3.1 3.1.2 等式的性质

合集下载

新人教版七年级数学上册 3.1.2 《等式的性质》教学设计

新人教版七年级数学上册 3.1.2 《等式的性质》教学设计

新人教版七年级数学上册 3.1.2 《等式的性质》教学设计一. 教材分析新人教版七年级数学上册3.1.2《等式的性质》一节,主要让学生掌握等式的性质,包括等式的两边同时加减同一个数、等式的两边同时乘除同一个数(0除外)等性质。

这些性质是解决方程和方程组的基础,对于学生后续学习具有重要意义。

二. 学情分析学生在进入七年级之前,已经学习了整数、分数和小数等基础知识,对于数学符号和运算规则有一定的了解。

但对于等式的性质,他们可能还比较陌生,需要通过实例和操作来加深理解。

三. 教学目标1.让学生理解等式的性质,并能够运用性质进行简单的方程求解。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生对数学的兴趣,提高他们的学习积极性。

四. 教学重难点1.教学重点:等式的性质及运用。

2.教学难点:等式性质的推导和灵活运用。

五. 教学方法1.采用问题驱动法,引导学生探索等式的性质。

2.运用实例分析和操作,让学生直观地感受等式性质的应用。

3.采用小组讨论和合作交流的方式,培养学生的团队协作能力。

4.利用多媒体课件,增加课堂的趣味性和互动性。

六. 教学准备1.多媒体课件。

2.教学素材和实例。

3.练习题和测试题。

4.粉笔和黑板。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的等式,如“5 + 3 = 8”、“5 km/h = 3.1 m/s”等,引导学生关注等式,并提问:“你们认为等式有哪些性质?”2.呈现(10分钟)展示教材中关于等式性质的定义和例子,引导学生了解等式的两边同时加减同一个数、等式的两边同时乘除同一个数(0除外)等性质。

同时,让学生尝试解释这些性质的含义和应用。

3.操练(10分钟)针对等式的性质,设计一些练习题,让学生独立完成。

题目包括:a.判断题:判断等式的两边同时加减同一个数,等式是否成立。

b.选择题:选择正确的等式性质,使等式成立。

c.填空题:根据等式性质,填空使等式成立。

4.巩固(10分钟)以小组为单位,让学生运用等式的性质,解决实际问题。

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案

人教版数学七年级上册3.1.2《等式的性质》教案一. 教材分析《等式的性质》是人教版数学七年级上册第三章第一节的内容,主要介绍了等式的性质,包括等式的两边同时加减同一个数、乘除同一个数不改变等式的成立性。

这一节内容是学生学习方程和不等式的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习这一节内容前,已经掌握了整数、有理数的基本运算和概念,具备一定的逻辑思维能力。

但部分学生对于抽象的等式性质的理解可能存在困难,需要通过具体的例子和操作来加深理解。

三. 教学目标1.理解等式的性质,包括等式两边同时加减同一个数、乘除同一个数不改变等式的成立性。

2.能够运用等式的性质解决简单的问题。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.重点:等式的性质的理解和运用。

2.难点:对等式性质的深入理解和运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,通过具体例子和操作,引导学生发现和总结等式的性质,并通过练习巩固所学知识。

六. 教学准备1.教学PPT。

2.练习题。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考等式的性质,激发学生的学习兴趣。

例子:有一辆汽车从A地出发,以每小时60公里的速度行驶,行驶了3小时后到达B地,问汽车行驶的路程是多少?2.呈现(10分钟)通过PPT呈现等式的性质,引导学生观察和发现等式的性质。

性质1:等式的两边同时加减同一个数,等式仍然成立。

性质2:等式的两边同时乘除同一个数(不为0),等式仍然成立。

3.操练(10分钟)让学生分组进行练习,运用等式的性质解决问题。

练习1:判断等式的正确性。

练习2:运用等式的性质,求解未知数。

4.巩固(10分钟)让学生独立完成练习题,巩固对等式性质的理解。

1.判断等式的正确性。

2.运用等式的性质,求解未知数。

3.拓展(10分钟)引导学生思考等式性质在实际问题中的应用,提高学生解决问题的能力。

人教版七年级数学上册3.1.2等式的性质(教案)

