从位移、速度、力到向量

合集下载

数学ⅳ北师大版2.2.1从位移、速度、力到向量教案

数学ⅳ北师大版2.2.1从位移、速度、力到向量教案

数学ⅳ北师大版2.2.1从位移、速度、力到向量教案教学目标:〔1〕掌握向量加法的概念;能熟练运用三角形法那么和平行四边形法那么做几个向量的和向量;能准确表述向量加法的交换律和结合律,并能熟练运用它们进行向量计算.通过实例,掌握向量加、并理解其几何意义.初步体会数形结合在向量解题中的应用. 教学重点:向量加法的概念和向量加法的法那么及运算律.教学难点:向量的加法的几何验证.学法指导:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.【创设情境】一、 情景导入:〔3分钟〕2003年春节探亲时,由于台湾和祖国大陆之间没有直达航班,某老先生只好从台北通过香港,再抵达上海,这两次位移之和是什么?【二】学导结合向量是否能进行运算?1. 某人从A 到B ,再从B 按原方向到C , 那么两次的位移和:AC BC AB =+2. 假设上题改为从A 到B ,再从B 按反方向到C , 那么两次的位移和:=+3. 某车从A 到B ,再从B 改变方向到C , 那么两次的位移和:=+4. 船速为,水速为, 那么两速度和:AC BC AB =+向量的加法1. 定义:2、三角形法那么〔作图演示〕:作图关键:平移向量使得两向量首尾相连 3、向量、,求作向量+及+作法:4、加法的交换律和平行四边形法那么 上题中+的结果与+是否相同?从而得到:1︒向量加法的平行四边形法那么2︒向量加法的交换律:a +b =b +a问题1:两种求和法那么有什么关系? A BCA B C A B Ca b向量加法的三角形法那么与平行四边形法那么是一致的,但两个向量共线时,三角形法那么更有优势。

加法的结合律:(+)+=+(+) 证:如图:从而,多个向量的加法运算能够按照任意的次序、任意的组合来进行。

6.向量加法的多边形法那么问题2:如何求平面内n 〔n >3〕个向量的和向量?112231n n OA A A A A A A -++++n OA =问题3:假设点O 与点An 重合,你将得出什么结论?例1:如图,一艘船从A 点动身以km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h 。

从位移、速度、力到向量

从位移、速度、力到向量

子洲县职教中心 数学 导学案2013-2014学年第 一 学期 高二 年级 3班 组 姓名 编写者 王治强 审核者 使用时间2013年 10 月 日课题 :从位移、速度、力到向量学习目标:(1)理解向量与数量、向量与力、速度、位移之间的区别; (2)理解向量的几何表示 重点难点:向量及向量的有关概念、表示方法 自主学习 (一)、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)(二)、新课学习学习过程1、数量与向量的区别?2.向量的表示方法? ① ② ③④向量AB 的大小――长度称为向量的模,记作 .3.有向线段:具有方向的线段就叫做有向线段,三个要素: . 向量与有向线段的区别:(1) .(2) . 4、零向量、单位向量概念:① 叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.② 叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:① 叫平行向量;②我们规定0与 平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a ∥b∥c.6、相等向量定义: 叫相等向量。

说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向...线段的起点无关........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为(与有向线段.....的起点无关)....... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 合作交流 1.判断 (1)平行向量是否一定方向相同?ABCDA(起点)B(终点)a(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?2.如图,设O 是正六边形ABCDEF 的中心,①分别写出图中与向量−→−OA 、−→−OB 、−→−OC 相等的向量;②分别写出图中与向量−→−OD 、−→−OE 、−→−OE 共线的向量.达标训练1.下列各量中不是向量的是( ) A.浮力 B.风速 C.位移 D.密度 2.下列说法中错误..的是( ) A.零向量是没有方向的 B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.圆上一群孤立点 D.一个单位圆4.下列命题正确的是( )A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行 5.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.DEOAB CF。

从位移、速度、力到向量

从位移、速度、力到向量

§1从位移、速度、力到向量预习案学习目标1. 通过对物理中有关概念的分析,了解向量的实际背景,进而深刻理解向量的概念;2. 掌握向量的几何表示;3. 理解向量的模、零向量与单位向量的概念.4,在理解向量和平行向量的基础上掌握相等向量和共线向量的概念.重点:向量的有关概念。

难点:共线向量的理解。

知识学习1、向量的概念向量是的量;数量是的量;2,向量的表示法⑴我们常用带箭头的线段来表示向量,线段按一定比例画出,它的_________表示向量的大小,箭头的指向表示_________________⑵以A为起点,B为终点的有向线段记作AB(注:起点在前,终点在后). 已知AB,线段AB的长度也叫做有向线段AB的长度,也称为模,记作AB.有向线段包含三个要素:起点,方向,长度.⑶有向线段也可用字母如a,b,c,表示.反思:⑴“向量就是有向线段,有向线段就是向量”的说法对吗?⑵为什么三要素中不包含终点?⑶数量能比较大小吗?向量呢?向量的模呢?3:两个特殊的向量零向量:_________________的向量;单位向量:_____________________的向量.平行向量:方向相同或相反的非零向量. 若向量a,b平行,记作://a b.规定:①零向量与任一向量平行,即对任意向量a,都有0//a.②零向量的方向不确定,是任意的.4,长度相等且方向相同的向量叫做相等向量(equal vector)平行向量和共线向量5. 平行向量也叫做共线向量(collinear vectors).方向相同或相反的非零向量叫做平行向量. 如果a、b、c是平行向量,则可记为////a b c. 因为任一组平行向量都可以移动到同一条直线上,因此,平行向量也叫做共线向量.预习自测:1. 下列各量中不是向量的是( ).A .浮力B .风速C .位移D .密度2. 下列说法正确的是( ).A .向量AB 与向量BA 的长度不等B .两个有共同起点长度相等的向量,则终点相同C .零向量没有方向D .任一向量与零向量平行3. 某人南行100米,后向东行100米,则这时他位移的方向是( ).A .东偏南30B .南偏东30C .东偏南45D .南偏东254. 物理中的作用力与反作用力 一对平行向量.(是或不是)5、、下列说法中正确的有①向量可以比较大小;②零向量与任一向量平行;③向量就是有向线段;6、下列说法中正确的是①若//a b ,则a b =; ②若a b =,则a b =; ③若a b =,则//a b ; ④若a b =,则a b =.探究案例1 如下图,设O 是正六边形ABCDEF 的中心,分别写出图中与OD ,OE ,OF 相等的向量.变式:与AB 相等的向量有哪些?例2如下图所示,D 、E 、F 分别是正ABC ∆的各边中点,则在以A 、B 、C 、D 、E 、F 六个点中任意两点为起点与终点的向量中,找出与向量DE 平行的向量.注意:共线向量的端点不一定共线,注意向量的可以平行移动性.训练案1. 在四边形ABCD 中,AB DC =,则相等的向量是( ) .A.AD 与CB C.AC 与BDB.OB 与OD D.AO 与OC2. 判断下列说法的正误:①向量的模是一个正实数;②若两个向量平行,则两个向量相等;A B CC E③若两个单位向量互相平行,则这两个单位向量相等;④温度有零上和零下温度,所以温度是向量;④非零向量a 的单位向量是a a .3. 下列命题中,正确的是( ). A.a b =⇒a b = B.a b >⇒a b > C.a b =⇒//a b D.0a =⇒0a = 4, 若AB AD =,且BA CD =,则四边形ABCD 的形状为( ).A.平行四边形B.菱形C.矩形D.等腰梯形5. B 、C 是线段AD 的三等分点,分别以图中各点为起点和终点,最多可以写出 个互不相同的向量.6. 下列命题中,说法正确的有 ①若a b =,b c =,则a c =;②若//a b ,//b c ,则//a c ;③若a b =,则a b =或a b =-;④若AB DC =,则A ,B ,C ,D 是一个平行四边形的四个顶点.7. 在腰为2,底边为3的等边ABC ∆中,则底边BC 上的中线向量AD 的模为A B C D。

