如何证明两条直线平行
平行线的性质及推导方法
平行线的性质及推导方法平行线,是指在同一个平面内,永不相交的两条直线。
平行线的性质与推导方法是几何学中的重要内容,下面我们将详细介绍平行线的性质及推导方法。
一、平行线的性质1. 平行线定理:如果一条直线与两条平行线相交,那么这条直线将被两条平行线所截成的锐角和钝角互补。
证明:设直线l与平行线m和n相交于A点,BC与m、n平行。
由平行线的性质可知∠ABC=∠ACD,又∠ABC+∠ACD=180°(线l与m、n相交,∠ABC和∠ACD互补),所以∠ABC和∠ACD互补。
2. 平行线的性质之间的关系:如果两条平行线被一条交线所截,那么它们与这条交线所构成的内错角、内外错角、对顶角以及同位角是相等的。
证明:设直线l与平行线m和n相交于点O,AB与m平行,CD与n平行。
先证明内错角相等,连接AC、BD。
由三角形的内角和为180°可知∠ACB+∠BCA+∠CDA+∠DAB=180°,∠ACB+∠BCA+∠ADB=180°(∠CDA和∠DAB互补),所以∠ACB+∠BCA+∠CDA+∠DAB=∠ACB+∠BCA+∠ADB,化简得∠CDA=∠ADB。
同理可证∠ACD=∠ABC,∠BAC=∠DCB,∠ADC=∠BCD。
二、平行线的推导方法1. 利用平行线的性质证明线段比例关系。
证明:设AB与CD分别是平行线m和n上的两个点,交线AC与BD相交于E点。
若已知AE:EC=BD:DE,要证明AB:BC=BD:DC(即证明∆ABD∽∆CBD)。
由已知的比例关系可得:AE/EC=BD/DE,即AE/BD=EC/DE。
又因为∠AEB和∠CDE为同位角,根据同位角定理可知∠AEB=∠CDE。
由此可得∆ABE∽∆CDE,进一步得出AB:BE=CD:DE。
同理可证∆CBD∽∆ADE,从而得出BC:BD=DE:DA。
综合上述比例关系,可以得出AB:BC=BD:DC,证明了平行线性质下的线段比例关系。
两直线平行,内错角相等证明2种方法
两直线平行,内错角相等证明2种方
法
证明两直线平行,内错角相等
在几何学中,当两条直线平行时,它们之间的内错角就相等。
首先,让我们来
看看如何证明两条直线平行。
首先应证明这两条直线是彼此垂直的。
如果两条直线都有垂直平分线,可以证明它们之间的内错角相等。
这是因为如果存在垂直平分线,那么,这两条直线之间的公切线会等距,并且它们之间的内错角会相等。
另一方法是证明两条直线平行。
其次,可以根据定理:如果两条直线满足任一
个点两边的斜率相等,那么他们之间就是一条平行直线。
因此,通过使用比较斜率的方法,可以证明两条直线的斜率相等。
如果斜率比较为相等,则可以证明两条直线之间是一条平行直线。
而且,可以证明它们之间的内错角也是相等的。
总之,可以根据一点两边斜率的相等,或者存在垂直平分线,依据不同方法证
明两条直线平行,内错角相等。
在这个几何学研究的过程中,方程的数学分析与直觉之间的差异也被揭示出来,并且在实际应用中,以上讨论的结果可以提供有用的帮助作为参考。
平行线与垂直线的判定
平行线与垂直线的判定平行线和垂直线是几何中重要的概念,它们在我们日常生活和数学领域中都有广泛的应用。
正确判定两条线是否平行或垂直对几何问题的解决至关重要。
本文将介绍如何准确判定平行线和垂直线,并提供一些实际应用的例子。
一、平行线的判定平行线是指在同一个平面内任意两条不相交的直线,它们永远保持相同的间距。
我们可以通过以下两种方法来判定两条线是否平行:方法一:几何法在几何法中,我们使用直角三角形的性质来判定两条线是否平行。
如果两条线上任意一点与另一线上的某点和垂直于该线的交线构成直角三角形,那么这两条线就是平行线。
举个例子,假设我们有两条线l和m,我们选择线l上的任意一点A,并找到其在线m上的垂直交线点B。
如果直线AB与线m构成直角,那么可以判定线l和线m是平行的。
方法二:向量法在向量法中,我们使用向量的性质来判定两条线是否平行。
如果两条线的方向向量相等或成比例,那么这两条线是平行的。
举个例子,假设我们有两条线l和m,可以找到线l的方向向量为u(x1, y1)和线m的方向向量为v(x2, y2)。
如果向量u与向量v成比例,即x1/x2 = y1/y2,那么可以判定线l和线m是平行的。
二、垂直线的判定垂直线是指两条线段,它们的斜率乘积为-1。
我们可以通过以下两种方法来判定两条线是否垂直:方法一:几何法在几何法中,我们使用两条直线的斜率来判定它们是否垂直。
如果两条直线的斜率的乘积为-1,那么这两条直线是垂直的。
举个例子,假设我们有两条直线l和m,我们计算出它们的斜率分别为k1和k2。
如果k1 * k2 = -1,那么可以判定线l和线m是垂直的。
方法二:向量法在向量法中,我们使用向量的性质来判定两条线是否垂直。
如果两条线的方向向量的内积为0,那么这两条线是垂直的。
举个例子,假设我们有两条直线l和m,可以找到线l的方向向量为u(x1, y1)和线m的方向向量为v(x2, y2)。
如果向量u与向量v的内积为0,即x1*x2 + y1*y2 = 0,那么可以判定线l和线m是垂直的。
平行线与垂直线的判定与证明
平行线与垂直线的判定与证明在几何学中,平行线和垂直线是基本概念,它们在直角三角形、平行四边形等形状的研究和解题过程中扮演着重要角色。
本文将介绍如何判断两条线是否平行或垂直,并给出相应的证明方法。
一、平行线的判定与证明平行线是指在同一平面内永远不相交的两条直线。
以下介绍几种常用的判定方法及其证明过程。
1. 两条直线的斜率相等判定方法:设有两条直线L1和L2,如果它们的斜率分别为k1和k2,并且k1 = k2,那么L1与L2是平行线。
证明:首先,我们假设L1和L2的斜率分别为k1和k2,且k1 = k2。
设L1和L2上存在两个不同的点P1和P2。
点P1的坐标为(x1, y1),点P2的坐标为(x2, y2)。
根据斜率的定义,k1 = (y2 - y1) / (x2 - x1),即(y2 - y1) = k1 * (x2 - x1)。
同理,k2 = (y2 - y1) / (x2 - x1)。
由于k1 = k2,所以(y2 - y1) = k1 * (x2 - x1),即点P1和P2满足L1和L2的直线方程,因此L1和L2是平行线。
2. 两条直线的法向量相同判定方法:设有两条直线L1和L2,如果它们的法向量分别为n1和n2,并且n1 = n2,那么L1与L2是平行线。
证明:首先,我们假设L1和L2的法向量分别为n1和n2,且n1 = n2。
设L1上存在一点P0,并且L1的法向量n1与点P0的向量p1垂直,即n1·p1 = 0。
设L2上任意一点P2,并且L2的法向量n2与点P2的向量p2垂直,即n2·p2 = 0。
由于n1 = n2,所以n1·p1 = n2·p2。
即n1·(p1 - p2) = 0。
因此,向量(p1 - p2)与n1垂直,即向量(p1 - p2)与L1平行。
由此可知,L1与L2是平行线。
二、垂直线的判定与证明垂直线是指在同一平面内相交成直角的两条直线。
平行线求证题的解题技巧
一、平行线的基本概念平行线是指在平面上两条直线不相交地延伸,它们之间距离保持不变。
在几何学中,平行线是两条没有公共点的直线,或者是在空间中两条直线不相交且不平行(即斜交)。
在求证平行线的问题中,我们需要证明两条直线之间没有交叉点,或者证明两条直线的距离始终保持不变。
1. 仔细阅读题目,理解题意。
在解决平行线求证题时,我们需要仔细阅读题目,理解题目所描述的场景和条件。
通过仔细阅读,我们可以确定需要证明的结论是什么,以及需要用到的知识点和解题方法。
2. 找出平行线的条件。
在找出需要证明的结论后,我们需要从题目所给的条件中找出平行线的条件。
这些条件可能是已知的直线关系,也可能是图形的性质。