人教版七年级数学上册3.1.2等式的性质(教案)
五、教学反思
今天我们在课堂上一起探讨了等式的性质,这节课让我感受到了同学们的积极性和好奇心。大家在导入环节对于天平平衡的例子很感兴趣,这为后续的学习奠定了良好的基础。我发现,通过生活中的实际情境引入数学概念,确实能够激发学生的学习兴趣。
在讲授新课的过程中,我注意到有的同学对于等式的性质一和性质二的理解还存在一些困难。尤其是在案例分析环节,对于如何正确运用等式性质解题,部分同学还显得有些迷茫。我通过反复举例和引导,帮助他们逐步掌握了这些性质的应用。这也提醒了我,在今后的教学中,对于重点难点内容,需要更加耐心地讲解,让学生有更多的机会去实践和操作。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作可能是使用计数器或其他教具来演示等式的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等式的性质在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-通过实例,让学生感受等式性质的数学意义,并将其应用于实际问题中。
举例:重点讲解等式2x + 3 = 7的求解过程,强调等式两边同时减去3后,得到2x = 4,再同时除以2得到x = 2的过程。
2.教学难点
-难点一:理解等式性质背后的逻辑原理,为什么等式两边进行相同操作后仍然成立。
-难点二:在解决具体问题时,如何选择合适的等式性质来简化问题,特别是在有多重操作时。
4.培养学生合作交流能力:通过小组讨论、互动交流,培养学生与他人合作解决问题的能力,增强团队协作意识。
三、教学难点与重点
1.教学重点
-理解并掌握等式的性质一和性质二,即等式两边同时进行加减乘除(除数不为零)操作后,等式依然成立。

3.1.2 等式的性质课件(共28张PPT)

3.1.2 等式的性质课件(共28张PPT)
c c
作业: (1)基础作业:教科书习题3.1第4、9、10题. (2)拓展作业:如果a=b =c,那么等式的性质还成 立吗?
随堂练习
用等式的性质解下列方程并检验: (1)x-5=6; (2)0.3x=45; 1 (3)5x+4=0; (4)2 x 3 . 4 解: (1)两边加5,得 x-5+5=6+5. 于是 x=11. 检验: 当x=11时,左边=11-5=6=右边, 所以x=11是原方程的解. 于是 x=150. 检验:当x=150时,左边=0.3×150=45=右边, 所以x=150是原方程的解.
观察思考
下列四个式子有什么相同点?
m+n=n+m, 3× 3+ 1 = 5× 2, x+ 2x= 3x, 3x+ 1= 5y
用等号表示相等关系的式子,叫做等式. 通常可以用a=b表示一般的等式.
探索新知
a
等式的左边
b
等式的右边
等号
把一个等式看作一个天平, 等号两边的式子 看作天平两边的物体,则等式成立可以看作是天 平两边保持平衡.
随堂练习
用等式的性质解下列方程并检验: (1)x-5=6; (2)0.3x=45; 1 (3)5x+4=0; (4)2 x 3 . 4
能力提升
在学习了等式的性质后,小红发现运用等式的性质可以 使复杂的等式变得简洁,这使她异常兴奋,于是她随手写了 一个等式:3a+b-2=7a+b-2,并开始运用等式的性质对这 个等式进行变形,其过程如下:
谁最厉害
以下说法是否正确?如果不对,怎样改正?
如果a b, 那么a b .
2 2
谁最厉害
以下说法是否正确?如果不对,怎样改正?
如果a b , 那么a b.
2 2

人教版七年级数学上册3.等式的性质课件

人教版七年级数学上册3.等式的性质课件
3.请同桌互相写出一个含有字母的等式,并用它来举例说 明等式的性质.(加、减、乘、除各举一例,除号用分数 表示).
课堂练习
1. 下列说法正确的是_______ A. 等式都是方程 B. 方程都是等式 C. 不是方程的就不是等式 D. 未知数的值就是方程的解
2. 下列各式变形正确的是 A. 由3x-1= 2x+1得3x-2x =1+1 B. 由5+1= 6得5= 6+1 C. 由2(x+1) = 2y+1得x +1= y +1 D. 由2a + 3b = c-6 得第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
教学目标
1.利用等式的基本性质对等式进行变形. 2.会用等式的性质解简单的一元 一次方程;
情景导入
一、提出问题 用估算的方法我们可以求出简单的一元一次方程的解.你 能用这种方法求出下列方程的解吗? (1) 3x-5=22; (2) 0.28-0.13y=0.27y+1.
左边加x,右边减去x.运算符号不一致.
(5)由x=y,y=5.3,得x=5.3
等式的传递性.
(6)由-2=x,得x=-2
等式的对称性.
10
方法总结:
运用等式的性质,可以将等式进行变形,变形 时等式两边必须同时进行完全相同的四则运 算,否则就会破坏本来的相等关系。
学以致用
例1 利用等式的性质解下列方程:
()
3. 下列变形,正确的是
A. 若ac = bc,则a = b B. 若 a b ,则a = b
cc C. 若a2 = b2,则a = b D. 若 1 x 6,则x = -2
3
(B)
4. 应用等式的性质解下列方程并检验:

人教版七年级数学上册同步备课3.1.2等式的性质(教学设计)

人教版七年级数学上册同步备课3.1.2等式的性质(教学设计)