2.1从位移、速度、力到向量----导学案

2.1从位移、速度、力到向量----导学案

从位移、速度、力到向量(导学案)使用说明:1.自学71~73页内容,提高自学能力;2.限时完成导学案的预习案部分,找出自己的疑惑和需要解决的问题,准备课上讨论探究,学有余力的学生可提前完成其他部分。

【学习目标】(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系. (3)通过学习发现知识结论,培养自己抽象概括能力和逻辑思维能力 【重点难点】 重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.相关知识:1.在物理学中,位移、速度和力这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”。

它们和长度、面积、质量等只有大小的量是不同的。

2.前面我们提到过三角函数线(正弦线和余弦线)。

你是如何理解的? 教材助读:1.向量的定义既有________又有________的量统称为向量. 2.有向线段具有________和________的线段叫作有向线段.以A 为起点,B 为终点的有向线段记作,线段AB 的长度也叫作有向线段________的长度,记作________. 3.向量的表示向量可以用________来表示,有向线段的长度表示________,箭头所指的方向表示________.向量也可以用黑体小写字母如a ,b ,c 来表示,书写用来表示.4.向量的模、零向量、单位向量______________表示向量(或a )的大小,即长度(也称模).________的向量称为零向量,记作________.与向量a 同方向,________的向量,叫作a 方向上的单位向量,记作a 0.5.相等向量长度________且方向________的向量,叫作相等向量,向量a 和向量b 相等.记作________.6.共线向量如果表示两个向量的有向线段所在的直线________,则称这两个向量平行或共线,a 与b 平行或共线,记作________.规定零向量与任一向量________. 预习自测1.下列说法中错误的是( )A .零向量是没有方向的B .零向量的长度为0C .零向量与任一向量平行D .零向量的方向是任意的 2.下面有四个说法: ①向量的长度与向量的长度相等;②任何一个非零向量都可以平行移动; ③所有的单位向量都相等;④两个有共同起点的相等向量,其终点必相同. 其中正确说法的个数是( ) A .4 B .3 C .2 D .13.下列说法正确的是( )预习案A.方向相同的向量叫相等向量B.零向量的长度为0C.共线向量是在一条直线上的向量D.零向量是没有方向的向量基础知识探究综合应用探究如图,设O是正六边形ABCDEF的中心,①分别写出图中与向量−→−OA、−→−OB、−→−OC相等的向量;②分别写出图中与向量−→−OD、−→−OE、−→−OE共线的向量.当堂检测1.|a|=1,则向量a是________向量;若|a|=0,则向量a是________向量.2.如图,D、E、F分别是△ABC三边AB、BC、AC的中点.(1)与相等的向量为________;(2)与共线的向量为________.我的收获:D EOABC F。

从位移、速度、力到向量

从位移、速度、力到向量

B A 上面的向量记为AB, A为向量的起点, B为向量的终点;
也可记为a
有向线段的三要素:起点、方向、长度 向线段的起点和终点字母表示,如 AB .
特别注意:把有向线段(即向量)任意 平移,向量不变,即看作同一向量,因 为向量的大小和方向没有改变。
a
c 等小写字母表示;或用表示有 2.字母表示法: 用 a、 b、
(4).下列说法正确的是 ( A ) A) 方向相同或相反的向量是平行向量. B) 零向量是 0 . C)长度相等的向量叫做相等向量. D) 共线向量是在一条直线上的向量.
(5).已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反; ④a=0或b=0; ⑤ a与b都是单位向量. 其中是向量a与b平行的充分不必要条件是①③④ _____.
(1)若a = b,b = c,则a = c。
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b (4)两个向量a、b相等的充要条件是 |a|=|b| a ∥b (5)若A、B、C、D是不共线的四点,则AB=DC是
四边形ABCD是平形四边形的充要条件。
其中正确的个数是( A.0 B. 1 C. 2
(1)错 (4)对
(2)错 (5)错
(3)错
例2:已知O为正六边形ABCDEF的中心,在图中 所标出的向量中:
( 1 )试找出与FE共线的向量;
(2)确定与FE相等的向量;
(3) OA与BC相等吗?
解:( 1 ) OA, BC (2) BC (3)因为方向相反,所以不 相等。
E
D
F A
O
B
C
例3:在4 5达到方格中有一个向量 AB,以图中 的格点为起点和终点作 向量,其中与AB相等的

北师大版高中数学必修4第二章《平面向量》从力、速度、位移到向量

北师大版高中数学必修4第二章《平面向量》从力、速度、位移到向量

A(起点) A(起点)
有向线段的三个要素:起点、方向、 有向线段的三个要素:起点、方向、长度

1、向量的几何表示:用有向线段表示。 、向量的几何表示:用有向线段表示。 向量AB的大小,也就是向量 的 向量 的大小,也就是向量AB的长度 的大小 或称模),记作 记作|AB|。 (或称模),记作 。 长度为0的向量叫做零向量,记作0。 长度为0的向量叫做零向量,记作0。 的向量叫做零向量 长度等于1个单位的向量,叫做单位向量。 长度等于 个单位的向量,叫做单位向量。 个单位的向量 单位向量
规定:0与任一向量平行。 与任一向量平行。 规定: 与任一向量平行 C OA = a A B l
. o
OB = b
OC = c
的向量的起点平移到直线l上的 问:把一组平行于直线l的向量的起点平移到直线 上的 把一组平行于直线 的向量的起点平移到直线 一点O 这时它们是不是平行向量? 一点 ,这时它们是不是平行向量? 各向量的终点与直线l之间有什么关系 之间有什么关系? 各向量的终点与直线 之间有什么关系?
D C
) D. 3
C D
变:若 a ∥ b, b ∥ c, 则a ∥c ,
A B B
时成立。 当b ≠ 0时成立。 时成立
A
3.某人从 点出发向东走了 米到达 点,然后改变方向 某人从A点出发向东走了 米到达B点 某人从 点出发向东走了5米到达 米到达C点 到达C点后 点后又 按东北方向走了10 2米到达 点,到达 点后又改变方 向西走了10米到达 米到达D点 向向西走了 米到达 点(1)作出向量 )作出向量AB,BC,CD;(2) 求AD的模 的模
1.判断下列命题是否正确,若不正确, 1.判断下列命题是否正确,若不正确,请 判断下列命题是否正确 简述理由. 简述理由. v uuuv uuu 是共线向量, ①向量 AB 与 CD是共线向量,则A、B、C、D 四点必在一直线上; 四点必在一直线上; (×) × ②单位向量都相等; 单位向量都相等;

我的高中数学目录 (2)

我的高中数学目录 (2)