3. 选择合适的证明方法。
根据所找到的条件,我们需要选择合适的证明方法来证明平行线。
常用的证明方法包括作垂线法、同位角相等、内错角相等、同旁内角互补等。
4. 证明结论。
在选择了合适的证明方法后,我们需要按照步骤逐步进行证明,最终得到结论。
在证明过程中,需要注意每一步骤的逻辑严密性和准确性。
1. 观察图形特征,寻找已知条件。
在解决平行线求证题时,我们需要仔细观察图形,寻找已知条件和需要证明的结论之间的关系。
通过观察图形的特征,我们可以更快地找到解题的方法和思路。
2. 灵活运用几何性质。
在解决平行线求证题时,我们需要灵活运用几何性质,如平行线的定义、同位角相等、内错角相等、同旁内角互补等。
这些性质可以帮助我们证明两条直线的位置关系,从而得到结论。
3. 合理选择辅助线。
在解决平行线求证题时,合理选择辅助线是非常重要的。
辅助线可以帮助我们更好地理解图形,找到解题的突破口。
常用的辅助线有平行线的延伸线、垂线、等腰三角形的底边等。
4. 严谨的逻辑推理。
在证明平行线时,需要注意每一步推理的严密性和准确性。
需要保证每一步推理都符合逻辑,并且每个结论都是可以推导出来的。
四、例题解析【例题】: 如图所示,在四边形ABCD中,AB//CD,点E是BC的中点,求证:AD//EC。
例谈证明两条直线平行的常用方法
数学篇学思导引数、负数、非正数、非负数等.在求分式方程中参数的值时,若已知分式方程有解,同学们要注意如下两点:一是认真审读题目,弄清题设中解的情况,即明确该解是正数,还是负数等;二是参数的取值要使分式有意义,即分式方程的分母不能为零.例3若关于x 的分式方程x +a x -5+6a 5-x=4的解为正数,则a 的值满足().A.a <4B.a >-4C.a <4且a ≠1D.a >-4且a ≠-1分析:本题分式方程有根,求解时既要考虑根为正数的情形,又要考虑分式方程的分母不能为零.解:原方程同时乘以(x -5),可得(x +a )-6a =4(x -5),整理可得3x =20-5a ,解得x =20-5a 3.因为分式方程的解为正数,所以20-5a 3>0,即20-5a >0,解得a <4.又因为x -5≠0,所以x ≠5,即20-5a 3≠5,解得a ≠1.所以当a <4,且a ≠1时,原分式方程的解为正数,故正确答案为C 项.评注:求分式方程参数的取值范围,一般先去分母,化分式方程为整式方程;然后用含参数的代数式把分式方程的解表示出来,再由分式方程中解的条件(正数、负数等),将其转化为不等式问题.在这一过程中,同学们特别要注意分式方程有解的隐含条件:分母不能为零.总之,分式方程中参数的值或取值范围与分式方程的增根、无解、有解息息相关.在平时做题时,同学们要仔细审题,把握已知条件,尤其是隐含条件,并注意结合具体情况展开分类讨论,及时检验和修正,从而规避漏解、多解以及错解,提高解题的准确性.我们知道,在同一平面内不相交的两条直线叫做平行线.那么,如何证明两条直线平行呢?有关两条直线平行的证明方法有许多,笔者归纳了如下三种常用的证明方法,以期对同学们证题有所帮助.一、利用“平行线判定定理”平行线的判定定理是指两条直线被第三条直线所截,如果同位角、内错角相等,或同旁内角互补,那么这两条直线平行,简称为“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.”它是判定两直线平行的基本定理,也是证明两条直线平行最为常用的一种方法.例1如图1所示,在△MNP 中,∠MNP =90°,NQ 是MP 边上的中线,将△MNQ 沿MN 边所在的直线折叠,使得点Q恰好落在点R 处,从而得到四边形MPNR .求证:RN ∥MP .分析:要想证明RN ∥MP ,关键是确定第三条直线.观察图形,很容易看出,这两条直线是被MN 所截的,由题意易知NQ =MQ ,∠QMN =∠QNM ,∠RNM =∠QNM ,这样易推出∠QMN =∠RNM ,再由“内错角相等,两直线平行”进而得到RN ∥MP .证明:因为NQ 是MP 边上的中线,且∠MNP =90°,所以NQ =MQ ,∠QMN =∠QNM .例谈证明两条直线平行的常用方法江阴市夏港中学姚菁菁图127数学篇学思导引又因为△MNR由△MNQ沿MN边所在的直线折叠,所以∠RNM=∠QNM,∠QMN=∠RNM.所以RN∥MP.(内错角相等,两直线平行)评注:在证明两条直线平行时,同学们要注意借助平行线的判定定理,证明这两条直线被第三条直线所截成的同位角、内错角相等,或者同旁内角互补.二、利用“三角形或梯形的中位线定理”由三角形或梯形的中位线定理可知,三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半,梯形的中位线平行于两底,并且等于两底和的一半.因此,在证明两条直线平行时,若题目涉及中点,同学们要注意构造中位线,利用三角形或梯形的中位线定理进行求证.例2如图2所示,已知AM平分∠BAC,BM⊥AM,垂足为M,且BN=NC.求证:MN∥AC.分析:由题意可知,点N为边BC的中点,因此要证明MN与AC平行,可以从三角形中位线入手.不妨延长BM交AC于点P,这样只要证明M为边BP的中点,问题自然得证.证明:延长BM交AC于点P.因为AM平分∠BAC,所以∠BAM=∠CAM.因为BM⊥AM,所以∠AMB=∠AMP=90°.又因为AM为公共边,所以△AMB≌△AMP,所以BM=PM.因为BN=NC,所以MN为△BCP的中位线,所以MN∥PC,即MN∥AC.评注:三角形或梯形中位线定理反映了图形间线段的位置关系和数量关系.因此,当问题涉及三角形或梯形的中点时,同学们要注意考虑三角形或梯形的中位线,利用三角形或梯形的中位线定理来破解问题.三、利用“平行四边形对边平行”的性质对边平行且相等,是平行四边形的重要性质之一.因此,在证明两条直线平行时,若问题涉及平行四边形,同学们要注意结合已知条件,先证明这两条直线所在的四边形为平行四边形,再根据“平行四边形对边平行”这一性质判定这两条直线平行.例3如图3所示,已知BD平行四边形ABCD的一条对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AF∥EC.分析:本题涉及平行四边形,仔细观察图形,不难发现,要想证明AF∥EC,实际上只要证明四边形AECF为平行四边形即可.根据已知条件AE⊥BD,CF⊥BD,可以得到AE∥CF.然后由四边形ABCD为平行四边形,易知AB与DC是平行且相等的,进而推出∠ABE=∠ADF.再由∠AEB=∠CFD=90°,易知Rt△ABE与Rt△CDF为全等三角形,由此得到AE=CF,最后根据平行四边形的性质,确定四边形AECF为平行四边形,从而得出AF∥EC.证明:因为AE⊥BD,CF⊥BD,所以AE∥CF,且∠AEB=∠CFD=90°.因为四边形ABCD为平行四边形,所以AB∥DC,且AB=DC,∠ABE=∠CDF.由此可证Rt△ABE≌Rt△CDF.所以AE=CF,所以四边形AECF为平行四边形.所以AF∥EC(平行四边形对边互相平行).评注:平行四边形的两组对边是平行且相等的,利用这一性质既可以证明两直线平行,也可以证明两直线相等.总之,证明两条直线平行的方法多种多样,同学们在平时的学习中,既要注意夯实基础知识,掌握基本定理和推论,又要注意强化训练,结合具体问题,灵活选择恰当的证明方法,从而快速、准确、高效地解题.图2图328。
证明线线平行的方法
证明线线平行的方法:1.垂直于同一平面的两条直线平行2.平行于同一直线的两条直线平行3.一个平面与另外两个平行平面相交,那么2条交线也平行4.两条直线的方向向量共线,则两条直线平行5.线面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
