方向导数,此方向由单位矢量 定出;求 点的方向导数值。
解
故沿方向 的方向导数为
点 处沿 的方向导数值为
1.21试采用与推导直角坐标中 相似的方法推导圆柱坐标下的公式
。
解在圆柱坐标中,取小体积元如题1.21图所示。矢量场 沿 方向穿出该六面体的表面的通量为
电磁场与电磁波答案(第四版)
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e(3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由cos AB θ===A B A B g ,得1cos AB θ-=(135.5=o (5)A 在B 上的分量 B A =A cos ABθ==A B B g (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
电磁场与电磁波第四版课后答案
3
答案: A = ax Ax + ay Ay + az Az
其中, Ax = (
2x2 + x3z + xy2 z + xz3 ) x2 + y2
(x2 + y2 + z2)2 ;
Ay = (
2xy + x2 yz + y3z + yz3) x2 + y2
(x2 + y2 + z2)2 ;
⎤ ⎥ ⎥
=
⎡ sin θ ⎢⎢cosθ
cosϕ cosϕ
⎢⎣ Aiϕ ⎥⎦ ⎢⎣ − sin ϕ
sinθ sinϕ cosθ sinϕ
cosϕ
cosθ ⎤ ⎡ Aix ⎤
−
sin
θ
⎥ ⎥
⎢ ⎢
Aiy
⎥ ⎥
,
0 ⎥⎦ ⎢⎣ Aiz ⎥⎦
而 Aix = Ri sinθi cosϕi , Aiy = Ri sinθi sin ϕi , Aiz = Ri cosϕi 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
为 ε = 2.56ε0 ,μ = μ0 , σ = 3.5 ×10−5 S/m,两极板间施加直流电压U0 = 50 V 。求
电磁场与电磁波第四章
∇2ϕ
−
με
∂2ϕ ∂t 2
=
−
1 ε
ρ
矢量位和标量位满足(分离出的两个独立)的方程, 称为达朗贝尔方程
间接方法:A. 求解两个达朗贝尔方程 B. 达朗贝尔方程 + 洛仑兹条件
9
4.3 电磁能量守恒定律
讨论电磁场的能量问题,引入坡印廷矢量, 得到反映电磁能量守恒关系的坡印廷定理。
一、电磁场能量密度和能流密度
=
d dt
V
(1 2
μ
|
v H0
|2
+
1 2
ε
|
v E0
|2 )dV
+
σ
V
|
v E0
|2
dV
20
根据
v E0
或
v H0
满足的边界条件,左端被积函数
v (E0
×
v H
0
)
⋅
evn
|S
=
(evn
×
v E0
)
⋅
v H
0
|S
=
v (H
0
×
evn
)
⋅
v E0
|S
=
0
即
∫ ∫ d
dt
V
(1 2
μ
|
v H0
|2
+
∂2Ez ∂y 2
+
∂2Ez ∂z 2
− με
∂2Ez ∂t 2
=0
解波动方程,可求出空间中电磁场场量的分布。
(直接求解波动方程的过程很复杂)
4
4.2 电磁场的位函数
一、矢量位和标量位
∇ ⋅ Bv = 0
电磁场与电磁波(第四版)课后答案_电科习题
3)
v C
evx
3y2 - 2x
+ evy x2 + evz 2z
问:1.哪些矢量可以由一个标量函数的梯度表示?哪些
矢量可以由一个矢量函数的旋度表示?