北师大版高中数学必修一·第一章集合·1、集合的基本关系◎好◎一般◎较差◎完全不会·2、集合的含义与表示◎好◎一般◎较差◎完全不会·3、集合的基本运算◎好◎一般◎较差◎完全不会·第二章函数·1、生活中的变量关系◎好◎一般◎较差◎完全不会·2、对函数的进一步认识◎好◎一般◎较差◎完全不会·3、函数的单调性◎好◎一般◎较差◎完全不会·4、二次函数性质的再研究◎好◎一般◎较差◎完全不会·5、简单的幂函数◎好◎一般◎较差◎完全不会·第三章指数函数和对数函数·1、正整数指数函数◎好◎一般◎较差◎完全不会·2、指数概念◎好◎一般◎较差◎完全不会·3、指数函数◎好◎一般◎较差◎完全不会·4、对数◎好◎一般◎较差◎完全不会·5、对数函数◎好◎一般◎较差◎完全不会·6、指数函数、幂函数、对数函数◎好◎一般◎较差◎完全不会·第四章函数应用·1、函数与方程◎好◎一般◎较差◎完全不会·2、实际问题的函数建模◎好◎一般◎较差◎完全不会北师大版高中数学必修二·第一章立体几何初步·1、简单几何体◎好◎一般◎较差◎完全不会·2、三视图◎好◎一般◎较差◎完全不会·3、直观图◎好◎一般◎较差◎完全不会·4、空间图形的基本关系与公理◎好◎一般◎较差◎完全不会·5、平行关系◎好◎一般◎较差◎完全不会·6、垂直关系◎好◎一般◎较差◎完全不会·7、简单几何体的面积和体积◎好◎一般◎较差◎完全不会·8、面积公式和体积公式的简单应用◎好◎一般◎较差◎完全不会·第二章解析几何初步·1、直线与直线的方程◎好◎一般◎较差◎完全不会·2、圆与圆的方程◎好◎一般◎较差◎完全不会·3、空间直角坐标系◎好◎一般◎较差◎完全不会北师大版高中数学必修三·第一章统计·1、统计活动:随机选取数字◎好◎一般◎较差◎完全不会·2、从普查到抽样◎好◎一般◎较差◎完全不会·3、抽样方法◎好◎一般◎较差◎完全不会·4、统计图表◎好◎一般◎较差◎完全不会·5、数据的数字特征◎好◎一般◎较差◎完全不会·6、用样本估计总体◎好◎一般◎较差◎完全不会·7、统计活动:结婚年龄的变化◎好◎一般◎较差◎完全不会·8、相关性◎好◎一般◎较差◎完全不会·9、最小二乘法◎好◎一般◎较差◎完全不会·第二章算法初步·1、算法的基本思想◎好◎一般◎较差◎完全不会·2、算法的基本结构及设计◎好◎一般◎较差◎完全不会·3、排序问题◎好◎一般◎较差◎完全不会·4、几种基本语句◎好◎一般◎较差◎完全不会·第三章概率·1、随机事件的概率◎好◎一般◎较差◎完全不会·2、古典概型◎好◎一般◎较差◎完全不会·3、模拟方法――概率的应用◎好◎一般◎较差◎完全不会北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数◎好◎一般◎较差◎完全不会·2、角的概念的推广◎好◎一般◎较差◎完全不会·3、弧度制◎好◎一般◎较差◎完全不会·4、正弦函数◎好◎一般◎较差◎完全不会·5、余弦函数◎好◎一般◎较差◎完全不会·6、正切函数◎好◎一般◎较差◎完全不会·7、函数的图像◎好◎一般◎较差◎完全不会·8、同角三角函数的基本关系◎好◎一般◎较差◎完全不会·第二章平面向量·1、从位移、速度、力到向量◎好◎一般◎较差◎完全不会·2、从位移的合成到向量的加法◎好◎一般◎较差◎完全不会·3、从速度的倍数到数乘向量◎好◎一般◎较差◎完全不会·4、平面向量的坐标◎好◎一般◎较差◎完全不会·5、从力做的功到向量的数量积◎好◎一般◎较差◎完全不会·6、平面向量数量积的坐标表示◎好◎一般◎较差◎完全不会·7、向量应用举例◎好◎一般◎较差◎完全不会·第三章三角恒等变形·1、两角和与差的三角函数◎好◎一般◎较差◎完全不会·2、二倍角的正弦、余弦和正切◎好◎一般◎较差◎完全不会·3、半角的三角函数◎好◎一般◎较差◎完全不会·4、三角函数的和差化积◎好◎一般◎较差◎完全不会·5、三角函数的简单应用◎好◎一般◎较差◎完全不会北师大版高中数学必修五·第一章数列·1、数列的概念◎好◎一般◎较差◎完全不会·2、数列的函数特性◎好◎一般◎较差◎完全不会·3、等差数列◎好◎一般◎较差◎完全不会·4、等差数列的前n项和◎好◎一般◎较差◎完全不会·5、等比数列◎好◎一般◎较差◎完全不会·6、等比数列的前n项和◎好◎一般◎较差◎完全不会·7、数列在日常经济生活中的应用◎好◎一般◎较差◎完全不会·第二章解三角形·1、正弦定理与余弦定理正弦定理◎好◎一般◎较差◎完全不会·2、正弦定理◎好◎一般◎较差◎完全不会·3、余弦定理◎好◎一般◎较差◎完全不会·4、三角形中的几何计◎好◎一般◎较差◎完全不会·5、解三角形的实际应用举例◎好◎一般◎较差◎完全不会·第三章不等式·1、不等关系◎好◎一般◎较差◎完全不会·1.1、不等式关系◎好◎一般◎较差◎完全不会·1.2、比较大小◎好◎一般◎较差◎完全不会2,一元二次不等式◎好◎一般◎较差◎完全不会·2.1、一元二次不等式的解法◎好◎一般◎较差◎完全不会·2.2、一元二次不等式的应用◎好◎一般◎较差◎完全不会·3、基本不等式◎好◎一般◎较差◎完全不会3.1 基本不等式◎好◎一般◎较差◎完全不会·3.2、基本不等式与最大(小)值◎好◎一般◎较差◎完全不会4 线性规划·4.1、二元一次不等式与平面区◎好◎一般◎较差◎完全不会·4.2、简单线性规划◎好◎一般◎较差◎完全不会·4.3、简单线性规划的应用◎好◎一般◎较差◎完全不会选修1-1第一章常用逻辑用语1命题◎好◎一般◎较差◎完全不会2充分条件与必要条件◎好◎一般◎较差◎完全不会2.1充分条件◎好◎一般◎较差◎完全不会2.2必要条件◎好◎一般◎较差◎完全不会2.3充要条件◎好◎一般◎较差◎完全不会3全称量词与存在量词3.1全称量词与全称命题◎好◎一般◎较差◎完全不会3.2存在量词与特称命题◎好◎一般◎较差◎完全不会3.3全称命题与特称命题的否定◎好◎一般◎较差◎完全不会4逻辑联结词“且’’‘‘或…‘非4.1逻辑联结词“且◎好◎一般◎较差◎完全不会4.2逻辑联结词“或◎好◎一般◎较差◎完全不会4.3逻辑联结词‘‘非◎好◎一般◎较差◎完全不会第二章圆锥曲线与方程1椭圆◎好◎一般◎较差◎完全不会1.1椭圆及其标准方程◎好◎一般◎较差◎完全不会1.2椭圆的简单性质◎好◎一般◎较差◎完全不会2抛物线2.1抛物线及其标准方程◎好◎一般◎较差◎完全不会2.2抛物线的简单性质◎好◎一般◎较差◎完全不会3 曲线3.1双曲线及其标准方程◎好◎一般◎较差◎完全不会3.2双曲线的简单性质◎好◎一般◎较差◎完全不会第三章变化率与导数1变化的快慢与变化率◎好◎一般◎较差◎完全不会2导数的概念及其几何意义2.1导数的概念◎好◎一般◎较差◎完全不会2.2导数的几何意义◎好◎一般◎较差◎完全不会3计算导数◎好◎一般◎较差◎完全不会4导数的四则运算法则4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会第四章导数应用4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会选修1-2第一章统计案例1 回归分析◎好◎一般◎较差◎完全不会1.1 