3.1.2 等式的性质教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.1从算式到方程第2课时,内容包括等式的性质以及利用等式的性质解方程.2.内容解析方程是含有未知数的等式,解方程就是求出方程中未知数的值,解方程需要相应的理论基础说明解法的合理性.本章不涉及方程的同解原理,而以等式的性质作为解方程的依据.本节课通过观察、归纳引出等式的两条性质,并利用它们讨论一些比较简单的一元一次方程的解法,为后面几节进一步讨论比较复杂的一元一次方程的解法作准备.基于以上分析,可以确定本节课的教学重点为:了解等式的两条性质并能运用它们解简单的一元一次方程,初步理解其中的化归思想.二、目标和目标解析1.目标(1)了解等式的概念和等式的两条性质并能运用这两条性质解简单的一元一次方程.(2)经历等式的两条性质的探究过程,培养观察、归纳的能力.(3)在运用等式的性质解简单的一元一次方程的过程中,渗透化归的数学思想.2.目标解析(1)使学生知道等式是用等号表示相等关系的式子;理解等式两边加或减同一个数或式子,乘或除以(除数不为0)同一个数,结果仍相等的性质;能运用等式的两条性质解一些比较简单的一元一次方程.(2)使学生经历通过观察、归纳得出等式的两条性质的探究过程,体会等式的两条性质的合理性,培养学生观察、归纳的能力.(3)使学生在运用等式的两条性质解比较简单的一元一次方程,把一元一次方程转化为x=a的形式的过程中,明确一元一次方程的解的形式,渗透化归的数学思想.三、教学问题诊断分析对于等式的两条性质,借助天平从直观的角度认识,既给出了文字形式的表达,又用式子形式加以描述,这是一个抽象概括的过程,学生能体会到它们的合理性.把等式的性质与解方程结合起来,利用等式的性质研究一元一次方程的解法,这是由一般到特殊的过程,是具体操作层面的问题.怎样运用等式性质把一元一次方程化成x=a的形式,学生会存在一定的困难.基于以上分析,确定本节课的教学难点为:运用等式性质把简单的一元一次方程化成x=a的形式.四、教学过程设计(一)创设情境,复习导入问题1:回答下列问题:(1)什么是方程?(方程是含有未知数的等式)(2)指出下列式子中,哪些是方程,哪些不是,并说明理由;①3+x=5;②3x+2y=7;③2+3=3+2;④a+b=b+a(a、b已知);⑤5x+7= x–5.(3)上面的式子有哪些共同特点?(都是等式;我们可以用a = b来表示一般的等式.)问题2:用估算的方法可以求出简单的一元一次方程的解.你能用估算的方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.师生活动:教师提出问题(1),学生进行估算,寻求正确的答案.学生充分发表意见,教师评价激励.对于(2),学生适当思考后,教师引入新课:用估算的方法解比较复杂的方程是困难的.因此,我们还要讨论怎样解方程.本环节中,教师应重点关注:(1)学生能否估算出第(1)题的解;(2)学生能否意识到估算比较复杂的一元一次方程的解是比较困难的,体会到进一步学习的必要性.【设计意图】第(1)题是为了复习巩固估算比较简单的一元一次方程的方法,第(2)题是为了让学生意识到估算比较复杂的一元一次方程的解是比较困难的,从而引起学生的认知冲突,体会到进一步学习的必要性,引出新课.问题3:方程是含有未知数的等式,那什么叫做等式呢?师生活动:教师出示以下例子:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y.学生观察以上例子,感知等式.教师指出:像以上这样的式子,都是等式.用等号表示相等关系的式子,叫做等式.通常可以用a=b表示一般的等式,并指出等式的左边和右边.教师请学生自己举出等式的例子,并指出等式的左边和右边.本环节中,教师应重点关注:(1)学生能否举出等式的实际例子;(2)学生能否理解等式的概念并分清等式的左边和右边.【设计意图】等式的概念虽然比较简单,但它是学习等式性质的基础.等式的性质要在等式的两边同时进行某种相同的运算,因此必须让学生分清等式的左边和右边.(二)实验探究学习新知问题4:探究、归纳等式的性质1(借助图1).图1师生活动:教师演示实验,提出问题:由它你能发现什么规律?学生叙述发现规律后,教师进一步引导:把一个等式看作一个天平,等号两边的式子看作天平两边的物体,则等式成立可以看作是天平两边保持平衡.追问1:等式具有与上面的事实同样的性质.你能用文字叙述等式的这个性质吗?师生活动:在学生回答的基础上,教师说明:等式两边加上或减去的可以是同一个数,也可以是同一个式子.归纳等式的性质1.追问2:等式一般可以用a=b来表示,等式的性质1怎样用式子的形式来表示呢?师生活动:师生一起归纳:如果a=b,那么a±c=b±c,并请学生用具体的数字等式验证这条性质.问题5:探究、归纳等式的性质2(借助图2).图 2师生活动:教师演示实验,提出问题:由它你能发现什么规律?师生一起归纳等式的性质2并用式子表示.学生用具体的数字等式验证这条性质.教师应提醒学生注意:(1)等式两边都要参加运算,并且是进行同一种运算;(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子;(3)等式两边不能都除以0,即0不能作除数或分母.本环节中,教师应重点关注:(1)学生能否理解由天平向等式过渡的合理性;(2)学生能否观察、探究、归纳出等式的两条性质;(3)学生能否用文字语言和符号语言来表示等式的两条性质.【设计意图】借助天平演示,探究等式的性质,可以加强对等式性质的直观理解;用文字语言和符号语言两种形式描述等式的两条性质,让学生一方面切实理解等式的性质,另一方面体会如何用数学的符号语言抽象概括地表示它们,用具体的数字等式验证等式的两条性质,是为了让学生进一步体会等式性质的合理性.(三)针对训练1. 思考回答下列问题:(1)怎样从等式 x -5= y -5 得到等式 x = y ?(2)怎样从等式 3+x =1 得到等式 x =-2?(3)怎样从等式 4x =12 得到等式 x =3?(4)怎样从等式100100a b =得到等式a =b ? 参考答案:(1)依据等式的性质1两边同时加5;(2)依据等式的性质1两边同时减3;(3)依据等式的性质2两边同时除以4或同乘14; (4)依据等式的性质2两边同时除以1100或同乘100. 2. 已知x =y ,则下列各式中,正确的有( C ). ①x -3=y -3; ②3x =3y ; ③-2x =-2y ; ④1y x =. A. 1个 B. 2个 C. 3个 D. 4个3. 已知mx =my ,下列结论错误的是 ( A )A. x =yB. a +mx =a +myC. mx -y =my -yD. amx =amy师生活动:教师出示问题,学生独立思考后同桌交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生是否理解等式的两条性质;(2)学生能否利用等式的两条性质将方程变形;(3)学生是否认真思考、积极交流、勇于展示.