2.求出这些矢量的源分布。
1.28利用直角坐标,证明
v fA
vv f A Af
1.29: 矢量
在Av由 evρ=52, evzz验2=z0证和散z=度4围定成理的。圆柱形区域,
分量,根据边界条件可知,两种介质的
2
磁感应强度
uv B1
rr
uv B2
r B
er B
但磁场
强度 H1 H2
3.23一电荷量为 q 质量为 m 的小带电体,放置在无限长导体
平面下方,与平面距离h 。求 q 的值以使带电体上受到的
静电力恰好与重力相平衡(设 m 2103 kg, h 0.02m)。
对
第二章
2.1已知半径为a的导体球面上分布着电荷密度为 s s0 cos 的电荷,式中的 s0
为常数。试计算球面上的总电荷量。
2.6 一个平行板真空二极管内的电荷 体位密于度x=为0,阳 极94 板0U0位(d 于43 )xx23=,d,式极中间阴电极压板 为U0。如果U0 =40V,d=lcm,横截 面积s =10cm2。 求:
验
A
证散度定理
1.21 求矢量
v A
erx
x
ery
x2
erz
y
2
z
沿xy平面上的一个边长为2的正
形再回求路 的Av线对积此分回,路此所正包方围形的的表两面个积边分分,别验与证x斯轴托和克y轴斯相定重理合
电磁波与电磁场第四版答案
电磁波与电磁场第四版答案一、单选题1.垂直于匀强磁场放置一长为1m的通电直导线,导线中电流为2A,所受安培力大小为0.1N,则该磁场的磁感应强度大小为() [单选题] *A.0.05T(正确答案)B.0.1TC.0.2TD.2T2.某一区域的磁感线分布如图所示,M、P为磁场中的两个点,下列说法正确的是()[单选题] *A.M点的磁场方向和P点的磁场方向相反B.M点的磁场方向和P点的磁场方向相同C.M点的磁感应强度小于P点的磁感应强度(正确答案)D.M点的磁感应强度大于P点的磁感应强度3.如图所示,小磁针静止在导线环中。
当导线环通过沿逆时针方向的电流时,忽略地磁场影响,小磁针最后静止时N极所指的方向()[单选题] *A.水平向右B.水平向左C.垂直纸面向里D.垂直纸面向外(正确答案)4.面积为0.75m2的线圈放在匀强磁场中,线圈平面与磁感线垂直,已知穿过线圈平面的磁通量是1.50Wb,那么这个磁场的磁感应强度是() [单选题] *A.0.05T B.1.125T C.2.0T(正确答案)D.0.02T5.首先发现电流的磁效应的物理学家是() [单选题] *A.安培B.法拉第C.奥斯特(正确答案)D.密立根6.某个磁场的磁感线如图所示,如果把一个小磁针放入磁场中,小磁针将()[单选题] *A.顺时针转动(正确答案)B.逆时针转动C.向右移动D.向左移动7.关于定义式(其中B表示磁感应强度,F表示通电导体棒受到的磁场力,I表示通过导体棒的电流强度,L表示导体棒的长度),下列说法正确的是() [单选题] *A.B与F成正比B.I越大,则B越小C.F的方向就是B的方向D.B的大小和方向与IL无关,由磁场本身决定(正确答案)8.如图,通电螺线管轴线上a、b、c三点的磁感应强度大小分别为Ba、Bb、Bc,则()[单选题] *A.Bc>Ba>Bb B.Bb>Bc>BaC.Ba>Bb>Bc(正确答案)D.Ba=Bb=Bc9.下列选项中通电直导线周围磁感线分布正确的是()[单选题] *A.⑴(正确答案)B.⑵ C. ⑶D.⑷10.把螺线管与电源连接,发现小磁针N极向螺线管偏转,静止时所指方向如图所示。
电磁场与电磁波(第4版)习题第4章
word 版本.第4章 时变电磁场部分习题解答4.1 证明:在无源的真空中,以下矢量函数满足波动方程222210c t∂∇-=∂EE ,其中2001c με=,0E 为常数。
(1)0cos()x E t z cωω=-E e ;(2)0sin()cos()x E z t cωω=E e ;(3)0cos()y E t z cωω=+E e解 (1)222002cos()cos()x x E t z E t z c z cωωωω∂∇=∇-=-=∂E e e20()cos()x E t z c cωωω--e2220022cos()cos()x x E t z E t z t t c cωωωωω∂∂=-=--∂∂E e e 故22220022211()cos()[cos()]0x x E t z E t z c t c c c cωωωωωω∂∇-=-----=∂E E e e即矢量函数0cos()x E t z c ωω=-E e 满足波动方程222210c t ∂∇-=∂E E 。
(2)222002[sin()cos()][sin()cos()]x x E z t E z t c z cωωωω∂∇=∇==∂E e e20()sin()cos()x E z t c cωωω-e2220022[sin()cos()][sin()cos()]x x E z t E z t t t c cωωωωω∂∂==-∂∂E e e 故22220022211()sin()cos()[sin()cos()]0x x E z t E z t c t c c c cωωωωωω∂∇-=---=∂E E e e即矢量函数0sin()cos()x E z t c ωω=E e 满足波动方程222210c t∂∇-=∂E E 。
