复习课概率教案
初中统计概率教案
初中统计概率教案教学目标:1. 知识与技能目标:学生能够理解统计与概率的基本概念,掌握收集、整理、分析数据的方法,能够运用概率知识解决实际问题。
2. 过程与方法目标:学生能够通过调查、实验等方式收集数据,运用统计方法对数据进行分析,提高数据处理能力。
3. 情感态度与价值观目标:学生能够认识统计与概率在生活中的重要性,培养对数据敏感的意识,增强运用数学解决实际问题的能力。
教学重点:1. 统计与概率的基本概念。
2. 收集、整理、分析数据的方法。
3. 概率知识的应用。
教学难点:1. 概率公式的理解与应用。
2. 数据处理方法的灵活运用。
教学过程:一、导入(5分钟)1. 教师通过生活中的实例,如抽奖、投篮等,引导学生思考概率的意义,激发学生的兴趣。
2. 学生分享对概率的理解,教师总结并板书概率的定义。
二、新课导入(15分钟)1. 教师讲解统计与概率的基本概念,如样本、总体、频率等。
2. 学生跟随教师一起完成一些简单的统计与概率题目,巩固概念。
三、实践操作(15分钟)1. 教师布置一个小调查任务,如调查班级同学最喜欢的季节。
2. 学生分组进行调查,收集数据。
3. 教师引导学生运用统计方法对数据进行分析,如制作条形图、饼图等。
四、概率知识的应用(15分钟)1. 教师讲解概率公式,如概率的计算、条件概率等。
2. 学生跟随教师一起完成一些概率题目,加深对公式的理解。
3. 教师引导学生运用概率知识解决实际问题,如预测比赛结果等。
五、课堂小结(5分钟)1. 教师引导学生自主总结本节课的学习内容,巩固知识点。
2. 学生分享自己的学习收获,教师给予肯定和鼓励。
六、作业布置(5分钟)1. 教师布置一些有关统计与概率的练习题,让学生课后巩固。
2. 鼓励学生在生活中观察和运用统计与概率知识,培养学生的应用能力。
教学反思:本节课通过实例导入,让学生初步了解统计与概率的概念,通过实践操作,让学生掌握收集、整理、分析数据的方法,通过概率知识的应用,让学生学会解决实际问题。
初中数学《概率初步-复习课》教案
“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。
2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。
统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。
学生已学完本章,通过小结,可使所学知识系统化。
3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。
4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。
4.2过程与方法目标通过复习,培养学生归纳总结能力。
4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。
5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。
5.2学习难点解答练习,提高学生解决实际问题的能力。
6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。
6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。
7.学习环境与资源设计7.1学习环境:多媒体教室。
7.2学习资源:教材、教学课件(多媒体课件)。
8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
评价方式为:随堂提问、作品展评、作业反馈。
9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。
初中数学概率的教案
初中数学概率的教案
教学目标:
1. 了解概率的基本概念,掌握概率的计算方法。
2. 能够运用概率解决实际问题,提高解决问题的能力。
教学重点:
1. 概率的基本概念和计算方法。
2. 运用概率解决实际问题。
教学难点:
1. 概率的计算方法。
2. 运用概率解决实际问题。
教学准备:
1. 课件或黑板。
2. 练习题。
教学过程:
一、导入(5分钟)
1. 引入概率的概念,让学生思考日常生活中遇到的一些概率问题。
2. 举例说明概率的运用,如抽奖活动、彩票等。
二、新课(20分钟)
1. 讲解概率的基本概念,包括试验、样本空间、事件等。
2. 介绍概率的计算方法,包括古典概率、条件概率和联合概率等。
3. 通过例题讲解如何运用概率计算方法解决问题。
三、练习(15分钟)
1. 让学生独立完成练习题,巩固所学的概率计算方法。
2. 引导学生思考如何将概率运用到实际问题中。
四、总结(5分钟)
1. 让学生回顾本节课所学的内容,总结概率的基本概念和计算方法。
2. 强调概率在实际生活中的运用,激发学生学习概率的兴趣。
教学反思:
本节课通过导入、新课讲解、练习和总结环节,让学生掌握了概率的基本概念和计算方法,并能够运用概率解决实际问题。
在教学过程中,要注意引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。
同时,要加强课堂练习,让学生巩固所学知识。
高中数学第五章概率教案
高中数学第五章概率教案教学目标:1. 了解概率的基本概念和定义,掌握概率计算的方法。
2. 能够在实际问题中运用概率知识解决问题。
3. 能够通过实验来验证概率的计算结果。
教学内容:1. 概率的基本概念和定义2. 概率计算的方法3. 事件的互斥与独立4. 事件的排列组合5. 概率的实际应用教学重点:1. 概率的基本概念和定义2. 概率计算的方法教学难点:1. 事件的互斥与独立2. 事件的排列组合教学准备:1. 教学课件2. 教学实验器材3. 习题集教学步骤:一、引入概率的概念(10分钟)通过一个简单的实例引导学生了解概率的概念,并引出概率的定义。
二、概率的计算方法(20分钟)1. 讲解概率计算的基本方法2. 给学生演示概率计算的步骤3. 练习相关计算题目三、事件的互斥与独立(15分钟)1. 解释事件互斥和独立的概念2. 给学生举例说明互斥和独立事件的计算方法四、事件的排列组合(20分钟)1. 介绍排列组合的概念2. 解释有放回、无放回抽样的排列组合计算方法五、概率的实际应用(15分钟)通过实际问题的练习,让学生运用概率知识解决问题,加深对概率的理解。
六、总结与展望(10分钟)对概率的学习进行总结,展望下一节课内容。
教学评估:1. 教师课堂表现评价2. 学生练习题表现评价3. 学生实验结果报告评价拓展延伸:1. 给学生布置概率实验项目,让学生通过实验来验证概率的计算结果。
2. 鼓励学生参加数学建模比赛,应用概率知识解决实际问题。
高中新教材概率教案
高中新教材概率教案本次教案设计的核心目标是引导学生通过具体案例学习概率的基本概念、计算方法以及应用技巧。
通过一系列的教学活动,学生将能够理解概率的含义,学会计算简单事件的概率,并能够在实际情境中运用概率知识解决问题。
一、引入与激发兴趣通过一个贴近学生生活的实例来引入概率的概念。
例如,可以提出一个问题:“如果你每天上学的路上有50%的几率会遇到你喜欢的歌在广播中播放,那么一周内(假设七天)你至少有一天遇到这首歌播放的概率是多少?”这个问题旨在激发学生的好奇心,让他们意识到概率与日常生活紧密相关。
二、概念讲解在学生的兴趣被激发之后,教师将系统地介绍概率的基础概念。
包括随机事件、样本空间、频率、概率等基本术语的定义和含义。
通过举例和对比,帮助学生形成清晰的概念认识。
三、计算方法教师将重点讲解如何计算事件的概率。
包括加法原理、乘法原理以及条件概率等。
通过具体的例题,如抛硬币、掷骰子等经典概率问题,让学生动手计算,从而加深对公式和原理的理解。
四、实际应用理论知识讲解完毕后,教师将引导学生进入实际应用阶段。
设计一些与现实生活相结合的问题,如预测某场足球比赛的胜负、分析彩票中奖的可能性等。
这些问题不仅能够让学生运用所学知识,还能培养他们分析和解决问题的能力。
五、巩固练习为了让学生更好地掌握概率知识,教案还包括了大量的练习题。
这些题目覆盖了从基础到提高各个层次,既有选择题也有解答题,确保学生能够从不同角度巩固和应用所学内容。
六、总结反馈教师将对本次课程进行总结,回顾重要知识点,并对学生在课堂上的表现给予反馈。
同时,鼓励学生提问和讨论,以促进他们对概率知识的深入理解。
高中数学概率课时分配教案
高中数学概率课时分配教案第一课时:概率的基本概念
1. 介绍概率的概念和定义
2. 讨论随机事件、样本空间和事件的关系
3. 解释概率的常见表示方法
第二课时:概率的计算方法
1. 简单事件和复合事件的概念
2. 计算概率的基本规则和公式
3. 通过例题演示如何计算概率
