3.1.1数系的扩充和复数的概念.ppt

合集下载

人教版2017高中数学选修1-2第三章《 数系的扩充与复数的概念》课件PPT

人教版2017高中数学选修1-2第三章《 数系的扩充与复数的概念》课件PPT

复数的代数形式:通常用字母 z 表示,即
z a bi (a R, b R)
实部 虚部 其中 i 称为虚数单位.
讨论?
复数集C和实数集R之间有 什么关系?
R C
实数b 0 纯虚数a 0,b 0, 复数a+bi 虚数b 0 非纯虚数a 0,b 0.
若a, b, c, d R,
a c, a bi c di b d .
,其中
x, y R 求
例2
已知 (2 x 1) i y (3 y )i
x与y.
解:更具复数相等的定义,得方程组
2 x 1 y, 5 解得 x , y 4. 2 1 (3 y),
例1 实数m取什么值时,复数
z m 1 (m 1)i
是(1)实数? (2)虚数? (3)纯虚数?
解: (1)当 m 1 0,即
m 1时,复数z 是实数. (2)当 m 1 0 ,即 m 1 时,复数z 是虚数. (3)当 m 1 0 即 m 1时,复数z 是 纯虚数. m 1 0
(数) y
(形)
建立了平面直角坐标系来表示 复数的平面 ------复数平面 (简称复平面)
z=a+bi Z(a,b)
a b
o
x
x轴------实轴 y轴------虚轴
例1 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点
位于第二象限,求实数m允许的取值范围。
m 2 m 6 0, 3 m 2, 解:由 2 得 m m 2 0, m 2 或 m 1,

高中数学《3.1.1数系的扩充和复数的概念》课件1 新人教A版选修1-2

高中数学《3.1.1数系的扩充和复数的概念》课件1 新人教A版选修1-2

【变式1】 已知下列命题:
①复数a+bi不是实数;
②当z∈C时,z2≥0; ③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2; ④若复数z=a+bi,则当且仅当b≠0时,z为虚数; ⑤若a、b、c、d∈C时,有a+bi=c+di,则a=c且b=d.
其中真命题的个数是________.
A.0 B.1 C.2 D.3
[思路探索] 只需根据复数的有关概念判断即可. 解析 ①由于x,y∈C,所以x+yi不一定是复数的代数形式,不符
合复数相等的充要条件,①是假命题.
②由于两个虚数不能比较大小,
∴②是假命题. ③当x=1,y=i时, x2+y2=0成立,∴③是假命题. 因为复数为纯虚数要求实部为零,虚部不为零,故④错;因为-1
题型二
复数相等的充要条件的应用
【例 2】 (1)已知 x2-y2+2xyi=2i,求实数 x、y 的值. a (2)关于 x 的方程 3x - x-1=(10-x-2x2)i 有实根,求实数 2
2
a 的值. [思路探索] 先确定“=”两边复数的实部和虚部,然后列方 程组求解.

(1)∵x2-y2+2xyi=2i,
2x-1=-b, ∴ 1=b-3,
3 3 x=- , x=- , 2 2 解得 ∴ b=4. y=4i.
题型三 复数的分类 m2+m-6 【例 3】 当实数 m 为何值时,复数 z= +(m2-2m)i 为 m (1)实数; (2)虚数; (3)纯虚数.
[规范解答]
规律方法
(1)利用复数相等,我们可以把复数问题转化为实数问
题来解决.
(2)复系数方程有实根问题,实际上就是两个复数相等的问题.
【变式 2】 求适合等式(2x-1)+i=y+(y-3)i 的 x、y 值.其中 x ∈R,y 是纯虚数. 解 设 y=bi(b∈R 且 b≠0)代入等式得

云南省昆明市第三中学空港实验学校人教版高中数学选修1-2课件:3.1 数系的扩充和复数的概念

云南省昆明市第三中学空港实验学校人教版高中数学选修1-2课件:3.1 数系的扩充和复数的概念

5.你认为怎样定义两个复数相等?两个复数有大小关系吗?
若a,
b,
c,
d
R,
a
bi
c
di
a b
c d
6.复数 z a bi 在什么条件下是实数?
问题2.什么是复数?复数有什么特征?
实数 m 取什么值时,复数 z m 1 m 1i 是
(1) 实数?(2)虚数?(3)纯虚数?
已知2x 1 i y 3 yi ,其中 x, y R ,求 x, y
(3)若 A(x1, y1 ) , B(x2 , y2 ) ,则 AB x2 x1, y2 y1
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 新疆 王新敞 奎屯