证明线面平行的方法:1.直线与平面平行的判定性定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
2.平面与平面平行的性质定理:如果两个平面是平行,那么在其中一个平面内的直线和另一个平面平行。
证明面面平行的方法:1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
2.面面平行的传递性:如果两个平面都和第三个平面平行,则这两个平面平行。
3.垂直与同一直线的两个平面平行。
4.利用向量法证明。
证明线线垂直的方法:1.定义法:两直线夹角90度2.三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直3.直线与平面的定义:若1条直线垂直于一个平面,则它垂直于这个平面的所有直线4.法向量:在空间直角坐标系中,三点两向量确定一个平面,分别于这两个向量垂直的向量也就是分别与这两个向量乘积为0的向量垂直于这个平面,也就叫这个平面的法向量。
证明线面垂直的方法:1.直线垂直于平面内两条相交直线,则线与面垂直。
2.两条平行线一条垂直于平面,则另一条也垂直于这个平面。
3.如果两个面垂直,则其中一个面内垂直交线的线垂直另一个平面。
4.如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。
5.1来证。
6.证明面面垂直的方法:1.定义:两个平面相交,它们所成的二面角是直二面角。
2.如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直。
12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D. 如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.【解析】(Ⅰ)证明:因为AB=2AD ,所以设AD=a,则AB=2a,又因为BAD=∠60°,所以在ABD ∆中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=,所以BD=3a ,所以222AD BD AB +=,故BD ⊥AD,又因为1D D ⊥平面ABCD ,所以1D D ⊥BD,又因为1AD D D D ⋂=, 所以BD ⊥平面11ADD A ,故1AA BD ⊥.(2)连结AC,设AC ⋂BD=0, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点,由四棱台1111ABCD A B C D -知:平面ABCD ∥平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为AC 、11A C ,故11AC AC ,又因为AB=2a,BC=a, ABC=120∠,所以可由余弦定理计算得,又因为A 1B 1=2a, B 1C 1=2a , 111A B C =120∠,所以可由余弦定理计算得A 1C 1=2a ,所以A 1C 1∥OC 且A 1C 1=OC ,故四边形OCC 1A 1是平行四边形,所以CC 1∥A 1O ,又CC 1⊄平面A 1BD ,A 1O ⊂平面A 1BD ,所以11CC A BD ∥平面.20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S .【解析】(Ⅰ)由题意知1232,6,18a a a ===,因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=⋅.(Ⅱ)因为(1)ln n n n b a a =+-=123n -⋅+1(1)ln 23n --⋅, 所以12n n S b b b =+++=1212()(ln ln ln )n n a a a a a a +++-++=2(13)13n ---12ln n a a a =31n --121ln(21333)n n -⋅⨯⨯⨯⨯= 31n --(1)2ln(23)n n n -⋅,所以2n S =231n --2(21)22ln(23)n n n -⋅=91n --22ln 2(2)ln 3n n n --.15.(本小题满分14分)在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;(2)设实数t 满足(OC t AB -)·OC =0,求t 的值.16. (本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示)(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29.10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为13、设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________16、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线E F ‖平面PCD ;(2)平面BEF ⊥平面PAD20、设M 为部分正整数组成的集合,数列}{n a 的首项11=a ,前n 项和为n S ,已知对任意整数k 属于M ,当n>k 时,)(2k n k n k n S S S S +=+-+都成立(1)设M={1},22=a ,求5a 的值;(2)设M={3,4},求数列}{n a 的通项公式 1. F E A D如图,在长方体1111ABCD A B C D -中,3AB AD cm ==,12AA cm =,则四棱锥11A BB D D -的体积为 ▲ 3cm . 答案:62. 在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为 ▲ .答案:23. 如图,在矩形ABCD 中,2AB =,2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ .答案:24. (本小题满分14分)在ABC ∆中,已知3AB AC BA BC =.A B C E F D (第7题)(1) 求证:tan 3tan B A =;(2) 若cos C =求A 的值. 解:(1)∵3AB AC BA BC = ∴3AB AC cos A BA BC cos B = ∴3AC cos A BC cos B = 由正弦定理得:AC BC sin B sin A =∴3sin B cos A sin A cos B =∴3tan B tan A =(2)∵cos C =0C π<<∴5sinC = ∴2tanC = ∴()2tan A B +=-又∵3tan B tan A =∴23421113tan A tan B tan A tan A tan A tan Atan B tan A tan B tan A++-===--- ∴1tan A =或13- ∵3tan B tan A =∴A ,B 必为锐角,否则A ,B 同时为钝角,这与三角形的内角和小于180矛盾 ∴0tan A >∴1tan A =∴4A π=5. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1) 平面ADE ⊥平面11BCC B ;(2) 直线1//A F 平面ADE .