第三课时:排列与组合的概率
1. 讲解排列和组合的定义和性质
2. 讨论排列和组合在概率问题中的应用
3. 练习排列和组合的计算方法
第四课时:条件概率与事件的独立性
1. 讲解条件概率的概念和计算方法
2. 探讨事件的独立性和相互关系
3. 解答相关例题,加深学生对条件概率和独立性的理解
第五课时:贝叶斯定理
1. 简要介绍贝叶斯定理的概念和应用场景
2. 讲解贝叶斯定理的推导和计算方法
3. 通过实例演示贝叶斯定理在实际问题中的应用
第六课时:概率分布和期望
1. 讨论离散概率分布和连续概率分布的概念
2. 介绍期望的定义和计算方法
3. 通过案例分析概率分布和期望的应用
第七课时:大数定律和中心极限定理
1. 简要介绍大数定律和中心极限定理的概念
2. 讨论这两个定律在概率论中的重要性和应用
3. 通过实例演示大数定律和中心极限定理的效果和实际意义
通过以上的课时安排,学生将能够全面了解和掌握概率的基本概念、计算方法和相关定理,提高他们的数学素养和解题能力。
九年级数学概率教案
数学教案:九年级概率教学目标:1.了解概率的概念并能够用自己的语言解释概率的意义;2.能够计算事件发生的概率;3.能够利用概率进行实际问题的解决。
教学重点:1.概率的概念;2.概率的计算方法;3.利用概率解决实际问题。
教学难点:1.概率计算方法的应用;2.实际问题的解决。
教学准备:1.教师准备投掷硬币、骰子等实物;2.准备一些有关概率的实际问题的素材;3.提前复习一下九年级概率相关的知识点,如事件的概念、计算概率的方法等。
教学过程:Step 1:导入新知教师可使用一些实物来引入概率的概念,比如投掷硬币、掷骰子等。
教师可以问学生在掷硬币时,出现正面和反面的概率是多少?掷骰子时出现一些数字的概率是多少?通过这个导入,让学生了解到概率与随机事件有关。
Step 2:引入概率的概念教师通过上述导入,引出概率的概念。
概率是指一些事件发生的可能性大小,在数学中用一个介于0和1之间的数字表示。
教师可以用数学符号来表示概率,如P(A),其中A表示一些事件。
Step 3:概率的计算方法3.1频率法:通过实验得到事件发生的频率,即事件发生的次数除以实验总数。
3.2几何概型法:对于随机试验的结果可以通过几何图形来表示,通过计算几何图形中其中一区域的面积来计算概率。
3.3等可能性原则:如果一个试验中所有可能的结果都是等可能发生的,那么事件A发生的概率等于事件A所包含的基本事件数与所有基本事件总数的比值。
Step 4:实际问题解决通过一些实际问题的解决来巩固学生对概率计算方法的应用。
Step 5:概率的应用学生通过学习概率的计算方法和解决实际问题后,了解到概率在现实生活中的应用,如信封问题、球桌问题、生日问题等。
教师可以引导学生思考更多的应用场景,并让学生自主分析和解决实际问题。
Step 6:小结对本节课的知识点进行小结和梳理。
教学延伸:通过让学生完成一些概率相关的练习题、实际问题的解决,巩固和拓展学生对概率的理解和应用能力。
六年级下册数学教案-总复习统计与概率(2)|西师大版
六年级下册数学教案-总复习统计与概率(2)|西师大版在上一节课中,我们回顾了统计与概率的基本概念和常用统计量。
学生已经掌握了如何收集数据、整理数据以及如何通过数据来描述和分析现象。
今天我将带领大家进一步复习统计与概率的相关知识,希望同学们能够通过今天的复习,进一步加深对统计与概率的理解,提高解决问题的能力。
一、教学内容我们将继续使用西师大版六年级下册的数学教材,复习统计与概率的第二部分内容。
这部分内容包括:理解概率的意义,掌握求概率的方法,以及如何应用概率解决实际问题。
二、教学目标1. 理解概率的意义,掌握求概率的基本方法。
2. 能够运用概率知识解决一些简单的实际问题。
3. 培养学生的数据分析能力和问题解决能力。
三、教学难点与重点本节课的重点是让学生理解概率的意义,掌握求概率的基本方法。
难点是让学生能够将概率知识应用到实际问题中,解决实际问题。
四、教具与学具准备1. PPT课件,用于展示复习内容和解题方法。
2. 练习题,用于巩固学生对概率知识的理解和应用。
五、教学过程1. 引入:通过一个简单的概率问题引入本节课的复习内容。
例如:抛一枚硬币,正面向上的概率是多少?2. 复习统计与概率的基本概念:回顾概率的定义,以及如何求概率。
3. 讲解求概率的方法:通过具体的例题,讲解如何通过列举法、画树状图法等方法求概率。
4. 应用概率解决实际问题:通过具体的例题,讲解如何将概率知识应用到实际问题中,解决实际问题。
5. 练习:让学生独立完成练习题,巩固对概率知识的理解和应用。
六、板书设计板书设计如下:1. 概率的定义2. 求概率的方法列举法树状图法3. 概率在实际问题中的应用七、作业设计作业题目:1. 一辆汽车从甲地开往乙地,行驶过程中,遇到红灯的概率是1/4,遇到绿灯的概率是3/4。
求:(1) 遇到红灯或绿灯的概率。
(2) 遇到红灯且遇到绿灯的概率。
答案:1. (1) 遇到红灯或绿灯的概率是1。
(2) 遇到红灯且遇到绿灯的概率是0。
概率复习课+教案陈
概率复习课(第1课时)河北师大附中陈英辉【教材分析】本章是中学数学相对独立的一部分内容,它是概率统计的基础,是每年高考必考的内容之一,侧重考查三种概率事件在实际问题中的应用,即求等可能事件的概率,求互斥事件、独立事件的概率,求某事件在n次独立重复试验中恰好发生k次的概率,难度一般为中等或较容易,分值在12分左右.基于以上分析,确定如下的知识目标、能力目标、重点、难点.【知识目标】 1.掌握等可能事件的概率计算公式;2.掌握互斥事件和对立事件;3.掌握相互独立事件和n次独立重复试验的概率计算公式.【能力目标】 1.注意分类讨论思想、转化思想等数学思想在概率问题中的应用,提高学生分析问题、解决问题的能力;2.培养学生简约化思想的意识,提升学生运用数学知识解决实际问题的能力.【教学重点】 1.概率的定义、性质;2.区分互斥事件、对立事件、相互独立事件和独立重复试验.【教学难点】应用本章知识解决实际问题【教学方法】讲练结合法教学过程:一、创设问题回顾旧知:通过以下几个简单实例,让学生逐步回忆概率的有关概念.注意区分互斥事件、对立事件、相互独立事件和独立重复试验.对于本章的一些公式,要注意运用它们的前提条件,通过学生回答,在练中求知,及时发现存在问题,纠正错误.1.下列四个命题:(1)对立事件一定是互斥事件(2)若A、B是两个互斥事件,则P(A+B)=P(A)+P(B)(3)若事件A、B、C彼此互斥,则P(A)+P(B)+P(C)=1其中正确的有()A 、0个B 、1个C 、2个D 、3个2.先后抛掷两枚均匀的硬币,出现“1枚正面、1枚反面”的概率是多少?3. 甲乙两人下棋,两人下成和棋的概率是12 ,甲获胜的概率是13, 则甲不输的概率 是 ,乙获胜的概率是 .4. 在一段时间内,甲去某地的概率是41,乙去此地的概率是51,假定两人的行动相互之间没有影响,则在这段时间内甲、乙都去此地的概率是多少?5. 某射手射击1次,击中目标的概率是0.9,他连续射击3次,且各次射击是否击中相互之间没有影响,则他在这3次射击中恰好击中2次的概率是多少?[设计意图] 通过几个简单小题的练习使学生达到复习概率基本知识点的目的.二、总结构建知识体系通过以上练习归纳出本章知识体系,然后再通过典型实例达到巩固提高的目的.本节课,我们将重点从 概率的基本性质、等可能事件、互斥事件、相互独立事件、独立重复试验等事件进行归纳总结,通过专题练习来达到巩固提高的效果!一、概率的基本性质:1)必然事件概率为1,不可能事件概率为0.随机事件的概率0≤P(A)≤1;2)当事件A 与B 互斥时,满足概率的加法公式: P (A +B )=P (A )+P (B );3)若事件A 与B 为对立事件,则P (A )=1—P (B );(巧妙的运用这一性质可以简化解题)4)互斥事件与对立事件的区别与联系:我们可以说如果两个事件为对立事件则它们一定互斥,而互斥事件则不一定是对立事件.二、等可能事件1.正确理解的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.掌握等可能事件的概率计算公式:P (A ) =A 包含的基本事件个数m总的基本事件个数n三、互斥事件有一个发生的概率1.正确理解互斥事件和对立事件.2.掌握公式:P (A +B )=P (A )+P (B )若A 、B 是对立事件,则P (A )+P (B )=1.四、相互独立事件同时发生的概率和独立重复试验1.正确理解相互独立事件和互斥事件的区别.2.掌握公式:)()()(B P A P B A P ⋅=⋅()(1)k k k n nP k C p p =- (k =0,1,2,…n) 三、典型例题在这部分练习中,使学生体会本章应用题的思考方法,正向思考时要善于将复杂的问题进行分解,解决有些问题时还要注意运用思考的方法,即正难则反.