回归分析◎好◎一般◎较差◎完全不会1.2相关系数◎好◎一般◎较差◎完全不会1.3可线性化的回归分析◎好◎一般◎较差◎完全不会2独立性检验2.1条件概率与独立事件◎好◎一般◎较差◎完全不会2.2 独立性检验◎好◎一般◎较差◎完全不会2.3独立性检验的基本思想◎好◎一般◎较差◎完全不会2.4独立性检验的应用◎好◎一般◎较差◎完全不会第二章框图1 流程图◎好◎一般◎较差◎完全不会2结构图◎好◎一般◎较差◎完全不会第三章推理与证明1 归纳与类比◎好◎一般◎较差◎完全不会1.1归纳推理◎好◎一般◎较差◎完全不会1.2类比推理◎好◎一般◎较差◎完全不会2 数学证明◎好◎一般◎较差◎完全不会3 综合法与分析法3.1综合法◎好◎一般◎较差◎完全不会3.2分析法◎好◎一般◎较差◎完全不会4反证法◎好◎一般◎较差◎完全不会第四章数系的扩充与复数的引入1 数系的扩充与复数的引入◎好◎一般◎较差◎完全不会1.1数的概念的扩充◎好◎一般◎较差◎完全不会1.2复数的有关概念◎好◎一般◎较差◎完全不会2复数的四则运算2.1复数的加法与减法◎好◎一般◎较差◎完全不会2.2复数的乘法与除法◎好◎一般◎较差◎完全不会选修2-1第一章常用逻辑用语1 命题◎好◎一般◎较差◎完全不会2 充分条件与必要条件◎好◎一般◎较差◎完全不会3 全称量词与存在量词◎好◎一般◎较差◎完全不会4 逻辑联结词“且”“或”“非”◎好◎一般◎较差◎完全不会第二章空间向量与立体几何1 从平面向量到空间向量◎好◎一般◎较差◎完全不会2 空间向量的运算◎好◎一般◎较差◎完全不会3 向量的坐标表示和空间向量◎好◎一般◎较差◎完全不会4 用向量讨论垂直与平行◎好◎一般◎较差◎完全不会5 夹角的计算◎好◎一般◎较差◎完全不会6 距离的计算◎好◎一般◎较差◎完全不会第三章圆锥曲线与方程1 椭圆1.1 椭圆及其标准方程◎好◎一般◎较差◎完全不会1.2 椭圆的简单性质◎好◎一般◎较差◎完全不会2 抛物线2.1 抛物线及其标准方程◎好◎一般◎较差◎完全不会2.2 抛物线的简单性质◎好◎一般◎较差◎完全不会3 双曲线3.1 双曲线及其标准方程◎好◎一般◎较差◎完全不会3.2 双曲线的简单性质◎好◎一般◎较差◎完全不会4 曲线与方程4.1 曲线与方程◎好◎一般◎较差◎完全不会4.2 圆锥曲线的共同特征◎好◎一般◎较差◎完全不会4.3 直线与圆锥曲线的交点◎好◎一般◎较差◎完全不会选修2-2第一章推理与证明1 归纳与类比◎好◎一般◎较差◎完全不会2 综合法与分析法◎好◎一般◎较差◎完全不会3 反证法◎好◎一般◎较差◎完全不会4 数学归纳法◎好◎一般◎较差◎完全不会第二章变化率与导数1 变化的快慢与变化率◎好◎一般◎较差◎完全不会2 导数的概念及其几何意义◎好◎一般◎较差◎完全不会2.1导数的概念◎好◎一般◎较差◎完全不会2.2导数的几何意义◎好◎一般◎较差◎完全不会3 计算导数◎好◎一般◎较差◎完全不会4 导数的四则运算法则4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会5 简单复合函数的求导法则◎好◎一般◎较差◎完全不会第三章导数应用1 函数的单调性与极值◎好◎一般◎较差◎完全不会1.1导数与函数的单调性◎好◎一般◎较差◎完全不会2 导数在实际问题中的应用◎好◎一般◎较差◎完全不会2.1实际问题中导数的意义◎好◎一般◎较差◎完全不会2.2最大、最小值问题◎好◎一般◎较差◎完全不会第四章定积分1 定积分的概念◎好◎一般◎较差◎完全不会1.1定积分背景-面积和路程问题◎好◎一般◎较差◎完全不会1.2定积分◎好◎一般◎较差◎完全不会2 微积分基本定理◎好◎一般◎较差◎完全不会3 定积分的简单应用◎好◎一般◎较差◎完全不会3.1平面图形的面积◎好◎一般◎较差◎完全不会3.2简单几何体的体积◎好◎一般◎较差◎完全不会第五章数系的扩充与复数的引入1 数系的扩充与复数的引入◎好◎一般◎较差◎完全不会1.1数的概念的扩展◎好◎一般◎较差◎完全不会1.2复数的有关概念◎好◎一般◎较差◎完全不会2 复数的四则运算◎好◎一般◎较差◎完全不会2.1复数的加法与减法◎好◎一般◎较差◎完全不会2.2复数的乘法与除法◎好◎一般◎较差◎完全不会选修2-3第一章计数原理1.分类加法计数原理◎好◎一般◎较差◎完全不会1.1 分类加法计数原理◎好◎一般◎较差◎完全不会1.2 分步乘法计数原理◎好◎一般◎较差◎完全不会2.排列2.1 排列的原理◎好◎一般◎较差◎完全不会2.2 排列数公式◎好◎一般◎较差◎完全不会3.组合3.1 组合及组合数公式◎好◎一般◎较差◎完全不会3.2 组合数的两个性质◎好◎一般◎较差◎完全不会4.简单计数问题◎好◎一般◎较差◎完全不会5.二项式定理5.1 二项式定理◎好◎一般◎较差◎完全不会5.2 二项式系数的性质◎好◎一般◎较差◎完全不会第二章概率1.离散型随机变量及其分布列◎好◎一般◎较差◎完全不会2.超几何分布◎好◎一般◎较差◎完全不会3.条件概率与独立事件◎好◎一般◎较差◎完全不会4.二项分布◎好◎一般◎较差◎完全不会5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差◎好◎一般◎较差◎完全不会5.2 离散型随机变量均值与方差◎好◎一般◎较差◎完全不会6.正态分布6.1 连续型随机变量◎好◎一般◎较差◎完全不会第三章统计案例1.回归分析◎好◎一般◎较差◎完全不会1.1 回归分析◎好◎一般◎较差◎完全不会1.2 相关系数◎好◎一般◎较差◎完全不会1.3 可线性化的回归分析◎好◎一般◎较差◎完全不会2.独立性检验2.1 独立性检验◎好◎一般◎较差◎完全不会2.2 独立性检验的基本思想◎好◎一般◎较差◎完全不会2.3 独立性检验的应用◎好◎一般◎较差◎完全不会选修4-1第一章直线、多边形、圆1.全等与相似◎好◎一般◎较差◎完全不会2.圆与直线◎好◎一般◎较差◎完全不会3.圆与四边形◎好◎一般◎较差◎完全不会第二章圆锥曲线1.截面欣赏◎好◎一般◎较差◎完全不会2.直线与球平面与球的位置◎好◎一般◎较差◎完全不会3.柱面与平面的截面◎好◎一般◎较差◎完全不会4.平面截圆锥面◎好◎一般◎较差◎完全不会5.圆锥曲线的几何性质◎好◎一般◎较差◎完全不会选修4-4第一章坐标系1 平面直角坐标系◎好◎一般◎较差◎完全不会2 极坐标系◎好◎一般◎较差◎完全不会3 柱坐标系和球坐标系◎好◎一般◎较差◎完全不会第二章参数方程1 参数方程的概念◎好◎一般◎较差◎完全不会2 圆锥曲线的参数方程◎好◎一般◎较差◎完全不会3 参数方程化成普通方程◎好◎一般◎较差◎完全不会4 平摆线和渐开线◎好◎一般◎较差◎完全不会选修4-5第一章不等关系与基本不等式l不等式的性质◎好◎一般◎较差◎完全不会2含有绝对值的不等式◎好◎一般◎较差◎完全不会3平均值不等式◎好◎一般◎较差◎完全不会4不等式的证明◎好◎一般◎较差◎完全不会5不等式的应用◎好◎一般◎较差◎完全不会第二章几个重妻的不等式1柯西不等式◎好◎一般◎较差◎完全不会2排序不等式◎好◎一般◎较差◎完全不会3数学归纳法◎好◎一般◎较差◎完全不会。