【设计意图】使学生进一步理解并应用等式的两条性质,提高学生运用所学知识解决具体问题的能力.(四)典例分析例:利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)1543x --=.解:(1)方程两边同时减去7,x +7-7= 26-7于是x =19.(2)解: 方程两边同时除以-5,-5x ÷(-5)= 20 ÷(-5)化简,得x =-4.(3)解:方程两边同时加上5,得 155453x --+=+ 化简,得193x -= 方程两边同时乘-3,得 x =-27.师生活动:师生共同完成第(1)小题,教师板书过程,后两个小题,学生独立完成,两名学生板演并展示思路,教师讲评.教师指出:解以x 为未知数的方程,就是把方程转化为x =a (常数)的形式,等式的性质是转化的重要依据.本环节中,教师应重点关注:(1)学生能否利用等式的两条性质解简单的一元一次方程;(2)学生能否进一步理解等式的两条性质;(3)学生是否进一步体会解一元一次方程就是把方程转化为x =a 的形式.【设计意图】使学生能够利用等式的两条性质解简单的一元一次方程;使学生理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.问题6:怎样检验方程的解?师生活动:教师提出问题,学生回答.教师指出:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.学生检验x=-27是不是方程1543x--=的解.本环节中,教师应重点关注:(1)学生是否掌握检验一个数值是不是某个一元一次方程的解的方法;(2)学生能否进一步理解方程的解的概念.【设计意图】使学生掌握检验一个数值是不是某个一元一次方程的解的具体方法,并进一步理解方程的解的概念.问题7:用等式的性质对这个等式3a+b-2=7a+b-2进行变形,其过程如下:两边加2,得3a+b=7a+b.两边减b,得3a=7a.两边除以a,得3=7.请同学们检查变形过程,找出错误来.师生活动:教师出示问题,学生独立思考后四人一组交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生是否注意到等式性质2中“除数不为0”的条件.【设计意图】使学生进一步理解等式的两条性质,并注意等式性质2中“除数不为0”的条件,培养学生的严谨思维,避免以后发生类似的错误.(五)当堂巩固1. 下列说法正确的是(B)A. 等式都是方程B. 方程都是等式C. 不是方程的就不是等式D. 未知数的值就是方程的解2. 下列各式变形正确的是(A)A. 由3x-1= 2x+1得3x-2x =1+1B. 由5+1= 6得5= 6+1C. 由2(x+1) = 2y+1得x +1= y +1D. 由2a + 3b = c-6 得2a = c-18b3. 下列变形,正确的是(B)A. 若ac = bc,则a = bB. 若a bc c=,则a = bC. 若a2 = b2,则a = bD. 若163x-=,则x =-24. 填空:(1)将等式x-3=5的两边都_____得到x =8 ,这是根据等式的性质_____;(2)将等式112x=-的两边都乘以___或除以___得到x =-2,这是根据等式性质_____;(3)将等式x + y =0的两边都_____得到x = -y,这是根据等式的性质_____;(4)将等式xy =1的两边都______得到1yx=,这是根据等式的性质_____.答案:(1)加3;1;(2)2;12;2;(3)减y;1;(4)除以x;2.5. 利用等式的性质解下列方程:(1)x+6= 17 ;(2)-3x = 15;(3)2x-1= -3 ;(4)1123x-+=-.解:(1)两边同时减去6,得x=11. (2)两边同时除以-3,得x=-5. (3)两边同时加上1,得2x=-2. 两边同时除以2,得x=-1.(4)两边同时加上-1,得13 3x-=-两边同时乘以-3,得x=9.师生活动:教师出示问题,学生独立完成后同桌同学互查.同时四名学生板演,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生能否顺利地运用等式的两条性质解简单的一元一次方程;(3)学生是否进一步体会解一元一次方程就是把方程转化为x=a的形式.【设计意图】使学生能够利用等式的两条性质解简单的一元一次方程;使学生进一步理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x=a的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.(六)能力提升1. 已知2a-3=2b+1,试用等式的性质判断a和b的大小.答案:a>b2. 已知关于x的方程17642mx+=和方程3x-10 =5的解相同,求m的值.解:方程3x-10 =5的解为x =5,将其代入方程17642mx+=,得到57642m+=,解得m =2.(七)感受中考1.(2022•青海)根据等式的性质,下列各式变形正确的是()A.若a bc c=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若163x-=,则x=-2【解答】解:A、若a bc c=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、163x-=,则x=-18,故D不符合题意;故选:A.2.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:UIR=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【解答】解:将等式UIR=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.3.(4分)(2021•安徽7/23)设a,b,c为互不相等的实数,且4155b a c=+,则下列结论正确的是()A.a>b>c B.c>b>a C.a-b=4(b-c) D.a-c=5(a-b)【解答】解:∵4155b ac =+,∴5b=4a+c,在等式的两边同时减去5a,得到5(b-a)=c-a,在等式的两边同时乘-1,则5(a-b)=a-c.故选:D.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(八)课堂小结教师与学生一起回顾本章主要内容,并请学生回答以下问题:(1)等式有哪两条性质,你能举例说明吗?(2)如何根据等式的性质解简单的方程?举出一个例子,并说明每一步变形的依据.【设计意图】巩固所学知识和方法,加深对所学内容的理解,培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.(九)布置作业1. P83:习题3.1:第4题.2. P84:习题3.1:第8、9题.。