例1:柜子里装有3双不同的鞋,随机地取出2只,试求下列事件的概率:(1)取出的鞋子都是左脚的;(2)取出的鞋子都是同一只脚的.分析:本题应引导学生首先判断是属于等可能事件,再引导结合前面回顾的知识点求出所需的量,强调古典概型的特征:一是基本事件的有限性,而是基本事件的等可能性.变式:(1)取出的鞋一只是左脚的,一只是右脚的;(2)取出的鞋不成对.分析:进行变式的目的是要重点引导学生当从正面解决比较困难或者比较繁琐时,可考虑其反面,会把一个复杂时间分解为彼此互斥的事件,或分解为彼此独立的事件;灵活的把P (A )转化为P (A —),使学生将概率的基本性质更好的运用于解题中,同时提高学生的思维能力,培养学生勇于创新的习惯.例2. 某气象站天气预报的准确率为23,求 (1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第三次预报准确的概率.分析:把一个复杂事件分解为几个彼此互斥的简单事件的和,然后再求每一个简单事件的概率,当正面分解包括的情况较多时,可先求其对立事件的概率.[设计意图]本例采用书上例题和习题,引导学生在复习时要重视课本的作用,回归课本,同时学会把复杂问题简单化.解题过程中,要明确条件中“至少有一个发生”,“至多有一个发生”,“恰有有一个发生”,“都发生”,等词语的意义,以及它们的概率之间的关系和计算公式.随堂练习1.从装有2个红球和2个黑球的袋子中任取2个球,那么互斥而不对立的事件是A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰有一个黑球与恰有两个黑球D.至少有一个黑球与都是红球2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取两个恰好都是不合格的概率是.3.(2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是.[设计意图]通过前面的回顾分析,学生需要相应的练习来进一步巩固,以上选择的题目,注重了和前面例题的联系和补充,而有意识的加入了高考题,用意在于激起部分学优生的兴趣,同时也使学生明白这部分知识考查的难度,可以取到一定的引导作用,题目难度上仍有一定的层次性,如学生部分题目没办法课堂上完成,可课后完成.课堂小结1.本节课主要复习了概率的基本性质,几种事件的概率.2.求解概率问题应当明确以下几点:1)认清事件的特征,分清事件的类型是正确求解事件概率的基础,也是正确求解事件概率的保障。
概率与统计复习教案
概率与统计复习教案一、教学目标1. 回顾和巩固概率与统计的基本概念、原理和方法。
2. 提高学生运用概率与统计解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 概率的基本概念:必然事件、不可能事件、随机事件。
2. 概率的计算:古典概率、条件概率、独立事件的概率。
3. 统计的基本概念:平均数、中位数、众数、方差、标准差。
4. 数据的收集与处理:调查方法、数据整理、数据可视化。
5. 概率与统计在实际应用中的例子。
三、教学方法1. 讲授法:讲解概率与统计的基本概念、原理和方法。
2. 案例分析法:分析实际应用中的例子,引导学生运用概率与统计解决实际问题。
3. 小组讨论法:分组讨论问题,培养学生的团队协作能力。
4. 练习法:布置课后作业,巩固所学知识。
四、教学准备1. 教学PPT:制作包含概率与统计基本概念、原理和方法的PPT。
2. 案例材料:收集实际应用中的概率与统计例子。
3. 作业题目:准备课后作业,涵盖本节课的主要内容。
五、教学过程1. 导入:回顾上节课的内容,引导学生进入本节课的学习。
2. 讲解概率的基本概念:必然事件、不可能事件、随机事件。
3. 讲解概率的计算:古典概率、条件概率、独立事件的概率。
4. 案例分析:分析实际应用中的例子,让学生体会概率与统计在生活中的应用。
5. 讲解统计的基本概念:平均数、中位数、众数、方差、标准差。
6. 讲解数据的收集与处理:调查方法、数据整理、数据可视化。
7. 小组讨论:分组讨论问题,培养学生的团队协作能力。
8. 课堂练习:布置课后作业,巩固所学知识。
9. 总结:对本节课的主要内容进行总结,提醒学生注意重点知识点。
10. 课后作业:布置作业,让学生进一步巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对概率与统计概念的理解程度。
2. 小组讨论:观察学生在讨论中的表现,评估他们的团队协作能力和问题解决能力。
3. 课后作业:检查学生作业完成情况,评估他们对课堂所学知识的掌握程度。
随机事件的概率(复习课)
随机事件的概率(复习课)主题词:频率概率互斥事件对立事件案例摘要:本节内容选自普通高中新课程标准实验教科书人教版数学必修3的第三章第一节,复习的是概率的基本知识。
本节可主要体现新课改的精神和思想,由学生花时间看课本,然后通过小题训练,让学生在解题中提炼知识点和思想方法,真正做到将课堂还给学生,达到复习升华的目的。
整堂课以学生自主看书,练习为主,教师讲解为辅,从课本知识出发,进行衍生,变形,达到复习的目的。
课程与学习目标:知识与技能:了解随机事件发生的不确定性和概率的稳定性,了解概率的意义,了解概率与频率的区别,了解两个互斥事件的概率加法公式。
高考趋势:以概率的意义和性质为重点,结合实际,多角度考查概率问题,结合现实生活、概率的性质,对互斥事件和对立事件的考查成为新的热点。
过程与方法:从课本知识出发,用类比的方法探究解题方法,应用结论解题。
情感态度与价值观:引导学生自主探究,用联系的观点看问题。
教学重点:等可能事件,互斥事件,对立事件的意义及联系,能根据生活、生产等实际问题的情景分析问题,解决问题。
教学难点:会用互斥事件的概率加法公式解题。
教学方法:学生自主学习,教师启发讲授。
教学过程:1.课题引入:这堂课我们复习随机事件的概率。
请同学们翻开课本,自由复习108-121页的内容。
然后通过完成下面的小题,对知识点进行归纳与小结。
(1)在10件同类产品中,有8件产品是正品,2件是次品,从中任意抽出3件的必然事件是()A 3件都是正品B 至少有一件是次品C 3件都是次品D 至少有一件是正品(2)甲:B A ,是互斥事件;乙:B A ,是对立事件,那么( )A 甲是乙的充分条件但不是必要条件B 甲是乙的必要条件但不是充分条件C 甲是乙的充要条件D 甲既不是乙的充分条件也不是乙的必要条件(3)某人将一枚硬币连掷了10次,正面朝上的情形出现了6次,若用A 表示正面朝上的这一事件,则A 的( )A 概率为53B 频率为53C 频率为6D 概率接近53(4)给出关于满足B A ⊆的非空集合B A ,的四个命题①“若,A x ∈则B x ∈”是必然事件②“若A x ∉则B x ∈”是不可能事件③“若B x ∈则A x ∈”是随机事件④“若B x ∉则A x ∉”是必然事件其中正确命题的序号是( )(5)我国已经加入WTO 多年,包括汽车在内的进口商品将最多五年内把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率。
概率的教案7篇
概率的教案7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!概率的教案7篇教师可以通过不同的教学策略和方法来增加教案的适切性,教案的有效性可以通过学生成绩、学生反馈和教师自我评估来评估,下面是本店铺为您分享的概率的教案7篇,感谢您的参阅。
人教版九年级数学上册25.1.2《概率》教案
人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
概率初步复习教案
概率初步复习教案教案标题:概率初步复习教案教学目标:1. 复习学生对概率的基本概念和术语的理解。
2. 复习学生在计算概率时所使用的方法和技巧。
3. 引导学生应用概率概念解决实际问题。
教学准备:1. 教师准备白板、黑板或投影仪。
2. 准备概率相关的教学资源,如教科书、练习题、概率游戏等。
3. 确保学生具备计算概率所需的基本数学技能。
教学过程:引入:1. 向学生介绍本节课的主题:概率初步复习。
2. 提问学生对概率的理解,并引导他们回顾概率的基本概念和术语。
主体:1. 复习概率的基本概念和术语:a. 解释概率的定义,并与学生一起讨论概率的意义和应用。
b. 复习事件、样本空间、试验等概念,并通过实例说明它们的关系。
c. 回顾互斥事件和相互独立事件的定义,并提供相关的实例进行讨论。
2. 复习计算概率的方法和技巧:a. 复习计算简单事件概率的方法,如使用频率和相对频率。
b. 复习计算复合事件概率的方法,如使用加法原理和乘法原理。
c. 提供一些练习题,让学生运用所学方法计算概率。
3. 引导学生应用概率解决实际问题:a. 提供一些实际问题,让学生分析并计算相关的概率。