AB = OB OA =( x2, y2) (x1,y1)= (x2 x1, y2 y1)
新疆 王新敞
奎屯
问题3.复数的几何意义是什么?
使这个方程有解吗?
数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采 集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没 有”的数0.自然数的全体构成自然数集N
为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义
的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集 Q.显然 N Q.如果把自然数集 (含正整数和 0)与负整数集合并在一起,构成整数集 Z,则有 Z Q、N Z.如果把整数看作分母为 1 的分数, 那么有理数集实际上就是分数集
1.向量的相关知识
(1)若 A(x, y) , O(0, 0) ,则 OA x, y
(2)若 a (x1, y1 ) , b (x2 , y2 ) ,则 a b (x1 x2 , y1 y2 ) , a b (x1 x2 , y1 y2 )

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.1 3.1.1 数系的扩充和复数的相关概念

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.1 3.1.1 数系的扩充和复数的相关概念
算时,原有加、乘运算律仍然成立.
a+bi(a,b∈R) 的数叫做复数,a 叫做 2.复数的定义:形如_________________
实部 ,b 叫做复数的________ 虚部 .全体复数所成的集合叫做 复数的________ 复数集 b= 0 ________, 用字母 C 表示. 对于复数 a+bi(a, b∈R), 当且仅当______ b≠0 时,复数 z=a+bi 时,复数 z=a+bi(a,b∈R)是实数 a;当________ a=0且b≠0 时,z=bi 叫做纯虚数;当且仅当________ a=b=0 叫做虚数;当____________
第三章
数系的扩充与复数的引入
3.1 数系的扩充和复数的概念 3.1.1 数系的扩充和复数的相关概念
栏 目 链 接
1.理解复数的基本概念. 2.理解复数相等的充要条件.
栏 目 链 接
栏 目 链 接
基 础 梳 理
1.虚数单位 i.
-1 ; (2)实数可以与它进行四则运算.进行四则运 (1)i2=________
)
D.既不充分也不必要条件
栏 目 链 接
解析:若 a+bi(a,b∈R)为纯虚数,则 a=0,b≠0. ∴a+bi(a, b∈R)为纯虚数是 a=0 的充分不必要条件. 答案:A
自 测 自 评
2.下列说法正确的是( ) A.如果两个复数的实部的差和虚部的差都等于 0, 那么这两个复数相等 B.若 a,b∈R 且 a>b,则 ai>bi C.如果复数 x+yi 是实数,则 x=0,y=0 D.复数 a+bi 不是实数
解得 x≠-3 且 x≠5.
2 x -x-6 x+3 =0, (3) 要使该复数是纯虚数,需满足 x2-2x-15≠0.

3.1.1数系的扩充和复数的概念

3.1.1数系的扩充和复数的概念

数系的扩充
方程x 1 0有解吗?
2
i
i 1
2
虚数单位
规定: i 与实数可以进行四则运算,在进行运算时,原 有的加、乘运算律仍然成立.
数系的扩充
实数a与i做加法, 结果记为a i
实数b与i做乘法, 结果记为bi
设a, b R, 则:
a +b i 记作
C a bi a, b R
复数z a bi可以分类如下: b 0 实数 复数z b 0 虚数 (a 0纯虚数)
下列复数中哪些是实数,哪些是虚数,哪些是 纯虚数?
3 2i
1 3 i 2
- 5
1 3 i 2
1 3i 2
0.2i
i( 2 1)
1 3i 2
i
2
(i)
2
例题1:实数m取什么值时,复数
3.1.1 数系的扩充和复数的概念
数系的扩充
为了解决测量、分配中遇到的将某些量进 行等分的问题人们引进了分数,为了表示 各种具有相反意义的量,又引进了负数
自然数集N
用正方形的边长去度量它的对角线所得的结 果,无法用有理数表示,为了解决这个矛盾, 人们又引进了无理数.
有理数集Q
实数集R
实数集还需要进一步扩充吗?怎样扩充?
x, y
的值
小结:
2 1.数系扩充:复数集 i 2 1 ,(-i) 1
2.复数的代数形式:z a bi 1)实数
b0 2)虚数 b 0 3)纯虚数 b 0, 且a 0
z1 a bi, z2 c di z1 z2 a c, 且b=d
3.复数相等的充要条件:
a +bi