人教版七年级数学上册3.1.2《等式的性质》教学设计

人教版七年级数学上册3.1.2《等式的性质》教学设计

人教版七年级数学上册3.1.2《等式的性质》教学设计一. 教材分析《等式的性质》是人教版七年级数学上册3.1.2的内容,本节课主要让学生了解等式的性质,掌握等式两边同时加减乘除同一个数、等式两边同时乘除同一个不为0的数等操作,并能够运用这些性质解决实际问题。

教材通过具体的例子引导学生探索等式的性质,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了整数、分数和小数的运算,具备了一定的数学基础。

但他们对等式的概念和性质可能还比较陌生,需要通过具体的例子和实际操作来理解和掌握。

学生的学习兴趣和积极性较高,课堂参与度较好。

三. 教学目标1.让学生了解等式的性质,能够运用等式的性质进行简单的运算和解决问题。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生的数学兴趣,增强学生对数学学习的自信心。

四. 教学重难点1.掌握等式的性质,能够灵活运用等式的性质进行运算和解决问题。

2.理解等式两边同时加减乘除同一个数、等式两边同时乘除同一个不为0的数等操作的含义和应用。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生探索等式的性质。

2.运用直观演示和实际操作,让学生直观地感受等式的性质。

3.采用小组合作和讨论的方式,培养学生的团队协作能力。

4.通过练习和问题解决,巩固学生对等式性质的理解和运用。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和问题解决题。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考如何解决等式的问题,激发学生的学习兴趣。