b. 引导学生思考如何应用概率概念解决生活中的问题,如投资、购买彩票等。
总结:1. 总结本节课的重点内容,并强调学生在复习概率时应注意的要点。
2. 鼓励学生继续加强对概率的理解和应用,并提供相关的练习资源供学生自主学习。
拓展活动:1. 提供一些概率游戏或实验,让学生通过实际操作来感受概率的应用和变化。
2. 鼓励学生在日常生活中寻找和应用概率的例子,并与同学分享。
教学评估:1. 教师观察学生在课堂上的参与度和理解程度。
2. 布置一些练习题,以检验学生对概率的掌握程度。
3. 鼓励学生提出问题并进行小组讨论,以促进学生之间的合作和思维交流。
教学延伸:根据学生的理解情况和学校的教学计划,可以进一步拓展概率的相关内容,如条件概率、贝叶斯定理等。
初中数学概率问题教案
初中数学概率问题教案一、教学目标1. 知识与技能目标:学生能够理解随机事件的定义,掌握概率的基本计算方法,能够运用概率知识解决实际问题。
2. 过程与方法目标:通过观察、实验、分析等方法,培养学生对概率问题的探究能力,提高学生的逻辑思维能力。
3. 情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的合作意识。
二、教学重难点1. 重点:随机事件的定义,概率的基本计算方法。
2. 难点:如何运用概率知识解决实际问题。
三、教学过程1. 导入:教师通过抛硬币、掷骰子等实验,引导学生观察和思考随机事件的发生,从而引出概率的概念。
2. 新课导入:教师介绍随机事件的定义,并通过实例解释随机事件的概念。
同时,教师讲解概率的基本计算方法,如计算一个事件的概率、计算两个事件的联合概率等。
3. 案例分析:教师给出几个实际问题,如抛硬币实验中出现正面的概率、掷骰子实验中出现点的概率等,引导学生运用概率知识解决问题。
4. 课堂练习:教师布置几道有关概率的练习题,让学生独立完成,巩固所学知识。
5. 总结:教师引导学生总结本节课所学内容,巩固随机事件和概率的基本概念及计算方法。
6. 拓展延伸:教师给出一些有关概率的拓展问题,如如何计算多个事件的概率、如何求事件的补事件等,引导学生进行思考和探究。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生完成练习题的情况,评估学生对概率知识的掌握程度。
3. 拓展延伸:评估学生在拓展延伸环节的表现,了解学生的探究能力和逻辑思维能力。
五、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对不足之处进行改进,以提高教学效果。
六、教学资源1. 教学课件:教师制作课件,展示随机事件和概率的基本概念及计算方法。
2. 练习题:教师准备一些有关概率的练习题,帮助学生巩固所学知识。
3. 拓展问题:教师提供一些有关概率的拓展问题,激发学生的思考和探究。
高中数学 复习课(三)概率教学案 苏教版必修3-苏教版高一必修3数学教学案
复习课(三) 概率古典概型是学习及高考考查的重点,考查形式以填空题为主,试题难度属容易或中等,处理的关键在于用枚举法找出试验的所有可能的基本事件及所求事件所包含的基本事件.还要注意理解事件间关系,准确判断两事件是否互斥,是否对立,合理利用概率加法公式及对立事件概率公式.[考点精要]1.事件(1)基本事件在一次试验中可能出现的每一个可能结果.(2)等可能事件假设在一次试验中,每个基本事件发生的可能性都相同,那么称这些基本事件为等可能基本事件.(3)互斥事件①定义:不能同时发生的两个事件称为互斥事件.如果事件A1,A2,…,A n中的任何两个都是互斥事件,就说事件A1,A2,…,A n彼此互斥.②规定:设A,B为互斥事件,假设事件A,B至少有一个发生,我们把这个事件记作A+B.(4)对立事件两个互斥事件必有一个发生,那么称这两个事件为对立事件,事件A的对立事件记作A.2.概率的计算公式(1)古典概型①特点:有限性,等可能性.②计算公式:P(A)=事件A包含的基本事件数试验的基本事件总数.(2)互斥事件的概率加法公式①假设事件A,B互斥,那么事件A+B发生的概率等于事件A,B分别发生的概率的和即P(A+B)=P(A)+P(B).②假设事件A1,A2,…,A n两两互斥.那么古典概型P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ). (3)对立事件计算公式:P (A )=1-P (A ).[典例](1)5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.(2)将2本不同的数学书和1本语文书在书架上随机排成一行,那么2本数学书相邻的概率为________.(3)随机掷两枚骰子,它们向上的点数之和不超过5的概率记为p 1 ,点数之和大于5的概率记为p 2 ,点数之和为偶数的概率记为p 3 ,那么p 1,p 2,p 3从小到大依次为________.(4)(某某高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.①应从这三个协会中分别抽取的运动员的人数为________.②将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.从这6名运动员中随机抽取2人参加双打比赛.那么编号为A 5和A 6的两名运动员中至少有1人被抽到概率为________.[解](1)记3件合格品为a 1,a 2,a 3,2件次品为b 1,b 2,那么任取2件构成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},共10个基本事件.记“恰有1件次品〞为事件A ,那么A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2)},共6个基本事件.故其概率为P (A )=610=0.6.(2)设2本数学书分别为A ,B ,语文书为C ,那么所有的排放顺序有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种情况,其中数学书相邻的有ABC ,BAC ,CAB ,CBA ,共4种情况,故2本数学书相邻的概率P =46=23.(3)总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,那么向上的点数之和不超过5的概率p 1=1036=518;向上的点数之和大于5的概率p 2=1-518=1318;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p 3=12.即p 1<p 3<p 2.(4)①应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.②从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.[答案](1)0.6 (2)23 (3)p 1<p 3<p 2 (4)①3,1,2 ②35[类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算[题组训练]1.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.解析:利用列举法可求出基本事件总数为6种,其中符合要求的有5种,故P =56.答案:562.假设某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,那么甲或乙被录用的概率为________.解析:所有基本事件为(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中符合“甲与乙均未被录用〞的结果只有(丙,丁,戊).故所求概率P =1-110=910.答案:9103.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,那么他们选择相同颜色运动服的概率为________.解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.答案:13几何概型是各类考查的重点,考查形式以填空题为主,试题难度比古典概型稍大.[考点精要]1.几何概型的特征(1)无限性:即试验结果有无限多个. (2)等可能性:即每个结果出现是等可能的. 2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)[典例](1)在区间[0,5]上随机选择一个数p ,那么方程x 2+2px +3p -2=0有两个负根的概率为________.(2)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.