2020年高中数学必修第二册: 位移、速度、力与向量的概念 导学案(北师大版)

2020年高中数学必修第二册: 位移、速度、力与向量的概念 导学案(北师大版)

第二章平面向量及其应用第1节从位移、速度、力到向量第1课时位移、速度、力与向量的概念⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;1.通过实例分析,形成平面向量的概念.2.会表示向量,并理解向量的基本特征.1.向量的概念:既有_____又有______的量叫向量2.向量的两要素:_______、_________.3.向量AB(或a)的大小,即长度(也称______),记作:_______或________.4.模长为0的向量叫做________,记作:_______5.模长为1的向量叫做________,记作:_______一、情景引入,温故知新情景1:学校位于小明家北偏东60°方向,距离小明家2000m,从小明家到学校,可能有长短不同的几条路.无论走哪条路,位移都是向北偏东60°方向移动了2000m(如图2-1).θ=,出手速率为v=28.35m/s(如情景2:某著名运动员投掷标枪时,其中一次记录为:出手角度43.242图2-2).情景3:如图2-3,汽车沿倾斜角为 的坡路向上行驶,汽车的牵引力为F问题:1上面三个情境中反映的物理量有什么共同的特点?2.请再举出一些含有类似性质的物理量实例进行分析,与同学交流向量的历史大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.二、探索新知探究一向量的概念情境1. .老鼠由A向西北逃窜,猫在B处向东追去.猫能否追到老鼠?情境2. 民航从北京飞往重庆、广州、上海、哈尔滨等地的航班,这些航班的位移相同吗?情景3:起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.当拉力的大小超过重力的大小时,物体即被吊起思考:1物理中,既有大小又有方向的量,叫作什么?.2.在数学中,既有大小又有方向的量又叫作什么呢?归纳新知:向量的概念:既有大小又有方向的量叫向量向量的两要素:大小(模)、方向.(定义向量的模)问题1.现实生活中有哪些量既有大小又有方向?问题2.哪些量只有大小没有方向?例1.下列量中哪些是向量?悬挂物受到的拉力,压强,摩擦力,频率,加速度.问题:数量与向量的区别是什么?练习1:给出下列物理量:①密度;②路程;③速度;④质量;⑤功;⑥位移.下列说法正确的是( )A.①②③是数量,④⑤⑥是向量B.②④⑥是数量,①③⑤是向量C.①④是数量,②③⑤⑥是向量D.①②④⑤是数量,③⑥是向量例2.如图,某人上午从A到达了B,下午从B到达了C,请在图上用有向线段表示出该人上午的位移、下午的位移以及这一天内的位移.练习2.已知飞机从甲地按北偏东30°的方向飞行2000 km到达乙地,再从乙地按南偏东30°的方向飞行2000。

北师大版数学必修四课件:2.1从位移、速度、力到向量

北师大版数学必修四课件:2.1从位移、速度、力到向量
uu u r uuu r 则A、B、C、D四点必能组成平行四边形. AB DC,
uu u r
uuu r
uu u r
uuu r
r r r r 则r r (3)若 a ac b,b c,
r r r r r r (4)若 a P b, b P c, 则 a P c
【审题指导】结合共线向量及相等向量的概念求解.
uu u r
uuu r uur 【解析】易知四边形ABDE为平行四边形 ,则 AB ED, uur uuu r 又∵D是CE的中点,则 ED DC. uuu r uur 答案: DC,ED
5.判断下列各命题是否正确 (1)两个有共同起点并且相等的向量,其终点必相同; (2)两个有共同终点的向量,一定是共线向量; (3)向量就是有向线段. 【解析】(1) 正确,结合向量的定义可知只要大小相等和方 向相同的两个向量就是相等向量; (2)结合共线向量的定义可知(2)不正确; (3)不正确,有向线段是向量的一种表示形式.
【误区警示】对解答本题时易犯的错误具体分析如下:
1.下列物理量:
①质量;②速度;③位移;④加速度;⑤路程;⑥力;⑦密
度;⑧功.其中不是向量的有(
(A)1个 (B)2个
)
(C)3个 (D)4个
【解析】选D.看一个量是不是向量,主要看它是否具备向量 的两个要素,即大小和方向 .②③④⑥既有大小又有方向, 故它们是向量,而①⑤⑦⑧只有大小没有方向,故它们不是 向量.
确;对于(3),尽管零向量的方向不确定,但规定零向量与 任意向量平行,故(3)不正确;依据向量平行的定义可知(4) 正确.综上可知正确的命题有1个.
【例】判断下列命题的正误 (1)若向量 AB 与 CD 是共线向量,则A,B,C,D四点共线. (2)若四边形ABCD是平行四边形,则 AB DC; 反之,若

北师大版必修4高中数学第2章平面向量11.1位移速度和力1.2向量的概念

北师大版必修4高中数学第2章平面向量11.1位移速度和力1.2向量的概念

1.准确画出向量的方法是先确定向量的起点,再确定向量的方 向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是 向量的几何表示,必须确定起点、长度和终点,三者缺一不可.
2.起点相同,长度也相同的向量的终点组成以该起点为圆心、 向量长度为半径的圆.
2.一辆消防车从 A 地去 B 地执行任务,先从 A 地向北偏东 30°方向行驶 2 千米到 D 地,然后 从 D 地沿北偏东 60°方向行驶 6 千米到达 C 地, 从 C 地又向南偏西 30°方向行驶了 2 千米才到达 B 地.
→ OA.
1.向量共线有三种情形: ①共线且同向;②共线且反向;③有一个是零向量. 2.向量的平行与直线平行的关系 两条直线平行时,直线上的有向线段平行,两向量平行时,表示 向量的有向线段所在直线不一定平行,也可能重合.若直线 m,n,l, m∥n,n∥l,则 m∥l;若向量 a,b,c,a∥b,b∥c,而 a,c 不一定 平行.
向量的表示 【例 2】 一艘军舰从基地 A 出发向东航行了 200 海里到达基地 B,然后改变航线向东偏北 60°航行了 400 海里到达 C 岛,最后又改 变航线向西航行了 200 海里到达 D 岛. (1)试作出向量A→B,B→C,C→D;
(2)求|A→D |.
[思路探究] 准确画出向量的方法是先确定向量的起点,再确定 向量的方向,然后结合向量的大小确定向量的终点.
(1)在如图所示的坐标系中画出A→D,D→C,C→B,A→B; (2)求 B 地相对于 A 地的位置向量.
[解] (1)向量A→D,D→C,C→B,A→B如图所示.
(2)由题意知A→D=B→C,∴AD 綊 BC, ∴四边形 ABCD 为平行四边形, ∴A→B=D→C, ∴B 地相对于 A 地的位置向量为“北偏东 60°,6 千米”.