2.呈现(10分钟)展示等式的性质,引导学生观察和理解等式两边同时加减乘除同一个数、等式两边同时乘除同一个不为0的数等操作的含义。

3.操练(10分钟)让学生进行实际的操作,解决一些简单的等式问题,巩固学生对等式性质的理解。

4.巩固(10分钟)通过一些练习题,让学生运用等式的性质进行计算和解决问题,巩固学生对等式性质的掌握。

数学等式的原理

数学等式的原理

数学等式的原理数学等式的原理可以从不同的角度来解释和理解。

以下是一些常见的视角。

1. 等式的定义:在数学中,等式是一个数学语句,它表达了两个表达式具有相同值的事实。

等式通常用符号“=”来表示,例如:2 + 3 = 5。

等式的左边和右边被称为等式的两个成员,它们在数值上相等。

2. 等式的性质:2.1 传递性:如果a = b和b = c,则可以推出a = c。

这是因为当两个数值相等时,它们可以互相代替。

2.2 对称性:如果a = b,则可以推出b = a。

这是因为等式的符号“=”没有方向性。

2.3 反身性:任何数值与自身相等,即a = a。

2.4 加法法则:如果a = b,则a + c = b + c。

即等式两边同时加上同一个数,仍然成立。

2.5 减法法则:如果a = b,则a - c = b - c。

即等式两边同时减去同一个数,仍然成立。

2.6 乘法法则:如果a = b,则a ×c = b ×c。

即等式两边同时乘以同一个数,仍然成立。

2.7 除法法则:如果a = b且c ≠0,则a ÷c = b ÷c。

即等式两边同时除以同一个非零数,仍然成立。

3. 等式的证明:在数学中,很多时候我们需要证明一个等式是否成立。

一般来说,等式的证明可以分为直接证明、间接证明和数学归纳法等方法。

3.1 直接证明:直接证明是通过将等式的两边进行各种运算,直接推导出它们相等的过程。

例如,要证明a + b = b + a,可以从等式的性质中运用加法法则得出结论。

3.2 间接证明:间接证明是通过反证法的思路来证明等式的真假。

首先,我们假设等式是错的,然后导出一个与已知事实矛盾的结论,从而证明等式是正确的。

例如,要证明a ×b = b ×a,可以假设不成立,并通过乘法法则导出矛盾。

3.3 数学归纳法:数学归纳法是一种证明等式在整个自然数集合上成立的方法。

它分为两个步骤:证明基础情况,然后证明在给定成立情况下,下一情况也成立。

3.1.2 等式的性质(人教版七年级上册数学课件)

3.1.2 等式的性质(人教版七年级上册数学课件)

一般地,从方程解出未知数的值以后,可以代
入原方程检验,看这个值能否使方程的两边相等.
例如,
将 x = -27 代入方程 1 x 5 4的左边, 3
1 (27) 5 = 9 5=4. 3
方程的左右两边相等,所以 x = -27 是原方程的解.
(1) x+6 = 17 ;
(2) -3x = 15 ;
3.1 从算式到方程
3.1.2 等式的性质
等式的性质
观察天平有什么特性?
天平两边同时加入相同质量的砝码 天平两边同时拿去相同质量的砝码
天平仍然平衡 天平仍然平衡
天平两边同时
加入 拿去
相同质量的砝码
天平仍然平衡
等式两边同时
加上 减去
相同的数
(或式子) 等式仍然成立
换言之,
等式的性质1
等式两边加 (或减) 同一个数 (或式子),结果仍相等.
如果a=b,那么a±c=b±c.
由天平看等式的性质2
你能发现什么规律?
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结 果仍相等.
如果a=b,那么ac=bc; 如果a=b(c≠0),那么 a b .
cc
c
例1 (1) 怎样从等式 x-5= y-5 得到等式 x = y ?
cc C. 若a2 = b2,则a = b D. 若 1 x 6,则x = -2
3
(B)
4. 填空
(1) 将等式x-3=5 的两边都_加__3__得到x =8 ,这是
根据等式的性质_1_;
1 (2) 将等式 1 x 1的两边都乘以_2__或除以 _2__得
2 到 x = -2,这是根据等式性质 __2_;

七年级(人教版)集体备课教学设计:3.1.2《等式的性质》

七年级(人教版)集体备课教学设计:3.1.2《等式的性质》

七年级(人教版)集体备课教学设计:3.1.2《等式的性质》一. 教材分析《等式的性质》是七年级数学的重要内容,主要让学生了解和掌握等式的两边性质,包括加减乘除等运算。

本节内容是学生学习方程、不等式等数学知识的基础,具有重要的地位。

通过本节课的学习,学生能够理解等式的概念,掌握等式的两边性质,并能运用性质解决一些实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、有理数等基础知识,对数学运算有一定的了解。

但部分学生对等式的概念理解不深,对等式的性质运用不够熟练。

因此,在教学过程中,需要关注学生的学习差异,针对性地进行教学。

三. 教学目标1.让学生理解等式的概念,掌握等式的两边性质。

2.培养学生运用等式的性质解决问题的能力。

3.提高学生的数学思维能力和团队协作能力。

四. 教学重难点1.等式的概念及等式的两边性质。

2.运用等式的性质解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入等式概念,激发学生的学习兴趣。

2.小组合作学习:让学生在小组内讨论等式的性质,培养学生的团队协作能力。

3.练习法:通过大量的练习题,让学生巩固等式的性质。

4.启发式教学:教师引导学生发现等式的性质,培养学生的数学思维能力。

六. 教学准备1.教学PPT:制作包含生活实例、练习题等的PPT。

2.练习题:准备一些有关等式性质的练习题,用于巩固知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例引入等式概念,如“小明有2个苹果,小华给了小明1个苹果,请问小明现在有几个苹果?”引导学生理解等式的意义。