(3)事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB 〞发生的概几何概型率为12,那么AD AB =________.[解析](1)设方程x 2+2px +3p -2=0有两个负根分别为x 1,x 2,∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝⎛⎭⎫1-23+(5-2)5=23.(2)依题意,得S 阴影S 正方形=1801 000,所以S 阴影1×1=1801 000,解得S 阴影=0.18.(3)由,点P 的分界点恰好是边CD 的四等分点,由勾股定理可得 AB 2=⎝⎛⎭⎫34AB 2+AD 2,解得⎝⎛⎭⎫AD AB 2=716, 即AD AB =74. [答案](1)23 (2)0.18 (3)74[类题通法](1)几何概型概率的大小与随机事件所在区域的形状位置无关,只和该区域的大小有关. (2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.(某某高考)在区间[0,2]上随机地取一个数x ,那么事件“-1≤log 12⎝⎛⎭⎫x +12≤1〞发生的概率为________.解析:不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.42.(某某高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上. 假设在矩形ABCD 内随机取一点,那么此点取自阴影部分的概率等于________.解析:因为f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),所以C 点坐标为(1,2),D 点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32, 故P =326=14.答案:143.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,那么三棱锥S -APC 的体积大于V3的概率是________. 解析:由题意可知V S -APCV S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 交于点M ,BN ⊥AC 交于点N , 那么PM ,BN 分别为△APC 与△ABC 的高, 所以V S -APCV S -ABC =S △APC S △ABC =PM BN >13,又PM BN =APAB , 所以AP AB >13,故所求的概率为23(即为长度之比).3概率和统计综合应用[考点精要]对于给定的随机事件A.由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此各类考试常常结合统计的知识考查概率.考查形式一般以解答题为主,难度中等.解决此类考题要注意:①正确利用数形结合的思想.②充分利用概率是频率的稳定值,用频率估计概率.③准确地处理所给数据.[典例]某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100] 频数281410 6(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.[解](1)如下图.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意〞;C B表示事件:“B地区用户的满意度等级为不满意〞.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.[类题通法]解决概率和统计综合题,首先要明确频率、概率、频率分布表、频率分布直方图、概率的计算方法等基本知识,要充分利用频率估计概率及数形结合等基本思想,正确处理各种数据.[题组训练]1.随机抽取某中学高三年级甲、乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图,其中甲班有一个数据被污损.(1)假设甲班同学身高的平均数为170 cm ,求污损处的数据;(2)现从乙班这10名同学中随机抽取2名身高不低于173 cm 的同学,求身高176 cm 的同学被抽中的概率.解:(1)设被污损的数字为a ,由题意知,甲班同学身高的平均数为x =158+162+163+168+168+170+171+179+170+a +18210=170,解得 a =9.(2)设“身高176 cm 的同学被抽中〞的事件为A ,从乙班10名同学中抽取2名身高不低于173 cm 的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173},共10个基本事件,而事件A 含有4个基本事件,所以P (A )=410=25.2.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如下图),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. 解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.[对应配套卷P105]1.从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:基本事件的总数为6,满足条件的有{1,2},{2,4},2个,故P =26=13.答案:132.盒子里共有大小相同的3只白球,1只黑球.假设从中随机摸出两只球,那么它们颜色不同的概率是________.解析:基本事件总数有6个,满足条件的有3个,故P =12.答案:123.如下图,阴影部分是一个等腰三角形ABC ,其中一边过圆心O ,现在向圆面上随机撒一粒豆子,那么这粒豆子落到阴影部分的概率是________.解析:向圆面上随机撒一粒豆子,其结果有无限个,属于几何概型.设圆的半径为r ,全部结果构成的区域面积是圆面积πr 2,阴影部分的面积是等腰直角三角形ABC 的面积r 2,那么这粒豆子落到阴影部分的概率是r 2πr 2=1π. 答案:1π4.在区间[0,3]上任取一点,那么此点落在区间[2,3]上的概率是________. 解析:设这个事件为A ,所考查的区域D 为一线段,S D =3,又S A =1,∴P (A )=13.答案:135.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,那么m ,n 都取到奇数的概率为________.解析:基本事件总数为N =7×9=63,其中m ,n 都为奇数的事件个数为M =4×5=20,所以所求概率P =M N =2063.答案:20636.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,假设此点到圆心的距离大于12,那么周末去看电影;假设此点到圆心的距离小于14,那么去打篮球;否那么,在家看书.那么小波周末不在家看书的概率为________.解析:去看电影的概率P 1=π×12-π×⎝⎛⎭⎫122π×12=34,去打篮球的概率P 2=π×⎝⎛⎭⎫142π×12=116, 故不在家看书的概率为P =34+116=1316.答案:13167.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:从五个数中任意取出两个数的可能结果有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中“和为5〞的结果有(1,4),(2,3),故所求概率为210=15. 答案:158.假设a ,b ∈{-1,0,1,2},那么使关于x 的方程ax 2+2x +b =0有实数解的概率为________.解析:要使方程有实数解,那么a =0或ab ≤1,所有可能的结果为(-1,-1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(1,2),(2,-1),(2,0),(2,1),(2,2),共16个,其中符合要求的有13个, 故所求概率P =1316.答案:13169.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,假设选到男教师的概率为920,那么参加联欢会的教师共有________人.解析:设男教师为x 人,那么女教师为(x +12)人. 依题意有: x2x +12=920.∴x =54. ∴共有教师2×54+12=120(人). 答案:12010.