证明:(1)∵三棱柱111ABC A B C -是直三棱柱 ∴1CC ABC ⊥平面∵AD ABC ⊂平面∴1CC AD ⊥∵AD DE ⊥,且1DE CC E = ∴11AD BCC B ⊥平面∵AD ABC ⊂平面∴11ADE BCC B ⊥平面平面(2)∵11AD BCC B ⊥平面, 11BC BCC B ⊂平面∴AD BC ⊥∵直三棱柱111ABC A B C -中,1111A B AC = ∴AB AC =∴D 是BC 的中点∵F 是11B C 的中点 ∴1DFAA ,且1DF AA =∴四边形1AA FD 是平行四边形 ∴1A FAD∵1D F A A E ⊄平面,1D F A A E ⊂平面 ∴1//A F 平面ADE 6. (本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1) 设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2) 设12nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 解: (1)∵()22222221221211n n n n*n n n n n n n n n nnn n a b a b bb b a b b n N a a b a a a ++⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎪-=-=-=∈ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪⎝++⎭+ (2)∵0n a >,0n b >∴()()22222n n n n n n a b a b a b +≤+<+∴12212n n n n na ab +<=≤+∵{}n a 是各项都为正数的等比数列 ∴设其公比为q ,则0q >①当1q >时, ∵0n a >∴数列{}n a是单调递增的数列,必定存在一个自然数,使得1n a +> ②当01q <<时 ∵0n a >∴数列{}n a 是单调递减的数列,必定存在一个自然数,使得11n a +< 由①②得:1q = ∴()1*n a a n N =∈∵11n a +<=≤得:1a =,且11a <≤∴1n b =∵*11n n n n b b n N a +==∈, ∴数列{}n b是公比为1a 的等比数列∵11a <≤∴11a ≥ ①当11a >时 数列{}n b是单调递增的数列,这与1n b =矛盾 ②11=时数列{}n b 是常数数列,符合题意∴1a∴n b∴1b =1.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ .解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =2.3. 设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析: 易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+ 所以1212λλ+=4.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:ABC1ADE F1B1C2252552667123123115521155223 (1),.222222011522360022n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴-><<=>∴==n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12 15.(本小题满分14分)已知()cos sin a αα=,,()cos sin b ββ=,,0βαπ<<<. (1) 若2a b -=,求证:a b ⊥;(2) 设()01c ,=,若a b c +=,求α,β的值.解:(1)()()cos ,sin ,cos ,sin ,0a b ααβββαπ==<<<2a b -= 22a b ∴-=2222a b ab ∴+-= 1122a b +-⋅= 0a b ⋅= a b ∴⊥ (2)()()()0,1,cos cos ,sin sin 0,1cos cos 0sin sin 1c a b cαβαβαβαβ=+=∴++=∴+=∴+=①②22+①②得:()2+2cos 1αβ-= ()1cos 2αβ-=-0023βαπαβππαβ<<<∴<-<∴-=又cos cos 05,66αβαβπππαβ+=∴+=∴==16. (本小题满分14分)如图,在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =. 过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1) 平面EFG //平面ABC ; (2) BC SA ⊥. 解:(1),E G 分别是侧棱,SA SC 的中点EG AC ∴∥AC 在平面ABC 中,EG 在平面外EG ∴∥平面ABC,AS AB AF SB =⊥F ∴为SB 中点 EF AB ∴∥AB 在平面ABC 中,EF 在平面外EF ∴∥平面ABCEF 与EG 相交于E,EF EG 在平面EFG 中 ∴ 平面EFG //平面ABC(2)平面SAB ⊥平面SBCSB 为交线AF 在SAB 中,AF SB ⊥AF ∴⊥平面SBC AF BC ∴⊥BC AB ⊥AF 与AB 相交于A ,AF AB 在平面SAB 中 BC ∴⊥平面SAB BC SA ∴⊥ 19. (本小题满分16分)设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和. 记2nn nS b n c=+,N n *∈,其中c 为实数.(1) 若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈; (2) 若{}n b 是等差数列,证明:0c =. 解:(1)()()10n a a n d d =+-≠22n n nS na d -=+ 0c =时,nn S b n=112244122342S b a S db a S d b a ====+==+124,,b b b 成等比2142b b b ∴=222222222322202n nk k nk kd d a a a d ad d d aS n a S n k a n S n k a S n S ⎛⎫⎛⎫∴⋅+=+ ⎪ ⎪⎝⎭⎝⎭∴=≠∴=∴===∴=(2)由已知23222222n n nS n a n d n db nc n c+-==++n b 是等差数列∴设n b kn b =+(k,b 为常数)∴有()()32222220k d n b d a n ckn bc -++-++=对任意n N +∈恒成立202202020k d b d a ck bc -=⎧⎪+-=⎪∴⎨=⎪⎪=⎩0d ≠k c ∴≠∴=此时222dka d b=-=命题得证3.。
平行线的判定