2.呈现(10分钟)教师通过PPT呈现等式的性质,如加减乘除等运算,引导学生发现等式的性质。

3.操练(10分钟)学生分组讨论,每组选取一个等式,运用等式的性质进行运算,并解释运算过程。

教师巡回指导,纠正错误,解答疑问。

4.巩固(10分钟)学生独立完成PPT上的练习题,教师选取部分题目进行讲解,巩固等式的性质。

《3.1.2等式的性质》作业设计方案-初中数学人教版12七年级上册

《3.1.2等式的性质》作业设计方案-初中数学人教版12七年级上册

《3.1.2 等式的性质》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对等式性质的理解,掌握等式的基本运算和变形方法,能够运用等式的性质解决简单的实际问题,提高学生的逻辑思维能力和数学应用能力。

二、作业内容作业内容主要包括以下几个部分:1. 基础练习:包括等式的基本性质和等式变形练习,旨在让学生熟练掌握等式的基本运算规则。

2. 应用题练习:通过具体的生活实例,设置一系列等式应用题,让学生运用等式的性质解决实际问题,加深对等式性质的理解。

3. 探究性题目:设计一些具有探究性的题目,引导学生自主思考、探索等式的更深层次性质和规律。

三、作业要求针对本节课的作业要求如下:1. 基础练习部分要求学生必须熟练掌握等式的基本性质和变形方法,能够准确无误地进行等式运算。

2. 应用题练习部分要求学生能够理解题意,正确运用等式的性质解决实际问题,注意解题步骤的完整性和条理性。

3. 探究性题目要求学生充分发挥自主性,积极思考、探索,尝试运用所学知识解决新问题,鼓励创新思维。

4. 作业要求书写工整、答案准确、步骤完整。

如遇困难题目,可适当标注疑惑点,待课堂讲解时提问。

四、作业评价作业评价将从以下几个方面进行:1. 正确性:答案是否准确无误,是否符合等式的基本性质和运算规则。

2. 条理性:解题步骤是否清晰、条理,能否让人一目了然。

3. 创新性:在探究性题目中,是否能够提出新颖的解题思路和方法,展现创新思维。

4. 书写工整度:作业书写是否工整、规范,有无涂改现象。

五、作业反馈作业反馈将采取以下措施:1. 教师批改:教师将对每一份作业进行认真批改,对错误的地方进行标注和纠正。

2. 课堂讲解:针对普遍存在的问题和难点,将在课堂上进行讲解和答疑。

3. 个别辅导:对个别学生存在的问题,教师将进行个别辅导,帮助学生解决问题。

4. 作业总结:每次作业后,教师将对本次作业情况进行总结,分析学生的掌握情况和存在的问题,为后续教学提供参考。

3.1.2 等式的性质

3.1.2  等式的性质

坚持做好每个学习步骤
武亦文的高考高分来自于她日常严谨的学习 态度,坚持认真做好每天的预习、复习。 “高中三年,从来没有熬夜,上课跟着老师 走,保证课堂效率。”武亦文介绍,“班主 任王老师对我的成长起了很大引导作用,王 老师办事很认真,凡事都会投入自己所有精 力,看重做事的过程而不重结果。每当学生 没有取得好结果,王老师也会淡然一笑,鼓 励学生注重学习的过程。”
知1-练
1 等式两边都加上(或____减______)同一个 ___数_______(或___式__子___),结果仍相等;用字 母表示:如果a=b,那么a±c=___b_±__c__.
2 若m+2n=p+2n,则m=____p____.依据 是等式的性质____1____,它是将等式的两边 __同__时__减__去__2_n___.
知3-讲
例5 已知2x2+3x=5,求多项式-4x2-6x+6的值. 导引:要求多项式-4x2-6x+6的值,求出x的值或-
4x2-6x的值即可.而x的值目前我们无法求出, 所以我们需求出-4x2-6x的值. 解:因为2x2+3x=5, 所以-4x2-6x=-10(等式两边同时乘-2), 所以-4x2-6x+6=-4(等式两边同时加6).
知1-讲
例1 根据等式的性质填空,并在后面的括号内填 上变形的根据. (1)如果4x=x-2,那么4x-__x__=-2( 等式的性质1 ); (2)如果2x+9=1,那么2x=1-__9__( 等式的性质1 );
导引:(1)中方程的右边由x-2到-2,减了x,所以左边也 要减x;(2)中方程的左边由2x+9到2x,减了9,所 以右边也要减9.
第三章 一元一次方程
3.1 从算式到方程
第2课时 等式的性质
1 课堂讲解 2 课时流程