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12〞的概率,p 2为事件“xy ≤12〞的概率,那么p 1,p 2,12按从小到大排列为________.解析:如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12〞对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12;事件“xy ≤12〞对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,那么p 1<12<p 2.答案:p 1<12<p 211.(某某高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中〞所包含的基本事件有: {A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.12.编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. 解:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13}共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50〞(记为事件B )的所有可能结果有{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11}共5种.所以P (B )=515=13.13.在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解:(1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90. 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的选法有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,10514.设f (x )和 g (x )都是定义在同一区间上的两个函数,假设对任意x ∈[1,2],都有|f (x )+g (x )|≤8,那么称f (x )和g (x )是“友好函数〞,设f (x )=ax ,g (x )=bx.(1)假设a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数〞的概率; (2)假设a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数〞的概率. 解:(1)设事件A 表示f (x )和g (x )是“友好函数〞, 那么|f (x )+g (x )|(x ∈[1,2])所有的情况有: x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x , 共6种且每种情况被取到的可能性相同. 又当a >0,b >0时,ax +b x 在⎝⎛⎭⎫0,b a 上递减,在⎝⎛⎭⎫b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,所以对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1x , 故事件A 包含的基本事件有4种, 所以P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数〞,因为a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,所以点(a ,b )所在区域是长为3,宽为3的矩形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立, 需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b2≤8,所以事件B 表示的点的区域是如下图的阴影部分.所以P (B )=12×⎝⎛⎭⎫2+114×33×3=1924,24(时间120分钟 总分值160分)一、填空题(本大题共14小题,每题5分,共70分,请把答案填写在题中横线上) 1.从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且P (A )=0.65,P (B )=0.2,P (C )=0.1.那么事件“抽到的不是一等品〞的概率为________.解析:设事件“抽到的不是一等品〞为D ,那么A 与D 对立, ∴P (D )=1-P (A )=0.35. 答案:0.352.甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲紧接着排在乙前面值班的概率是________.解析:甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.答案:133.根据以下算法语句,当输入x 为60时,输出y 的值为________. Read xIf x ≤50 Then y ←0.5 x Else y ←25+0.6×(x -50)End If Print y解析:由题意知,该算法语句的功能是求分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50的值,所以当x =60时,输出y 的值为25+0.6×(60-50)=31.答案:314.从1,2,3,6这4个数中一次随机地取2个数,那么所取2个数的乘积为6的概率是________.解析:取两个数的所有情况有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.乘积为6的有:(1,6),(2,3)共2种情况.所求事件概率为26=13.答案:135.执行如下图的程序框图,那么输出S 的值为________.解析:由程序框图与循环结束的条件“k >4〞可知,最后输出的S =log 255=12.答案:126.(某某高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,那么应抽取的男生人数为________.解析:设男生抽取x 人,那么有45900=x 900-400,解得x =25.答案:257.(某某高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如下图.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由(1.5+2.5+a +2.0+0.8+0.2)×0.1=1, 解得a =3.(2)区间[0.3,0.5]内频率为0.1×(1.5+2.5)=0.4, 故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 0008.(某某高考)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10 ,其均值和方差分别为x 和s 2,假设从下月起每位员工的月工资增加100元,那么这10位员工下月工资的均值和方差分别为________.解析:对平均数和方差的意义深入理解可巧解.因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变.答案:100+x s 29.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{1,2,3,4},假设|a -b |≤1,那么称甲、乙“心有灵犀〞.现任意找两人玩这个游戏,得出他们“心有灵犀〞的概率为________.解析:甲、乙所猜数字的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,其中满足|a -b |≤1的基本事件有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10个,故所求概率为1016=58.答案:5810.正方形ABCD 面积为S ,在正方形内任取一点M ,△AMB 面积大于或等于13S 的概率为________.解析:如图,设正方形ABCD 的边长为a ,那么S =a 2,△ABM 的高为h ,由题知,12h ·a ≥13S =13a 2,∴h ≥23a ,∴P =13.答案:1311.如以下图是CBA 篮球联赛中,甲、乙两名运动员某赛季一些场次得分的茎叶图,那么平均得分高的运动员是________.解析:x 甲=44+30+100+3010=20.4,x 乙=63+50+8010=19.3,∴x甲>x 乙.答案:甲12.