平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定(提高)知识讲解【学习目标】1.熟练掌握平行线的画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.证明:平行于同一直线的两条直线平行.【答案与解析】已知:如图,a//c,b//c.求证:a//b.证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.Q,a//c,b//c则过直线c外一点A有两条直线a、b与直线c平行,这与平行公理矛盾,所以假设不成立..a//b【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立.类型二、平行线的判定3.(2015春•荣昌县校级期中)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.【思路点拨】根据BD平分∠ABC,CE平分∠ACB,得出∠DBF=∠ABC,∠ECB=∠ACB,∠DBF=∠ECB,再根据∠DBF=∠F,得出∠ECB=∠F,即可证出EC∥DF.【答案与解析】解:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB,∴∠DBF=∠ECB,∵∠DBF=∠F,∴∠ECB=∠F,∴EC∥DF.【总结升华】此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【高清课堂:平行线及判定403102经典例题2】【变式】(2015秋•巨野县期末)如图,已知∠BED=∠B+∠D,求证:AB∥CD.【答案】证明:延长BE交CD于F.∵∠BED+∠DEF=180°,(平角的定义)∴∠DEF+∠D+∠EFD=180°(三角形的内角和等于180°),∴∠BED=∠D+∠EFD,(等量代换)又∠BED=∠B+∠D,∴∠B=∠EFD(等量代换),∴AB∥CD(内错角相等,两直线平行).平行线的判定(提高)巩固练习【巩固练习】一、选择题1.下列说法中正确的有() .①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角() .A.相等B.互补C.互余D.相等或互补3.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是().A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是() .A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.(绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):从图中可知,小敏画平行线的依据有().①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7.(2015春•高密市月考)如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是.(填序号)8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.(2015春•兴平市期末)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】A;【解析】只有④正确,其它均错.2. 【答案】D;3. 【答案】C;【解析】A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.4. 【答案】B;5. 【答案】B;【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C;【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】②③;【解析】①∠DAC=∠ACB利用内错角相等两直线平行得到AD∥BC,错误;②∠BAC=∠ACD 利用内错角相等两直线平行得到AB∥CD,正确;③∠BAD+∠ADC=180°利用同旁内角互补得到AB∥CD,正确;④∠BAD+∠ABC=180°利用同旁内角互补得到AD∥BC,错误;故答案为:②③8. 【答案】BC,DE;【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】40°或140°;11.【答案】共线,平行公理;【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.12.【答案】AB∥CD,GP∥HQ;【解析】理由:∵AB⊥EF,CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°,∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 【解析】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).14.【解析】解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,∠2=50°,因为∠1=∠2,所以由内错角相等,两直线平行,可知画板的上下边缘是平行的.15. 【解析】解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.【解析】解:可推出AD∥BC.∵BD平分∠ABC(已知).∴∠1=∠DBC(角平分线定义).又∵∠1=∠2(已知),∴∠2=∠DBC(等量代换).∴AD∥BC(内错角相等,两直线平行).把∠1=∠2改成∠DBC=∠BDC.。
证明直线平行的方法介绍
证明直线平行的方法介绍证明直线平行方法证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾所以假使不成立所以b‖c 由同位角相等,两直线平行,可推出:内错角相等,两直线平行。
同旁内角互补,两直线平行。
因为a‖b,a‖c, 所以b‖c (平行公理的推论)2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C \认六一值!小人�晗�叱的一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线平行. 例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD 交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc(1)根据定义。
证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
人教版数学第5章平行线的性质与判定及辅助线模型
平行线判定和性质以及四大模型汇总第一部分平行线的判定判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第二部分平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补第三部分平行线的四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.第四部分平行线的四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.