数系的扩充和复数的概念(省实验中学)

数系的扩充和复数的概念(省实验中学)
人教版选2修017
第三章 3.1.1 数系的扩充和复数的概念
广东实验中学数学科 张 曙
一、数系的扩充
1.自然数N : {0,1,2,3...}
对减法不封闭:2 - 3的结果不在自然数集中
2.整数Z :{ - 3,-2,-1,0, 1,2,3 }
对除法不封闭:2 3的结果不在整数集中
3.有理数Q :{x | x p , p、q Z} q
对开方运算不封闭:x Q时,x2 2无解(也可以说对极限 运算不封闭)
4.实数R : (-,)
x R时,方程x2 1无解
一、数系的扩充
引入这样一个数 i ,把 i 叫做虚数单位,并且规定: •• 实数可以与 进行四则运算,在进行四则运算时, 原有的加法与乘法的运算率 包括交换律、结合律 和分配律 仍然成立 • i 与实数b 相乘得bi , 规定0• i =0 • i 与实数a相加得a+i • bi=0+bi,a=a+0i,i=0+1i
三、题型探究
解析: ①错,复数由实数与虚数构成,在虚数中又分为纯虚数和
非纯虚数. ②错,只有当m,n∈R时,才能说复数z=3m+2ni的实部与 虚部分别为3m,2n. ③ 正 确 , 复 数 z = x + yi(x , y∈R) 为 纯 虚 数 的 条 件 是 x = 0 且 y≠0,只要x≠0,则复数z一定不是纯虚数. ④错,只有当a∈R,且a≠-3时,(a+3)i才是纯虚数.
m2m-+m3-6=0, m2+5m+6≠0
⇔mm= ≠- -23或 且mm= ≠3-,2 ⇔m=3.
∴当m=3时,复数z是纯虚数.
谢谢观看!
三、题型探究
2.复数分类的应用
例2.求当实数m为何值时,z= m2-m-6+(m2+5m+6)i分别是:

数学:3.1《数系扩充和复数概念》PPT课件(新人教选修2-2)

数学:3.1《数系扩充和复数概念》PPT课件(新人教选修2-2)
a
一一对应
面 y 向 量
b
o
x
复数的绝对值 (复数的模)的几何意义: 对应平面向量 OZ 的模| OZ |,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的 距离。
y
| z | = a 2 b2
z=a+bi Z (a,b)
O
| z || z | a2 b2
练习1:
设z1,z2∈C, |z1|= |z2|=1
|z2+z1|=
2,
求|z2-z1|
2
练习2:复数z1,z2分别对应复 平面内的点M1,M2,,且| z2+ z1|=
| z2- z1|,线段M1M2,的中点M对应
的复数为4+3i,求|z1|2+ |z2|2
y
满 足 |z|=5(z∈C) 的 复 +yi(x,y∈R)
5
5 O x
0 3 4 5 4 3 0 y 5 4 3 0 3- 4- 5- x
5 2 y 2x z
–5
复数的几何意义(一)
复数z=a+bi (数) z=a+bi Z(a,b)
引言:在人和社会的发展过程中,常 常需要立足今天,回顾昨天,展望明天。 符合客观发展规律的要发扬和完善,不符 合的要否定和抛弃。那么,在实数集向复 数集发展的过程中,我们应该如何发扬和 完善,否定和抛弃呢?
如何探索复数集的性质和特点? 探索途径: (1) 实数集原有的有关性质和特点能否
推广到复数集?
2.“a=0”是“复数a+bi (a , b∈R)所对 C 应的点在虚轴上”的( )。 (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件