第二章 平面向量(第1课时)

第二章  平面向量(第1课时)
7中学 高中数学 必修④
从位移、速度、力到向量
• 我们在物理学中已经学过“位移”、“速度”和 “力”相关的概念,知道他们不仅有大小而且还 有方向。因此,我们在解决实际问题时,不仅仅 只考虑他们的大小问题,而且要考虑方方向问题。 ————那么在数学中,如何解决类似于“位 移”、“速度”、“力”这样的问题呢?
例如: AB
CD
DE
(起点) A
a
②可以用黑体小写的字母
例如:a,b,c,d…… 书写用a, b, c, d
新余市第六中学 高中数学 必修④
向量的长度(模)
AB (或 a )表示向量 AB(或a)的大小,即长度(也称模)
特殊向量
①长度为零的向量称为零向量,其方向为任意方向, 记作0或0
②长度为单位1 的向量叫做单位向量, 记作:a0
新余市第六中学 高中数学 必修④
从位移、速度、力到向量
• 像“位移”、“速度”,“力”这样既有大小又 有方向的量叫做向量
思考题 请问“加速度”、“时间”,“密度”、“功”、“重 力”、“质量”、“角速度”、哪些是向量?为什么?
加速度,重力,角速度是向量,因为他们既有大小又有方向 时间,密度,功,质量不是向量,因为他们只有大小没有方 向
目录
§3 从速度的倍数到数乘向量
3.1 数乘向量
3.2 平面向量基本定理
第二章 平面向量
§4 平面向量的坐标
4.1 平面向量的坐标表示 4.2 平面向量线性运算的坐标表示 4.3 向量平行的坐标表示
新余市第六中学 高中数学 必修④
目录
第二章 平面向量
§5 从力的做功到向量的数量积 §6 平面向量数量积的坐标表示 §7 向量应用举例
新余市第六中学 高中数学 必修④

北师版数学高一-必修4学案 -1.2 位移、速度和力 向量的概念

北师版数学高一-必修4学案 -1.2 位移、速度和力 向量的概念

§1 从位移、速度、力到向量1.1 位移、速度和力 1.2 向量的概念[学习目标] 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.[知识链接]1.力和位移都是既有大小,又有方向的量,在物理学常称为矢量,在数学中叫作向量;而把那些只有大小,没有方向的量称为数量,在物理学常称为标量. 2.已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度. 其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧. 3.向量与数量有什么联系和区别?答 联系是向量与数量都是有大小的量;区别是向量有方向且不能比较大小,数量无方向且能比较大小. [预习导引]1.向量:既有大小,又有方向的量叫作向量.2.向量的几何表示:以A 为起点、B 为终点的有向线段记作AB →. 3.向量的有关概念:(1)零向量:长度为0的向量,叫作零向量,记作0或0→. (2)单位向量:长度为单位1的向量叫作单位向量. (3)相等向量:长度相等且方向相同的向量叫作相等向量.(4)平行向量(共线向量):如果表示两个向量的有向线段所在的直线平行或重合,则称这两个向量平行或共线.①记法:向量a 平行于b ,记作a ∥b . ②规定:零向量与任一向量平行.要点一 向量的概念 例1 给出下列各命题: (1)零向量没有方向; (2)若|a |=|b |,则a =b ; (3)单位向量都相等; (4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同; (6)若a =b ,b =c ,则a =c ; (7)若a ∥b ,b ∥c ,则a ∥c ;(8)若四边形ABCD 是平行四边形,则AB →=CD →,BC →=DA →. 其中正确命题的序号是________. 答案 (5)(6)解析 (1)该命题不正确,零向量不是没有方向,只是方向不确定; (2)该命题不正确,|a |=|b |只是说明这两向量的模相等,但其方向未必相同; (3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合; (6)该命题正确.由向量相等的定义知,a 与b 的模相等,b 与c 的模相等,从而a 与c 的模相等;又a 与b 的方向相同,b 与c 的方向相同,从而a 与c 的方向也必相同,故a =c ; (7)该命题不正确.因若b =0,则对两不共线的向量a 与c ,也有a ∥0,0∥c ,但a ≠c ; (8)该命题不正确.如图所示,显然有AB →≠CD →,BC →≠DA →.规律方法 要充分理解与向量有关的概念,明白它们各自所表示的含义,搞清楚它们之间的区别是解决与向量概念有关问题的关键. 跟踪演练1 下列命题中,正确的是( ) A .a ,b 是两个单位向量,则a 与b 相等 B .若向量a 与b 不共线,则a 与b 都是非零向量 C .两个相等的向量,起点、方向、长度必须都相同 D .共线的单位向量必是相等向量 答案 B解析 若a 与b 中有一个是零向量,则a 与b 是平行向量,即向量a 与b 共线,与前提矛盾,所以a 与b 都是非零向量. 要点二 向量的表示例2 在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.解 (1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.规律方法 在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.跟踪演练2 中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解 根据规则,画出符合要求的所有向量. 马在B 处走了“一步”的情况如图(1)所示; 马在C 处走了“一步”的情况如图(2)所示.要点三 相等向量与共线向量例3 如图所示,O 为正方形ABCD 对角线的交点,四边形OAED 、OCFB 都是正方形.(1)写出与AO →相等的向量; (2)写出与AO →共线的向量; (3)向量AO →与CO →是否相等?→相等的向量为:OC→、BF→、ED→.解(1)与AO→共线的向量为:OA→、OC→、CO→、AC→、CA→、ED→、DE→、BF→、FB→.(2)与AO→与CO→不相等,因为AO→与CO→的方向相反,所以它们不相等.(3)向量AO规律方法判断一组向量是否相等,关键是看这组向量是否方向相同、长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.跟踪演练3如图,在正方形ABCD中,M,N分别为AB和CD的中点,在以A,B,C,D,M,N为起点和终点的所有向量中,相等的向量分别有多少对?解不妨设正方形的边长为2,则以A,B,C,D,M,N为起点和终点的向量中:→=DC→,BA→=CD→,AD→=BC→,DA→=CB→,AD→=MN→,DA→=NM→,(1)模为2的相等向量共有8对,AB→=MN→,CB→=NM→.BC→同向的有MB→,DN→,NC→,这四个向量组成相等的向(2)模为1的相等向量有12对,其中与AM量有6对,即AM→=→,AM→=DN→,AM→=NC→,MB→=DN→,MB→=NC→,DN→=NC→,同理与AM→反向的也有6对.MB→=MC→,NA→=CM→,MD→=BN→,DM→=NB→.(3)模为5的相等向量共有4对,AN1.下列说法正确的是()A.零向量没有大小,没有方向B.零向量是唯一没有方向的向量C.零向量的长度为0D.任意两个单位向量方向相同答案C解析零向量的长度为0,方向是任意的,故A,B错误,C正确.任意两个单位向量的长度相等,但方向不一定相同,故D错误.2.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( )A.AD →与CB →B.OB →与OD →C.AC →与BD →D.AO →与OC →答案 D解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 3.如图,在△ABC 中,若DE ∥BC ,则图中是共线向量的有________.答案 ED →与CB →,AD →与BD →,AE →与CE →解析 观察图形,并结合共线向量的定义可得解.4.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 答案 梯形解析 ∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,且AB ≠DC ,∴四边形ABCD 是梯形.1.向量是既有大小又有方向的量,从其定义看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.平行向量是指向量所在直线平行或重合,是一种广义的平行.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.一、基础达标 1.有下列说法:①若向量a 与向量b 不平行,则a 与b 方向一定不相同; ②若向量AB →,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →; ③若|a |=|b |,则a ,b 的长度相等且方向相同或相反; ④由于零向量方向不确定,故其不能与任何向量平行. 其中,正确说法的个数是( ) A .1 B .2 C .3D .4答案 A解析 对于①,由共线向量的定义知,两向量不平行,方向一定不相同,故①正确; 对于②,因为向量不能比较大小,故②错误;对于③,由|a |=|b |,只能说明a ,b 的长度相等,不能确定它们的方向,故③错误; 对于④,因为零向量与任一向量平行,故④错误. 2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 与b 不共线,则a 与b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等 答案 C解析 长度相等但方向相反的两个向量一定共线,由向量的概念及向量的模的意义可判断A 、B 、D 选项内容都是正确的. 3.给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则四边形ABCD 是正方形; ④平行四边形ABCD 中,一定有AB →=DC →; 其中不正确的命题的个数为( ) A .2 B .3 C .4 D .5答案 B解析 不正确的是①②③.4.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量B .平行的向量C .有相同起点的向量D .模相等的向量答案 D解析 这四个向量的模相等.5.若a 是任一非零向量,b 是模为1的向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1.其中正确的是( )A .①④B .③C .①②③D .②③ 答案 B解析 a 任一非零向量,故|a |>0.6.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF → 答案 D解析 由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →模相等而方向相反,故PE →≠PF →;EP →与PF →模相等且方向相同,故EP →=PF →.7.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明 ∵AB →=DC →, ∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|, ∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同, ∴DN →=MB →. 二、能力提升8.以下命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点;②若m =n ,n =k ,则m =k ;③单位向量都是共线向量.其中,正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 ①A 、B 、C 、D 四点可能共线;③单位向量的模相等,但方向不确定,所以未必共线. 9.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是________. 答案 ①③④解析 因为a =b ⇒a ∥b ,即①能够使a ∥b 成立;由于|a |=|b |并没有确定a 与b 的方向,即②不能够使a ∥b 成立;因为a 与b 方向相反时,a ∥b ,即③能够使a ∥b 成立;因为零向量与任意向量共线,所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是①③④. 10.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示:(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD . ∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD |→=|BC →|=200 km.11.如图,已知矩形ABCD 中,设点集M ={A ,B ,C ,D },求集合T ={PQ →|P 、Q ∈M ,且PQ →=0}.解 集合T ={PQ →|P 、Q ∈M ,且PQ →≠0}中的元素为非零向量PQ →,且向量的起点与终点分别为矩形的顶点ABCD .这些向量为AB →,AC →,AD →,BA →,BC →,BD →,CB →,CA →,CD →,DA →,DB →,DC →. 由于AB →=DC →,AD →=BC →,BA →=CD →,DA →=CB →,根据集合元素的互异性,得集合T ={AB →,AC →,AD →,BD →,CD →,CA →,DA →,DB →}. 12.如图所示,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′→,AC →=A ′C ′→. 证明 (1)∵AA ′→=BB ′→, ∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.打印版高中数学 又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)由(1)知,四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.三、探究与创新13.如图,在平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集S ={A ,B ,C ,D ,O },向量集合T ={MN →|M ,N ∈S ,且M ,N 不重合},试求集合T 中元素的个数.解 由题意知,集合T 中的元素实质上是S 中任意两点连成的有向线段,共有20个,即AB →,AC →,AD →,AO →;BA →,BC →,BD →,BO →;CA →,CB →,CD →,CO →;DA →,DB →,DC →,DO →;OA →,OB →,OC →,OD →.由平行四边形的性质可知,共有8对向量相等,即AB →=DC →,AD →=BC →,DA →=CB →,BA →=CD →,AO →=OC →,OA →=CO →,DO →=OB →,OD →=BO →.∵集合中元素具有互异性,∴集合T 中的元素共有12个.。