第五部分平行线的四大模型的应用案例1如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .2如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.3如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .4如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .5如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .6 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .7如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.8如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).9如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .10如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.11如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.12如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°133如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .14如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .15 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.16已知AB∥EF,求∠l-∠2+∠3+∠4的度数.17如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的 关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系. (3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6.18如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPBQ∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPBQ∠∠的值足否定值,请在图2中将图形补充完整并说明理由.第六部分 平行线的四大模型实战演练1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450° 2 若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .5. 6. 7.8.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .9.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .10.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .11.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.第七部分平行线的性质和判定综合应用1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD =95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°2.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°3.如图,AE∥BF,∠1=110°,∠2=130°,求∠3的度数为()4.如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.5.如图,如果∠C=70°,∠B=135°,∠D=110°,那么∠1+∠2=6.如图,AB∥CD,求∠1+∠2+∠3+∠4=7.如图,AB∥CD,试找出∠B、∠C、∠BEC三者之间的数量关系.8.如图,三角形ABC中,点E为BC上一点(1)作图:过点E作EM∥AC交AB于M,过点E作EN∥AB交AC于N;(2)求∠A+∠B+∠C的度数,写出推理过程.9.如图,AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED.10.如图,AC∥BD.(1)作图,过点B作BM∥AP交AC于M;(2)求证:∠PBD﹣∠P AC=∠P.11.如图,AB∥CD,∠B=∠C,求证:BE∥CF.12.如图①,木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图①中的橡皮筋拉成下列各图②③的形状,请问∠A、∠B、∠C之间的数量关系?。
平行线的判定、性质公理及定理
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
考点一平行线的判定:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3. 两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.注意:证明两直线平行,关键是找到与特征结论相关的角.例1.如下图,当∠1=∠3时,直线a、b平行吗?当∠2+∠3=180°时,直线a、b平行吗?为什么?你有几种方法。
例2.请将下面的空补充完整1.如右图,若∠1=∠2,则_______∥_______()若∠3=∠4,则_________∥_________()若∠5=∠B,则_________∥_________()若∠D+∠DAB=180°,则______∥_______()2.如右图,∠1+∠2=180°(已知)∠3+∠2=180°()∴∠1=_________∴AB∥CD()课堂练习:1.如图6-21,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.2.已知,如下图(1),(2),直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1) (2) 3.如图,如果AB∥CD,求角α、β、γ与180º之间的关系式.4.如图,已知CD 是∠ACB 的平分线,∠ACB = 500,∠B = 700,DE ∥BC,求:∠EDC 和 ∠BDC 的度数。
达标训练: 一.选择题1.下列命题中,不正确的是( )A .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C .两条直线被第三条直线所截,那么这两条直线平行D .如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如右图,直线a 、b 被直线c 所截,现给出下列四个条件: ( ) (1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°, 其中能判定a ∥b 的条件是( ) A .(1)(3) B .(2)(4) C .(1)(3)(4) D .(1)(2)(3)(4) 3.如右图,如果∠1=∠2,那么下面结论正确的是( ) A .AD ∥BC B .AB ∥CD C .∠3=∠4 D .∠A =∠C4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来 的方向相同,这两次拐弯的角度可能是( ) A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° 二.填空题αγβED C BAAB D E12FOCABDE5.如右图,∠1=∠2=∠3,则直线l 1、l 2、l 3的关系是________.6.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________ . 7.同垂直于一条直线的两条直线________. 8.根据图形及上下文的含义推理并填空. (1)∵∠A =_______(已知)∴AC ∥ED ( ) (2)∵∠2=_______(已知)∴AC ∥ED ( ) (3)∵∠A +_______=180°(已知) ∴AB ∥FD ( ) 三.