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为________.解析:如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.答案:1313.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.样本平均数为7,样本方差为4,且样本数据互不相同,那么样本数据中的最大值为________.解析:设5个班级的数据分别为0<a <b <c <d <e .由平均数及方差的公式得a +b +c +d +e 5=7,(a -7)2+(b -7)2+(c -7)2+(d -7)2+(e -7)25=4.设a -7,b -7,c -7,d -7,e -7分别为p ,q ,r ,s ,t ,那么p ,q ,r ,s ,t 均为整数,那么⎩⎪⎨⎪⎧p +q +r +s +t =0,p 2+q 2+r 2+s 2+t 2=20.设f (x )=(x -p )2+(x -q )2+(x -r )2+(x -s )2=4x 2-2(p +q +r +s )x +(p 2+q 2+r 2+s 2)=4x 2+2tx +20-t 2,由(x -p )2,(x -q )2,(x -r )2,(x -s )2不能完全相同知f (x )>0,那么判别式Δ<0,解得-4<t <4,所以-3≤t ≤3,所以最大值为10. 答案:1014.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上〞为事件(2≤n ≤5,n ∈N),假设事件的概率最大,那么n 的所有可能值为________.解析:事件的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1); 当n =3时,落在直线x +y =3上的点为(1,2),(2,1); 当n =4时,落在直线x +y =4上的点为(1,3),(2,2); 当n =5时,落在直线x +y =5上的点为(2,3); 显然当n =3或4时,事件的概率最大为13.答案:3或4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题总分值14分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354;方差为:s 2=14×⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示“选出的两名同学的植树总棵数为19〞这一事件,那么C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.16.(本小题总分值14分)(某某高考)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x个,那么从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1,ab2,ab3,b1b2,b1b3,b2b3共6种不同方法.记基本事件总数为n,那么n=6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1,ab2,ab3,共3个,由古典概型的概率计算公式得P(A)=36=1 2.17.(本小题总分值14分)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华〞知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图的部分频率分布直方图,观察图形的信息,回答以下问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.解:(1)设第i组的频率为f i(i=1,2,3,4,5,6),因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.频率分布直方图如下图.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的合格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.18.(本小题总分值16分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历35岁以下35~50岁50岁以上本科803020研究生x 20y(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x,y的值.解:(1)用分层抽样的方法在35~50岁的人中抽取一个容量为5的样本,设抽取学历为本科的人数为m,∴30 50=m5,解得m=3.∴抽取了学历为研究生的有2人,学历为本科的有3人,分别记作S1,S2;B1,B2,B3. 从中任取2人的所有基本事件共10个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人的学历为研究生的概率为710.(2)依题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20. ∴4880+x =2050=1020+y .解得x =40,y =5. ∴x =40,y =5.19.(本小题总分值16分)某商场为吸引顾客消费推出一项优惠活动.活动规那么如下:消费每满100元可以转动如下图的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等.指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,那么其共获得了30元优惠券).顾客甲和乙都到该商场进行了消费,并按照规那么参与了活动.(1)假设顾客甲消费了128元,求他获得优惠券金额大于0元的概率; (2)假设顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率. 解:(1)设“甲获得优惠券〞为事件A .因为指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元、10元、0元区域内的概率都是13.顾客甲获得优惠券,是指指针停在20元或10元区域,且由题意知顾客甲只能转动一次圆盘.根据互斥事件的概率公式,有P (A )=13+13=23,所以顾客甲获得优惠券金额大于0元的概率是23.(2)设“乙获得优惠券金额不低于20元〞为事件B ,因为顾客乙转动了圆盘两次,设乙第一次转动圆盘获得优惠券金额为x 元,第二次获得优惠券金额为y 元,用(x ,y )表示乙两次转动圆盘获得优惠券金额的情况,那么有(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),。
初中概率校内试讲教案
初中概率校内试讲教案一、教学目标1. 知识与技能目标:学生能够理解概率的基本概念,掌握利用列举法求解概率的方法,并能应用于实际问题中。
2. 过程与方法目标:通过实例分析和小组讨论,培养学生运用概率知识解决实际问题的能力。
3. 情感态度与价值观目标:激发学生对概率学科的兴趣,培养学生的逻辑思维和团队合作精神。
二、教学重难点1. 重点:概率的基本概念,列举法求解概率的方法。
2. 难点:灵活运用概率知识解决实际问题。
三、教学过程1. 导入:通过抛硬币游戏,引导学生思考事件的概率。
2. 新课导入:介绍概率的基本概念,举例说明必然事件、不可能事件和随机事件。
3. 教学互动:讲解列举法求解概率的方法,并通过示例进行演示。
4. 小组讨论:让学生分组讨论,运用列举法求解概率,并分享解题过程和结果。
5. 案例分析:分析实际问题,引导学生运用概率知识解决实际问题。
6. 课堂练习:布置练习题,让学生独立完成,巩固所学知识。
7. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
四、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与程度。
2. 练习完成情况:检查学生练习题的完成质量,评估学生对知识的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括逻辑思维、团队合作等方面。
五、教学资源1. 教材:初中数学教材,相关章节。
2. 教具:黑板、粉笔、投影仪等。
3. 案例素材:与概率相关的实际问题。
六、教学步骤1. 导入:抛硬币游戏,引导学生思考事件的概率。
2. 新课导入:介绍概率的基本概念,必然事件、不可能事件和随机事件。
3. 讲解列举法求解概率的方法,示例演示。
4. 小组讨论:分组讨论,运用列举法求解概率,分享解题过程和结果。