澄城县寺前中学高一数学从位移、速度、力到向量导学案

澄城县寺前中学高一数学从位移、速度、力到向量导学案
以上是数量的序号有:__________________________________
注明知识要求:A“识记类”
B“理解类”
C“应用类”
D“能力提升类”
合作探究
备注
1。 判断题:
1)两个长度相等的向量一定相等;()
2)相等的向量起点必相同;( )
3)平行四边形ABCD中,一定有 ;( )
4)平行向量就是共线向量;( )
重点
难点
重点:向量的概念,向量的几何表示以及平行向量、相等向量的概念;
难点:对向量的概念的理解,平行或共线向量的概念及应用。
教学方法
自学探究、合作交流
学生自学
反馈
教学过程
新知导学
备注
1。向量的有关概念:
⑴数学中,把既有_________,又有_________的量统称为________。
⑵具有方向和长度的线段叫做_________,记作______,____________叫做有向线段 的长度,记作_________。
C、平行向量就是方向相同的向量
D、 与任何一向量平行
当堂检测
备注
3.用有向线段分别表示一个方向向上,大小为20N的力和一个方向下,大小为30N的力(用1cm的长度表示力的大小为10N).
4.在直角坐标系 中,有三点 ,请用有向线段分别表示A到B,B到C,C到A的位移。
拓展提升
备注
5.如图,设 是正六边形 的中心,在以正六边形的顶点和中心为始点和终点的向量中,
⑴分别写出与图中向量 , , 相等的向量;
⑵分别写出与图中向量 , , 共线的向量.
作业布置
备注
教辅:作业手册 P108 课前作业(十三)
教(学)后反思

如何使用向量表示物体的运动?

如何使用向量表示物体的运动?

向量是一种数学工具,可以用来描述物体在空间中的位置和运动。

在物理学中,向量被广泛应用于描述物体的运动,包括力学、电磁学、光学和量子力学等领域。

在本篇文章中,我们将介绍如何使用向量表示物体的运动。

首先,我们需要了解向量的基本概念。

向量可以用起点和终点的坐标表示,也可以用长度和方向表示。

在物理学中,我们通常使用长度和方向来表示向量。

长度是指向量的模长,即向量的长度或大小。

方向是指向量的方向或指向,即向量所指的方向。

接下来,我们将介绍如何使用向量表示物体的位移。

位移是指物体在空间中的位置变化。

在物理学中,我们通常使用向量来表示位移。

位移可以用起点和终点的坐标表示,也可以用长度和方向表示。

在物理学中,我们通常使用位移来描述物体在空间中的位置变化。

例如,如果一个物体从点A移动到点B,我们可以使用向量AB来表示它的位移。

接下来,我们将介绍如何使用向量表示物体的速度。

速度是指物体在空间中的运动速度。

在物理学中,我们通常使用向量来表示速度。

速度可以用长度和方向表示。

例如,如果一个物体以速度v从点A移动到点B,我们可以使用向量v来表示它的速度。

接下来,我们将介绍如何使用向量表示物体的加速度。

加速度是指物体在空间中的运动加速度。

在物理学中,我们通常使用向量来表示加速度。

加速度可以用长度和方向表示。

例如,如果一个物体以加速度a从点A移动到点B,我们可以使用向量a来表示它的加速度。

最后,我们将介绍如何使用向量表示物体的力。

力是指物体在空间中的受力作用。

在物理学中,我们通常使用向量来表示力。

力可以用长度和方向表示。

例如,如果一个物体受到力F 的作用从点A移动到点B,我们可以使用向量F来表示它的力。

总之,向量是一种数学工具,可以用来描述物体在空间中的位置和运动。

在物理学中,我们通常使用向量来表示物体的位移、速度、加速度和力等物理量。

通过使用向量来描述物体的运动,我们可以更好地理解物体的运动规律,从而更好地解决物理问题。

从力位移加速度到向量教学设计

从力位移加速度到向量教学设计

从位移、速度、力到向量教学设计:龙涛1、教材的作用和地位向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系。