解答题9.已知:如图7,∠1=∠2,且BD 平分∠ABC . 求证.AB ∥CD .10、.如图,∠A BC =∠BCD, ∠1=∠2,求证:BE ∥CF.11.如图,是大众汽车的标志图案,其中蕴涵着许多几何知识. 根据下面的条件完成证明.已知:如图,BC//AD ,BE//AF . (1) 求证:B A ∠=∠;(2) 若︒=∠135DOB ,求A ∠的度数.12.已知:如图,∠3与∠1互余,∠3与∠2互余.求证:AB ∥CD.考点二:1.平行线的性质.公理:两直线平行,同位角相等. 定理:两直线平行,内错角相等.CFDEBAOHG321ED C BA定理:两直线平行,同旁内角互补.例1.如图,BE∥DF,∠B =∠D,求证.AD∥BC.课堂作业:1.如上图,AB∥CD,AD∥BC则下列结论成立的是( )A.∠A+∠C=180°B.∠A+∠B=180°C.∠B+∠D=180°D.∠B=∠D2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是( )A.相等B.互补C.相等或互补D.相等且互补3.如右图,已知∠1=∠2,∠BAD=57°,则∠B=________.4.已知:如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.5.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写你的猜想,并说明理由6、如图所示:已知:AB∥DE。
初中数学 如何证明两个直线平行于同一平面
初中数学如何证明两个直线平行于同一平面
证明两个直线平行于同一平面需要使用几何知识和数学推理。
以下是一个大致的证明过程,你可以根据需要进行修改和拓展。
证明:两个直线平行于同一平面
假设有两个直线l1和l2,我们需要证明这两个直线平行于同一平面。
证明过程如下:
1. 假设直线l1和l2不平行于同一平面,即它们不在同一个平面内。
2. 考虑直线l1上的任意一点A和直线l2上的任意一点B。
3. 假设平面P1通过直线l1,且与直线l1不重合。
4. 假设平面P2通过直线l2,且与直线l2不重合。
5. 由于平面上的三个点可以确定一个平面,所以我们可以在平面P1上选择一个点C,在平面P2上选择一个点D。
6. 连接线段AC和BD。
7. 在四面体ACBD中,直线AC和BD是两个非共面的直线。
8. 如果直线l1和l2平行于同一平面,那么它们的对应线段AC和BD也是平行的。
9. 根据平行线的定义,如果两条线段上的对应边是平行的,则这两条线段是平行的。
10. 假设直线l1和l2不平行,那么线段AC和BD也不平行。
11. 在四面体ACBD中,线段AC和BD不平行。
12. 这与步骤7中的假设相矛盾。
13. 因此,直线l1和l2是平行的。
14. 根据平行线的定义,如果两个直线的对应线段是平行的,则这两个直线平行于同一平面。
综上所述,我们可以得出结论:直线l1和l2平行于同一平面。
这只是一个简单的证明示例,你可以根据需要在证明中加入更多的细节和数学推理。
同时,需要注意使用几何术语和符号进行描述,并确保证明的逻辑严密和清晰。
证明两直线平行的证明题
证明两直线平行的证明题英文回答:To prove that two lines are parallel, we can use the following methods:1. Using the definition of parallel lines: Two lines are parallel if they never intersect. This means that the distance between the two lines remains constant and equal at all points. We can use this definition to prove that two lines are parallel by showing that the distance between them is always the same.For example, let's consider two lines, line AB and line CD. We can measure the distance between these lines at different points and show that it remains constant. If the distance between AB and CD is always equal, then we can conclude that the lines are parallel.2. Using the concept of slope: Two lines are parallelif and only if their slopes are equal. The slope of a line represents its steepness or inclination. If two lines have the same slope, they will never intersect and therefore, they are parallel.For example, let's consider two lines, line AB with slope m1 and line CD with slope m2. If m1 = m2, then the lines are parallel. We can calculate the slopes of thelines using the formula (change in y)/(change in x). If the slopes are equal, we can conclude that the lines are parallel.In conclusion, to prove that two lines are parallel, we can either show that the distance between them is constant or that their slopes are equal. These methods provide a reliable way to determine if two lines are parallel.中文回答:证明两条直线平行的方法有以下两种:1. 使用平行线的定义,如果两条直线永远不相交,则它们是平行的。
三维空间两直线平行公式
三维空间两直线平行公式在三维空间中,两条直线平行的条件是它们的方向向量相同。
以下将详细解释两直线平行的公式及其证明。
设直线L1过点P1(x1,y1,z1)且方向向量为V1(a1,b1,c1);直线L2过点P2(x2,y2,z2)且方向向量为V2(a2,b2,c2)。
我们需要证明的是,若V1与V2平行,即V1与V2的方向向量成比例,那么直线L1与直线L2平行。
根据向量的平行性质,若两个向量成比例,它们的任意一个分量除以对应分量都应该等于同一个常数。
因此,我们可以写出以下方程组:a1/a2=b1/b2=c1/c2我们将分别解这三个方程:1.a1/a2=b1/b2:将这两个比例化简,得到a1b2=a2b1、可以通过跨乘积来验证这个方程。
向量V1和V2的跨乘积定义为:V1×V2=(b1c2-b2c1,a2c1-a1c2,a1b2-a2b1)根据跨乘积的定义,我们可以看到(a1b2-a2b1)=0,即a1b2=a2b1、因此,第一个比例式成立。