3.1.2等式的性质

3.1.2等式的性质

b+2变成b+2+4=b+6
(2)3x=2x+5 由2x+5变成5
3x变成3x-2x
(3) 1 x=5 由 1 x变成x
2
2
5变成5×2=10
(4)5m=2n 由5m变成m
2n变成2n÷5= 2 n
5
栏目索引
3.1.2 等式的性质
栏目索引
答案 (1)b+6 (2)2x (3)10 (4) 2 n
栏目索引
7.用适当的数或式子填空,使变形后仍是等式,并说明是根据哪一个性质
得到的.
(1)若3x+5=2,则3x=2-
;
(2)若-4x= 1 ,则x=
.
3
解析 (1)5.根据等式的性质1,方程两边都减5.
(2)- 1 .根据等式的性质2,方程两边都除以-4.
12
3.1.2 等式的性质
栏目索引
1.已知由- 1 x=6可得x=-24,下列变形方法:①方程两边同乘- 1 ;②方程两
题型二 利用等式的性质对已知等式进行变形
例2 利用等式的性质在横线上填上适当的数或式子,并说明变形的根
据以及是怎样变形的.
(1)如果2x-3=-5,则2x=
,x=
;
(2)如果5x+2=2x-4,则3x=
,x=
;
(3)如果 1 x=2x-3,则- 5 x=
,x=
.
3
3
分析 首先观察等式的左边是如何由上一步变形得到的,确定变形的依

=1,且6÷ 14

=-24; 14

÷(-4)≠1,所以②③正确,①④错误.
3.1.2 等式的性质

七年级数学 第3章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质

七年级数学 第3章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质

第八页,共十七页。
4.利用等式性质,解方程. (1)8+x=-7; (2)-12x=16; (3)3x-4=11; (4)2x-4=x+1. 解:(1)两边减8得x=-15; (2)两边乘以-2得x=-32; (3)两边加4得3x=15,两边除以3得x=5; (4)两边加4-x得x=5.
12/10/2021
12/10/2021
第十五页,共十七页。
15.小明在解方程3a-2x=15 (x是未知数)时,因为粗心将-2x看作2x,得 方程的解为x=3,试求出原方程的解. 解:把x=3代入方程3a-2x=15,得3a+2×3=15,即3a+6=15,3a+6- 6=15-6,得3a=9,则a=3.把a=3代入原方程,得9-2x=15,解得x= -3.所以原方程的解为x=-3.
2.下列解方程正确的有( C )
①由-3y=9-2y,得y=-9;②由
x 2
=-24,得x=-12;③由-2y=-
8,得y=4;④由23x=2,得x=3.
A.1个
B.2个
C.3个
D.4个
12/10/2021
第七页,共十七页。
3.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说
明是根据等式的哪一条性质以及是怎样变形的.
第九页,共十七页。
5.将方程2(x-1)=3(x-1)的两边除以(x-1),得2=3,对其中的错误,下 列说法正确的是( C ) A.方程本身是错的 B.方程无解 C.不能确定(x-1)的值是否为0 D.2(x-1)小于3(x-1)
12/10/2021
第十页,共十七页。
6.下列等式的变形中,正确的有( C )
12/10/2021
第十六页,共十七页。

人教版数学七年级上册3.1.2等式的性质(教案)

人教版数学七年级上册3.1.2等式的性质(教案)
-灵活运用等式性质解题:学生可能在遇到复杂问题时,不知道如何运用等式性质简化计算,需要教师指导如何识别问题和运用性质。
-理解“不为零”的条件:在等式两边同时乘除时,必须强调除数不为零的条件,这是学生容易忽视的地方,需要通过具体错误案例进行分析讲解。
-识别等式性质在综合问题中的应用:例如,在解决复合等式或方程时,学生可能难以识别何时应用等式性质,需要教师通过典型题目进行讲解和练习。
人教版数学七年级上册3.1.2等式的性质(教案)
一、பைடு நூலகம்学内容
人教版数学七年级上册3.1.2等式的性质。本节课我们将学习以下内容:
1.等式的性质:了解等式的定义,掌握等式两边同时加上或减去同一个数,等式仍成立;等式两边同时乘以或除以同一个不为零的数,等式仍成立。
2.举例说明等式的性质在解题中的应用。
3.练习:完成课本第39页的练习题1、2、3。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等式性质的基本概念。等式性质是指在等式的两边同时进行相同的运算,等式仍然成立的规则。它在数学中非常重要,帮助我们解决各种问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用等式性质解决实际问题,如解方程等。
3.重点难点解析:在讲授过程中,我会特别强调等式性质的两个重点:加减乘除同一个数(不为零)时等式成立。对于难点部分,我会通过具体的例子和图示来帮助大家理解。
举例解释:
(1)教学重点中的难点举例:解决等式4x + 3 = 7x - 2时,学生需要运用等式性质,将等式两边同时减去4x,得到3 = 3x - 2,再同时加2,得到5 = 3x,最后除以3得到x的值。这个过程中,学生需要理解每一步运用等式性质的原理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档