向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题。

2、教学目标(1)知识目标:理解向量、零向量、单位向量、向量的模的意义;(2)技能目标:理解向量的几何表示,会用字母表示向量;(3)能力目标:了解平行向量、共线向量和相等向量的意义,并会判断向量间平行(共线)、相等的关系;(4)德育目标:通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生的唯物辩证思想和分析辨别能力。

3、教学重点:本节重点是向量的概念,相等向量的概念,向量的几何表示。

4、教学难点:向量概念的理解5、学法:引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量.对于它们要抓住本质特征,让学生分析比较这些概念的区别与联系.由于向量同时具有几何图象的特征,在学习时还要辩清它们在图形中表现相等、平行的意义,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份,地位和作用. 对于单位向量与以前的单位长度的区别要给学生讲解清楚,单位向量不止一个,因为要表示不同的方向.讲清基本概念后,可让学生归纳数量和向量的区别和联系.6、教具:多媒体或实物投影仪,尺规7、授课类型:新授课8、教学过程【活动阶段】通过采取实际问题的方式引入课题,让学生初步接触现实生活中除了数量之外的一些(物理)量问题1:(多媒体演示)老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?学生:猫的速度再快也没用,因为方向错了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可以用有向线段表示,是不是就可以说这二者
是相同的呢? 提示:有区别:矢量一般是指物理中的既有大小又有 方向的量,与起点位置有关.而在数学中我们研究的是 仅由大小和方向确定,与起点位置无关的向量,也称 为自由向量.
探究点3 向量的模
向量 AB (或 a )的大小,即长度(也称模). 记作: | AB | 或(| a |). 问题:长度为0的向量是什么样的向量?长度为1
B 终点 A 起点
1.几何表示法:有向线段.
有向线段——具有方向和长度的线段. 有向线段的 长度表示向量的大小, ___________
箭头 所指的方向表示向量的方向. _____ 如图:以A为起点、B为终点的有向线段记作 AB.
2.字母表示法:
用 a, b, c 等小写字母表示.
想一想:矢量和向量都是既有大小又有方向的量,都
1. 下列结论
(1)两个向量相等,则它们的起点相同,终点相同. (2)若 | a || b |, 则a b. (3)若AB DC,则四边形ABCD是平行四边形. (4)平行四边形ABCD中,一定有AB DC. (5)若m n, n k , 则m k. (6)若a / / b, b / / c, 则a / / c. 其中不正确的个数是(
各不相同,因此,它们是
不同的位移.
位移既有大小又有方向.
重庆
上海
广州
思考:物理中,既有大小又有方向的量,叫作什
么?在数学中,既有大小又有方向的量又叫作什
么呢? 提示:矢量,向量.
探究点1
向量的概念
既有大小,又有方向的量统称为向量.
问题1.现实生活中有哪些量既有大小又有方向?
提示:力、加速度、动量、电场强度等.
A1 B2 A3
同一条有向线段表示,与有
向线段的起点无关.
A2
判断下列说法是否正确:
a = b ,则a = b; (1)若a = b;则 a = b ; 变题:
a = b ,则a ∥ b; (2)若a ∥b, 则a = b; 变题:
(3)若a = b, b = c, 则a = c;
(4)若a//b, b//c, 则a//c.
的向量呢?
r 提示:零向量:长度为零的向量,记为 0 ;方向任意.
单位向量:长度为单位1的向量. 注:零向量,单位向量都是只限制大小,不确定方向 的.
思考:平面直角坐标系内,起点在原点的单位向量, 它们终点的轨迹是什么图形? 提示:如图,轨迹是以O为圆心,半径为1的圆(单位圆).
y
o
x
探究点4 向量平行与相等向量 1.向量平行 如果表示两个向量的有向线段所在的直线平行或 重合,则称这两个向量平行或共线.
本节课主要学习了: 1.向量的概念及表示方法. 2.向量的长度(向量的模). 3.零向量、单位向量的概念. 4.向量平行(共线)与相等向量.
第二章 平面向量
§1 从位移、速度、力到向量
1.老鼠由A向西北逃窜,猫在B处向东追去.猫能
否追到老鼠?
不能.猫的速度再快也没用, 因为方向错了.
A
北 东
速度是既有大小又有方向的量.
B
2.民航每天都有从北京飞往重庆、 广州、上海、哈尔滨等地的航班. 每次飞行都是民航客机的一次位 移.
北京
哈尔滨
由于飞行的距离和方向
思考1 共线向量和相等向量有什么关系? 提示:共线向量不一定是相等向量;相等向量一定 是共线向量. 思考2 若两个向量在同一直线上,则这两个向量 有什么关系? 提示:平行.
例.如图,D,E,F依次是等边三角形ABC的边AB,BC,AC的中 点,在以A,B,C,D,E,F为起点或终点的向量中, (1)找出与向量 DE 相等的向量.
D
B A
(2)找出与向量 DF 共线的向量. 解:由三角形中位线定理不难得到:
(1)在以A,B,C,D,E,F为起点
F
C
E
或终点的向量中,与向量 DE 相等的向量有: AF和FC. (2)在以A,B,C,D,E,F为起点或终点的向量中,与
向量 DF 共线的向量有: BE , EB , EC , CE , BC , CB , FD.
如:
a b c
记作:a ∥∥ b c.
规定:零向量与任一向量平行.即对于任意向量 a , 都有
a / /0.
2.相等向量
长度相等且方向相同的向量,叫作相等向量.
若向量
a 与 b 相等,记作: a b.
a b
规定: 零向量与零向量相等.
想一想:
1.相等向量一定平行吗?

2.平行的向量一定是相等向量吗? 不是
B ) C. 4 D. 5
A .2
B .3
2.设O是正方形ABCD的中心,向量 AO, OB, CO, OD 是 ( D )
A.平行向量
C.相等向量
B.有相同终点的向量
D.模相等的向量
3.右图中的向量是什么关系?
解析: A1B1 A 2 B2 A 3 B3
B1
B3
说明:
任意两个非零相等向量可用
变式练习
如图,设O是正六边形ABCDEF的中心,
(1)写出图中与向量 OA 相等的向量.
OA DO=CB.
( 2 )与向量 OA 长度相等的向量有多少 个? 11个 (3)是否存在与向量 OA长度相等,方向相反的向 量? 存在,为 FE. (4)与向量 OA 长度相等且共线的向量有哪些?
CБайду номын сангаас, DO, FE
问题2.哪些量只有大小没有方向?
提示:距离、身高、质量、时间、面积等.
注意:数量与向量的区别
1.数量只有大小,是一个数,可以进行代数运算、
能比较大小.
2.向量不仅有大小还有方向,具有双重性, 不能比较大小.
探究点2 向量的表示方法 回顾物理中表示位移、速度、力的 方法,思考向量可以用什么表示?
F G
相关文档
最新文档