2.b1/b2=c1/c2:类似地,将这两个比例化简,得到b1c2=b2c1、同样使用跨乘积来验证这个方程。
根据跨乘积的定义,我们可以得到(b1c2-b2c1)=0,即b1c2=b2c1、因此,第二个比例式成立。
3.a1/a2=c1/c2:类似地,将这两个比例化简,得到a1c2=a2c1、同样使用跨乘积来验证这个方程。
根据跨乘积的定义,我们可以得到(a2c1-a1c2)=0,即a1c2=a2c1、因此,第三个比例式成立。
通过以上的验证,我们可以得出结论:若V1与V2平行,即V1与V2的方向向量成比例,那么直线L1与直线L2平行。
综上所述,两条直线平行的条件为它们的方向向量成比例。
这个条件可以用比例方程组a1/a2=b1/b2=c1/c2来表示。
我们可以利用这个条件来判断两条直线是否平行,并且可以通过分析方向向量之间的比例关系来计算直线的平行性。
26高中数学“直线与直线平行”知识点详解
高中数学“直线与直线平行”知识点详解一、引言在高中数学中,直线与直线平行的概念是一个非常重要的知识点。
掌握直线与直线平行的性质和判定方法,不仅有助于学生解决各种几何问题,还能够培养学生的空间想象能力和逻辑推理能力。
本文将详细解析直线与直线平行的相关知识点,并通过实例和解析帮助学生更好地掌握这一内容。
二、直线与直线平行的定义两条直线平行的定义是:在同一平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“直线l₁与直线l₂平行”记作l₁∥l₂。
三、直线与直线平行的性质1.同一平面内:平行的两条直线必须在同一平面内。
如果两条直线不在同一平面内,即使它们不相交,也不能称之为平行线。
2.不相交性:两条平行线永远不会相交,无论延长多少都不会相遇。
3.平行线的传递性:如果一条直线与另外两条直线分别平行,那么这两条直线也一定平行。
即如果l₁₁l₁且l₁₁l₁,则l₁₁l₁。
4.同位角相等:两直线平行时,一对同位角相等。
5.内错角相等:两直线平行时,一对内错角相等。
6.同旁内角互补:两直线平行时,一对同旁内角互补,即它们的角度和为180°。
四、直线与直线平行的判定方法1.同位角判定法:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简记为“同位角相等,两直线平行”。
2.内错角判定法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简记为“内错角相等,两直线平行”。
3.同旁内角判定法:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简记为“同旁内角互补,两直线平行”。
4.平行线的性质逆定理:如果两条直线满足平行线的性质中的任意一条,那么这两条直线平行。
五、应用举例1.证明两直线平行:在几何题目中,经常需要证明两条直线是平行的。
这时可以利用上述的判定方法,通过证明同位角、内错角或同旁内角满足相应的条件来证明两直线的平行关系。
2.求解角度问题:在已知两直线平行的条件下,可以利用平行线的性质来求解相关的角度问题。
证明线面平行的条件
证明线面平行的条件线面平行是几何学中一个非常重要的概念,它在很多领域都有着广泛的应用。
为了证明线面平行,需要满足一定的条件。
下面我们将详细介绍证明线面平行的条件。
一、线面平行的定义首先,我们需要了解线面平行的定义。
在三维空间中,当两条直线或两个平面没有任何交点时,它们被称为相互平行。
如果一条直线和一个平面没有任何交点,那么它们也被称为相互平行。
二、证明两条直线相互平行的条件1. 两条直线在同一平面内且不重合,并且它们与该平面内的一条直线垂直,则这两条直线相互平行。
2. 两条直线在同一空间内且不重合,并且它们分别与另外两个不共面的直线垂直,则这两条直线相互平行。
3. 如果有一组对应角度相等,则这两条直线相互平行。
例如,如果有两组对应角度分别为同侧内角、同侧外角或对顶角,则这两条直线相互平行。
4. 如果有一个角是锐角或者钝角,则这两条直线不可能相互平行。
5. 如果两条直线相交,且它们的夹角为90度,则这两条直线不可能相互平行。
三、证明两个平面相互平行的条件1. 两个平面不重合,并且它们分别与一个共同的直线垂直,则这两个平面相互平行。
2. 两个平面在同一空间内且不重合,并且它们分别与另外两个不共面的直线垂直,则这两个平面相互平行。
3. 如果有一组对应角度相等,则这两个平面相互平行。
例如,如果有两组对应角度分别为同侧内角、同侧外角或对顶角,则这两个平面相互平行。
4. 如果一个角是锐角或者钝角,则这两个平面不可能相互平行。
5. 如果两个平面交于一点,且它们的交线与其中一个垂直,则这两个平面不可能相互平行。
四、总结综上所述,证明线面之间是否相互平行需要满足一定的条件。
对于证明两条直线相互平行,需要考虑它们在同一空间内或者同一平面内,并且与其他直线垂直等条件。
而证明两个平面相互垂直则需要考虑它们在同一空间内或者同一平面内,并且与其他直线垂直等条件。
这些条件都是非常重要的,可以帮助我们更好地理解线面平行的概念。
怎样证明两直线平行
怎样证明两直线平行怎样证明两直线平行“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C \认六一值!小人﹃夕叱的一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线平行. 例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc(1)根据定义。
证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。
证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。
就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面与平面平行的性质定理又可看作平行线的判定定理。
怎么证明塞瓦定理逆定理平行的条件
怎么证明塞瓦定理逆定理平行的条件塞瓦定理与逆定理引言塞瓦定理是数学中的一个重要定理,它提供了一种判定两条直线平行的方法。
然而,如果我们考虑到逆向的问题,即如何证明两条直线平行的条件,我们需要探讨逆定理——塞瓦逆定理。
塞瓦定理简述塞瓦定理是由法国数学家塞瓦于19世纪初提出的,它的表述如下: > 若有两条直线l1与l2,分别与第三条直线l交于A、B、C、D四点,则(AB∥CD)当且仅当(AC/AD)=(BC/BD)。
逆定理的探讨对于逆定理——塞瓦逆定理,我们需要找到两条直线平行的条件。
以下是一些可能的条件:•斜率相等:两条直线平行的一个重要条件是它们的斜率相等。
斜率是曲线在某一点上的切线的斜率,若两条直线的斜率相等,则可以推断它们平行。
•垂直线性方程:如果两条直线的垂直线性方程相同,则可以得出它们是平行的结论。
•向量法:通过向量的运算,如果两条直线的向量平行,则可以得出它们是平行的结论。
结论在研究塞瓦定理逆定理中,我们探讨了一些可能证明两条直线平行的条件。
尽管这些条件可以在特定的情况下成立,但它们并不是通用的逆定理。
塞瓦逆定理仍然是待进一步研究的领域。
参考文献[1] Wikipedia contributors. (2021, May 6).Ceva’s_theorem. Wikipedia, The Free Encyclopedia. Retrieved 09:41, May 10, 2021, from由于我作为一名语言模型,无法从互联网上复制内容作为参考文献,也无法提供网址。
但你可以自行搜索关于塞瓦定理的相关资料,以获取更多信息和参考文献。