(3)222002cos()cos()y y E t z E t z c z cωωωω∂∇=∇+=+=∂E e e20()cos()y E t z c cωωω-+e2220022cos()cos()y x E t z E t z t t c cωωωωω∂∂=+=-+∂∂E e e 故22220022211()cos()[cos()]0y y E t z E t z c t c c c cωωωωωω∂∇-=-+--+=∂E E e e4-4即矢量函数0cos()y E t z c ωω=+E e 满足波动方程222210c t∂∇-=∂EE 。
电磁场与电磁波课后习题及答案--第四章习题解答
习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解 根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
解 应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ① ② ③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解 在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
题图题 图解 根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为 一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解 在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解 由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为①②③ 由条件①和②,可设电位函数的通解为题 图题图由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
部分习题解答
4.1证明:在无源的真空中,以下矢量函数满足波动方程 ,其中 , 为常数。
(1) ;(2) ;
(3)
解(1)
故
即矢量函数 满足ห้องสมุดไป่ตู้动方程 。
(2)
故
即矢量函数 满足波动方程 。
(3)
故
即矢量函数 满足波动方程 。
4.3已知无源的空气中的磁场强度为
利用波动方程求常数 的值。
解在无源的空气中的磁场强度满足波动方程
4.16由半径为 的两圆形导体平板构成一平行板电容器,间距为 ,两板间充满介电常数为 、电导率为 的媒质,如题4.16题所示。设两板间外加缓变电压 ,略去边缘效应,试求:
(1)电容器内的瞬时坡印廷矢量和平均坡印廷矢量;
(2)进入电容器的平均功率;
(3)电容器内损耗的瞬时功率和平均功率;
解(1)电容器中的电场
而
代入方程 ,得
于是有
故得到
4.6在应用电磁位时,如果不采用洛仑兹条件,而采用库仑规范 ,导出 和 所满足的微分方程。
解将电磁矢量位A的关系式
和电磁标量位 的关系式
代入麦克斯韦第一方程
得
利用矢量恒等式
得
(1)
又由
得
即
(2)
按库仑规范,令 ,将其代入式(1)和式(2)得
(3)
(4)
式(3)和式(4)就是采用库仑规范时,电磁位函数A和 所满足的微分方程。
根据边界条件,在导线表面上电场的切向分量连续,即 。因此,在导线表面外侧的电场的切向分量为
又利用高斯定理,容易求得导线表面外侧的电场的法向分量为
故导线表面外侧的电场为
利用安培环路定理,可求得导线表面外侧的磁场为
故导线表面外侧的坡印廷矢量为
由内导体表面每单位长度进入其内部的功率
式中 是内导体单位长度的电阻。由此可见,由导线表面进入其内部的功率等于导体内的焦耳热损耗功率。
位移电流密度 和传导电流密度 分别为
由于轴对称性,两板间的磁场只有 分量,且在以 轴为中心、 为半径的圆周 上处处相等。于是由
可得
所以
(2)损耗功率瞬时值 为
平均损耗功率 为
(3)进入电容器的平均功率为
由此可见有
解(1) 和 的瞬时矢量为
则瞬时坡印廷矢量为
故
(2)
4.11在横截面为 的矩形金属波导中,电磁场的复矢量为
式中 、 、 和 都是实常数。求:(1)瞬时坡印廷矢量;(2)平均坡印廷矢量。
解(1) 和 的瞬时矢量为
故瞬时坡印廷矢量
(2)平均坡印廷矢量
4.14设电场强度和磁场强度分别为
证明其坡印廷矢量的平均值为
4.9自由空间中的电磁场为
式中 。求:
(1)瞬时坡印廷矢量;
(2)平均坡印廷矢量;
(3)任一时刻流入如题4.9图所示的平行六面体(长 、横截面积为 )中的净功率。
解(1)瞬时坡印廷矢量
(2)平均坡印廷矢量
(3)任一时刻流入如题4.9图所示的平行六面体中的净功率为
4.10已知某电磁场的复矢量为
式中 , 为真空中的光速, 是波长。求:(1) 、 、 各点处的瞬时坡印廷矢量;(2)以上各点处的平均坡印廷矢量。
解坡印廷矢量的瞬时值为
故平均坡印廷矢量为
4.15在半径为 、电导率为 的无限长直圆柱导线中,沿轴向通以均匀分布的恒定电流 ,且导线表面上有均匀分布的电荷面密度 。
(1)导线表面外侧的坡印廷矢量 ;
(2)证明:由导线表面进入其内部的功率等于导线内的焦耳热损耗功率。
解:(1)当导线的电导率 为有限值时,导线内部存在沿电流方向的电场