5. 案例分析:分析实际问题,引导学生运用概率知识解决实际问题。
6. 课堂练习:布置练习题,让学生独立完成。
7. 总结与拓展:总结本节课的主要内容,提出拓展问题。
概率小学数学教案
概率小学数学教案
教学内容:概率基础知识
教学目标:学生能够理解并运用概率的基本概念,能够求解简单的概率问题
教学重点:概率的定义、概率的计算方法
教学难点:复杂概率问题的解决
教学准备:教学课件、教学实验器材、课堂练习题、教学录音
教学过程:
1.导入:通过一个简单的实例引导学生了解概率的概念,并提出问题,让学生思考如何解决。
2.概率定义:讲解概率的定义,引导学生理解什么是概率,概率的取值范围等。
3.概率计算方法:介绍几种简单的概率计算方法,如等可能性事件的概率计算、事件的互斥和独立等。
4.实例讲解:通过几个实际的问题讲解概率的计算方法,帮助学生掌握概率的应用。
5.课堂练习:布置课堂练习题,让学生独立解决问题,巩固所学内容。
6.总结:对本节课所学内容进行总结,强调概率的重要性,激发学生对数学学习的兴趣。
教学反思:教学过程中,要注重引导学生自主思考和探索,提高他们的实际操作能力和解决问题的能力,激发他们对数学的兴趣和学习热情。
小学数学统计与概率教案5篇
小学数学统计与概率教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作方案、述职报告、思想汇报、演讲稿、条据书信、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, job reports, thought reports, speeches, evidence letters, contract agreements, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学数学统计与概率教案5篇写教案之前需要对接下来的教学内容做好分析才行,通过制定教案我们可以梳理好自己的教学流程,本店铺今天就为您带来了小学数学统计与概率教案5篇,相信一定会对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《走进概率》复习教案
第一课
一、复习目标
【知识目标】
1、回顾本章内容,用所学的概率知识去解决某些现实问题,再自我归纳和总结实验频率与理论概率的关系。
2、能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法,估计一些复杂的随机事件发生的概率。
【能力目标】
学会与人合作,进一步发展学生合作交流的意识和能力。
【情感态度价值观】
形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神。
二、复习重、难点
【重点】运用列举法计算简单事件发生的概率
【难点】用所学的概率知识去解决某些现实问题,理解实验频率和理论概率的关系。
三、复习过程
知识指导与梳理:
(一)知识回顾
1
、什么是必然事件,不可能事件,随机事件?
(以问答的方式完成)
在一定条件下必然要发生的事件,叫做必然事件。
在一定条件下不可能发生的事件,叫做不可能事件。
在一定条件下可能发生也可能不发生的事件,叫做随机事件。
【活动】(1)你能举出一些必然事件、不可能事件、随机事件吗?
(2
)你能说出几个与必然事件、随机事件、不可能 事件相
联系的成语吗
必然事件: 种瓜得瓜,种豆得豆。
随机事件: 海市蜃楼,守株待兔。
不可能事件: 画饼充饥,拔苗助长。
必然事件
不可能事件
随机事件
归纳:必然事件的概率是 1 ,不可能事件的概率是0,随机事件的概率是 0-1 。
2、我们是如何求随机事件的概率的?
★用列举法求概率
如何用列举法求概率?在什么条件下适用P(A)=M/N得到事件的概率?
※当事件要经过一步完成时列举出所有可能情况,用列举法。
※当事件要经过两步完成时用列表法。
※当事件要经过三步及三步以上或取出不放回去时用树形图法。
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率为: P(A)=M/N
【应用举例】
列举法:
1、求下列事件的概率。
(1) 太阳从东边升起。
(2)掷一枚硬币正面朝上的概率。
(3)在四选一的选择题中正确答案的概率。
(4)一个骰子掷出7点的概率是。
2、一副扑克除大王外共52张,在看不见牌的情况下,随机抽一张,是黑桃的概率是____
3、一个口袋中装有4个红球,3个白球,2个黑球,除颜色外其他都相同,随机摸出一个球是黑球的概率是____
列表法:
你喜欢玩游戏吗?现请你玩一个转盘游戏,如图的两个转盘中指针落在每一个数字的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积,(1)列举所有可能得到的数字之积。
(2)求出数字之积为奇数的概率
画树形图:
在一个不透明的口袋中装有除颜色外其余都相同的1个红球,2个黄球,如果每一次先从袋中摸出1个球后不再放回,第二次再从袋中摸出1个球,那么两次都摸到黄球的概率是多少?
★用频率估计概率
事件发生的概率与事件发生的频率有什么联系?
1)一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么,这个常数p就叫作事件A的概率
2)求一个事件的概率的基本方法是:进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。
试一试:
在一个暗箱里放有除颜色外其它完全相同的球,这些球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出暗箱里大约有多少个球?()
A.12 B.9 C.4 D.3
(二)实践应用(检测知识点掌握情况、同时查缺补漏)1.下列事件是必然发生事件的是( C )
A.打开电视机,正在转播足球比赛
B.小麦的亩产量一定为1000公斤
C.在只装有5个红球的袋中摸出1球,是红球
D.农历十五的晚上一定能看到圆月
2.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是( D )
A.本市明天将有80%的地区降水 B.本市明天将有80%的时间降水
C.明天肯定下雨
D.明天降水的可能性比较大
3.小晃用一枚质地均匀的硬币做抛掷试验,前9次掷的结果都是正面向上,如果下一次掷得的正面向上的概率为P(A),则( B )
A.P(A)=1 B.P(A)=1
2
C. P(A)>
1
2
D. P(A)<
1
2
4.在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替( C )
A.两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面”, B .两个形状大小完全相同,但一红一白的两个乒乓球, C.扔一枚图钉,
D.人数均等的男生、女生,以抽签的方式随机抽取一人。
5.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒当你抬头看信号灯时,是黄灯的概率是( A ) A.
112 B .13 C.512 D.1
2
6.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手 随机抽取作答。
在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8 号题的概率是( C ) A.
110 B .19 C.18 D.17
7.连掷两次骰子,它们的点数都是4的概率是( D ) A.
61 B.41 C.161 D.36
1 8.一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一球后放回去摇匀,再摸出一个球,则小亮两次都能摸到白球的概率是__1/9______. 9.四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰三角形。
现从中随机抽取2张,全部是中心对称图形的概率是__1/6_______.
10.成语“水中捞月”用概率的观点理解属于不可能事件,请仿照它写出一个必然事件
瓮中捉鳖 。
(三)小结
你有什么收获?请同学们自己谈谈. (四)课外作业
1、如图是一个被等分成6个扇形可自由转动的转盘, 转动转盘,当转盘停止后,指针指向红色区域的概率是多少?
2、小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,
则小莉胜;若两次数字和为偶数,则小慧胜。
这个游戏对双方公平吗?试用列表法或树 状图加以分析。
四、板书设计
五、课后反思。