2014年人教A版选修1-2课件3 .1 数系的扩充和复数的概念

2014年人教A版选修1-2课件3 .1  数系的扩充和复数的概念
本章内容
3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算 第三章 小结
3.1 数系的扩充和复数的概念
3.1.1 数系的扩充和复数的概念 3.1.2 复数的几何意义
3.1.1 数系的扩充和复数的概念
返回目录
1. 什么是虚数? 它的结构形式是怎样的? 2. 什么是虚单位? 它有什么特点?
3. 什么是复数? 它的范围包括哪些数?
问题1. 方程 x2=2 和 x2= -2 在什么样的数系范围 内有解? 在什么样的数系范围内无解? 如果要使它 们都有解, 怎么办? x2=2 在有理数范围内无解, 将数系扩充到实数 范围内就有解: x = 2 . x2= -2 在有理数范围内无解, 将数系扩充到实数 范围还是无解. 要使 x2= -2 有解, 考虑把数系再扩充.
3. 如果 (x+y)+(y-1)i = (2x+3y)+(2y+1)i, 求实数 x, y 的值.
解: 两复数相等, 必须实部与实部相等, 且虚部 与虚部相等, 则得方程组 x + y = 2 x + 3 y, y - 1 = 2 y + 1. 解方程组得 x=4, y= -2.
即得两相等复数为 2-3i = 2-3i.
. 实数 m 取什么值时, 复数 z=m+1+(m-1)i 是 (1) 实数; (2) 虚数; (3) 纯虚数. 解: (1) 当 m-1=0 时, z 是实数, 即 m=1 时, z=2 是实数.
(2) 当 m-1≠0 时, z 是虚数,
即 m≠1 时, z=m+1+(m-1)i 是虚数. (3) 当 m+1=0 且 m-1≠0 时, z 是纯虚数, 即 m= -1 时, z= -2i 是纯虚数.

第十三章 数系的扩充与复数的引入.pptx

第十三章 数系的扩充与复数的引入.pptx

方法技巧
方法 1 复数的有关概念与几何意义
实数(b 0)
1.复数(a+bi)的分类
虚数(b
0)
纯虚数(a 0) 非纯虚数(a
0)
2.处理有关复数概念的问题,首先要找准复数的实部与虚部(若复数为
非标准的代数形式,则应通过代数运算化为标准的代数形式),然后根据
定义解题.
例1 (2017湖南衡阳八中、长郡中学等十三校二模,1)已知i为虚数单
高考文数
第十三章 数系的扩充与复数的引入
知识清单
考点一 复数的概念与几何意义 1.复数的有关概念
2.复数的几何意义 复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复 平面内所有以原点O为起点的向量组成的集合也是一一对应的.
其中,a,b∈R.
考点二 复数代数形式的四则运算
1.复数的加、减、乘、除运算法则
1 i
的共轭复数 z = ( A ) A.1+3i B.1-3i
C.3+i D.3-i
解析 z(2+i)= 10⇒z= = 10=1-3i⇒10=1+3i.故选z A.
1 i (2 i)(1 i) 1 3i
复数的四则运算中,加减法相当于“合并同类项”,乘法相当于“多项 式乘多项式”,除法采用的方法是“分母实数化”,即分子、分母同乘 分母的共轭复数,类似于“分母有理化”的方法,可类比记忆.此外,一要 注意出现i2时用-1代替,二要注意“复数问题实数化”是解决复数问题 的最基本的思想方法. 例2 (2017湖北黄石调研,3)若复数z满足z(2+i)= 10(i为虚数单位),则z
位,若复数z=1 (aai ∈R)的实部为-3,则|z|= ( D )

高中数学(新课标)选修2课件3.1.1数系的扩充和复数的概念

高中数学(新课标)选修2课件3.1.1数系的扩充和复数的概念

跟踪训练 1 (1)如果复数 z=a2+a-2+(a2-3a+2)i 为纯虚 数,那么实数 a 的值为( )
A.-2 B.1 C.2 D.1 或-2
解析:(1)由题意可知aa22+ -a3- a+2=2≠0, 0, 所以 a=-2. 答案:(1)A
(2)下列命题中: ①若 a∈R,则(a+1)i 是纯虚数. ②若 a,b∈R,且 a>b,则 a+i3>b+i2. ③若(x2-1)+(x2+3x+2)i 是纯虚数,则实数 x=±1. ④两个虚数不能比较大小.
【解析】 (1)若 z 为实数,
必须aa22- -51a≠-0.6=0. ∴aa=≠-±11. 或a=6, ∴当 a=6 时,z 为实数.
(2)若 z 为虚数,必须aa22--15≠a-0,6≠0, ∴aa≠ ≠- ±11且a≠6, . ∴当 a∈{a∈R|a≠±1 且 a≠6}时,z 为虚数. (3)若 z 为纯虚数,
跟踪训练 2 实数 x 分别取什么值时,复数 z=x2-x+x-3 6+(x2 -2x-15)i 是(1)实数?(2)虚数?(3)纯虚数?
解析:(1)要使 z 是实数,必须且只需xx+ 2-32≠x-0 15=0 , 解得 x=5.
(2)要使 z 为虚数,必须且只需xx+ 2-32≠x-0 15≠0 , 解得 x≠-3 且 x≠5.
a=0 a≠0
状元随笔 从代数形式可判定 z 是实数、虚数还是纯虚数.反
之, 若 z 是纯虚数,可设 z=bi(b≠0,b∈R) 若 z 是虚数,可设 z=a+bi(b≠0,a∈R) 若 z 是复数,可设 z=a+bi(a,b∈R)
知识点三 复数相等的充要条件 设 a,b,c,d 都是实数,那么 a+bi=c+di⇔_a_=__c_,__b_=. d

人教a版数学【选修2-2】3.1.1《数系的扩充与复数的概念》ppt课件

人教a版数学【选修2-2】3.1.1《数系的扩充与复数的概念》ppt课件


新知导学 1.数系扩充的原因、脉络、原则 脉络:自然数系→整数系→有理数系→实数系→________ 复数系 原因:数系的每一次扩充都与实际需求密切相关,实际需求 与数学内部的矛盾在数系扩充中起了主导作用.
原则:数系扩充时,一般要遵循以下原则: (1)增添新元素,新旧元素在一起构成新数集; (2)在新数集里,定义一些基本关系和运算,使原有的一些主 要性质(如运算定律)________适用; 依然 (3)旧元素作为新数集里的元素,原有的运算关系 __________ ; (4)新的数集能够解决旧的数集不能解决的矛盾. 保持不变
成才之路 · 数学
人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第三章
数系的扩充与复数的引入
第三章 3.1 数系的扩充与复数的概念
3.1.1 数系的扩充与复数的概念
1
自主预习学案
2
典例探究学案
3
巩固提高学案案
1.在问题情境中了解数系的扩充过程,体会实际需求与数学 内部的矛盾在数系扩充过程中的作用. 2.理解复数的有关概念,掌握复数的代数表示. 3.理解复数相等的充要条件.
复数的相等与复数的分类 新知导学 3.复数相等的充要条件 设a、b、c、d都是实数,那么a+bi=c+di⇔___________. a=c且b=d 4.复数z=a+bi(a、b∈R),z=0的充要条件是 _____________,a=0是z为纯虚数的____________条件. a=0且b=0 必要不充分
5.复数的分类
b=0 (1)复数 z=a+bi(a、b∈R),z 为实数⇔__________ ,z 为
b≠0 虚数⇔_________ ,z

高中数学 第三章 数系的扩充与复数的引入 3.1.1 数系

高中数学 第三章 数系的扩充与复数的引入 3.1.1 数系

= =
1, 1
C.
������ ������
= =
0, 2
D.
������ = -1, ������ = -1
解析:由
������ + ������ = 2, 得 ������-������ = 0,
������ ������
= =
1, 1.
故选B.
答案:B
知识梳理
3.复数的分类 (1)对于复数a+bi,当且仅当b=0时,它是实数;当且仅当a=b=0时, 它是实数0;当b≠0时,叫做虚数;当a=0,且b≠0时,叫做纯虚数. 这样,复数z=a+bi(a,b∈R)可以分类如下: 复数������ 实数(������ = 0)
我们规定:a+bi与c+di相等的充要条件是a=c,且b=d .
温馨提示应用两个复数相等的充要条件时,首先要把“=”左右两
边的复数写成代数形式,即分离实部与虚部,然后列出等式求解. 【做一做2】 满足x+y+(x-y)i=2的实数x,y的值为 ( )
A.
������ ������
= =
2, 0
B.
������ ������
要条件;但若a=0,且b=0,则a+bi=0为实数,即不是充分条件.故选B.
答案:B
重难聚焦
1.数系扩充的一般原则是什么? 剖析数系扩充的脉络是:自然数系→整数系→有理数系→实数系 →复数系,用集合符号表示为N→Z→Q→R→C. 从自然数系逐步扩充到复数系的过程可以看出,数系的每一次扩 充都与实际需求密切相关.数系扩充后,在新数系中,原来规定的加 法运算与乘法运算的定律仍然适用,加法和乘法都满足交换律和结 合律,乘法对加法满足分配律. 一般来说,数的概念在扩大时,要遵循如下几项原则: (1)增添新元素,新旧元素在一起构成新数集; (2)在新数集里,定义一些基本关系和运算,使原有的一些主要性 质(如运算定律)依然适用; (3)旧元素作为新数集里的元素,原有的运算关系保持不变; (4)新的数集能够解决旧的数集不能解决的矛盾.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档