控制数学模型
控制工程基础第一章控制系统的数学模型
(t)
m dt
m
1a
2ቤተ መጻሕፍቲ ባይዱ
c
式中,
Tm
Ra
Ra J m f m CmCe
为电动机机电时间常数,s;
K1
Ra
f
Cm
C C
m
me
K2
Ra
f
Ra
C C
m
me
为电动机传递系数。
如果电枢电阻Ra和电动机的转动惯量Jm都很小而忽略不计,式(1-9)
还可进一步简化为
C u (t) (t)
em
a
这时,电动机的转速ωm(t)与电枢电压ua(t)成正比,于是电动机可作为
(1)运算放大器Ⅰ。输入量(即给定电压)ug与速度反馈电压uf在此 合成产生偏差电压并经放大,即
u1 K1(ug u f )
式中,
K1
R2 R3
为运算放大器Ⅰ的比例系数。
(2)运算放大器Ⅱ。考虑RC校正网络,u2与u1之间的微分方程为
u2
K(2
d u1
dt
u1)
式中,K 2
R5 R4
为运算放大器Ⅱ的比例系数;τ=R4C为微分时间常数。
m
(t) (t) (t)
m dt
mm
m
c
式中,fm为电动机和负载折合到电动机轴上的黏性摩擦系数;Jm为电
动机和负载折合到电动机轴上的转动惯量。
由式(1-5)、式(1-6)和式(1-7)中消去中间变量ia(t)、Ea及
Mm(t),便可得到以ωm(t)为输出量,以ua(t)为输入量的直流电动机微
分方程,即
按照其建立的条件,数学模型可分为两种。一是静态数学模型: 静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。 它反映了系统处于稳态时,系统状态有关属性变量之间的关系。二 是动态数学模型:动态条件(变量各阶导数不为零)下描述变量各 阶导数之间关系的微分方程;也可定义为描述实际系统各物理量随 时间演化的数学表达式。它反映了动态系统瞬态与过渡态的特性。 本章以动态数学模型的研究为主。
控制系统的数学模型
[(s
s1 ) m
F (s)]
13
当无重根时:
则:
F(s) C1 C2 Ci
Cn
n
Ci
s s1 s s2
s si
s sn i1 s si
f
(t)
L1[F(s)]
n
L1[
i 1
Ci s si
]
n i1
Ci e si t
其中:
Ci
lim (s
ssi
si ) F(s)
或
B(s)
Ci A' (s) |ssi
例:求F(s)的原函数
F (s)
s2
s
3 2s
2
解:分母多项式的根为: s1 1 j1 ,
s2 1 j1
方法一、F(s)可表示为
F(s)
s3
C1 C2
(s 1 j)(s 1 j) s 1 j s 1 j
其中:
C1
lim (s
s1 j
1
j)
(s
1
s3 j)(s 1
L[eat f (t)] F(s a)
例:
f(t) 1
t1 t2
f (t)=1(t-t1)-1(t-t2)
L[ f (t)] L[1(t t1)] L[1(t t2 )]
t
e t1s 1 e t2s 1
s
s
例:
f (t) e2t cos 3t
L[
f
(t
)]
(s
s2 2)2
9
四、拉氏反变换 拉氏反变换的定义如下
三、拉氏变换基本法则
1. 线性法则: 设:F1(s)=L[f1(t)], F2(s)=L[f2(t)],a和b为常数,则
自动控制理论-第二章 控制系统的数学模型
(n) 0 (m) 0 ( n −1 ) 1
y +L+ a y + a y &
n −1 n m −1
=b x+b
( m −1 )
1
Y (s) b s + b s + L + b s + b 两边拉氏变换 G ( s ) = = X (s) a s + a s + L + a s + a x +L+ b x + b x &
4 微分环节 微分环节的传递函数为:
G(s) = C (s) = Ts R( s)
5 二阶环节
二阶环节又称为振荡环节,其的传递函数为
G (s) =
6 延迟环节
G(s) =
C (s) K = R( s) T s + s + 1
2 2
延迟环节的传递函数为:
C ( s) =e R( s)
−τs
第四节 用方块图表示的模型
2
由此可得
X (s) = 1 1 1 1 = = − s + 5s + 4 ( s + 1)( s + 4) 3( s + 1) 3( s + 4)
2
再对 X ( s) 进行逆拉氏变换,可得
e e x(t ) = − 3 3
−t −4 t
第二节 系统输入-输出的传递函数描述
• 传递函数是在控制理论中表示定常系统输入输出关 系的最常用方法,一般只适用于线性定常系统。 • 线性定常系统的传递函数,定义为初始条件为零时, 输出量的拉普拉氏变换与输入量的拉普拉氏变换之比。 • 微分方程与传递函数转变关系:
第二章控制系统的数学模型.
2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9
名词解释控制系统的数学模型 -回复
名词解释控制系统的数学模型-回复
控制系统的数学模型是一种用数学语言描述的控制系统的形式化表达,它通过建立输入和输出之间的数学关系来描述系统的动态行为。
这个模型可以帮助我们理解和预测系统的行为,并且可以用于设计和优化控制系统。
在控制理论中,数学模型通常包括微分方程、差分方程、状态空间方程等形式。
这些方程描述了系统的动态特性,如传递函数、频率响应、稳定性等。
数学模型是控制系统分析和设计的基础,它能够提供一个清晰、准确和定量的方式来描述和理解复杂的系统行为。
通过对数学模型的研究,工程师们可以预测系统的性能,找出可能的问题,并设计出更有效的控制策略。
控制工程基础第二章——数学模型
② 脉冲函数: 脉动函数的极限,t0看作变量。
A
fT
(t)
lim
t0 0
t0
d [ A(1 et0s )]
L[
fT
(t
)]
lim
t0 0
A t0s
(1
et0s
)
lim t0 0
dt0
d dt0
(t0 s )
As A s
单位脉冲(Dirac) 定义:
面积为1的脉冲函数
(t)dt 1, (t 0, (t) 0)
fi (t)
此式为二阶常系 数线性微分方程。
系统的数学模型可用方块图表示:
方块图描述了系统
中信号转换、传递的 过程,给出了系统的 工作原理。
☆ 举例2:电网络系统
设输入端电压ui(t)为系统输入量。电容器c两端电压uo(t)为系统输
出量。现研究输入电压ui(t)和输出电压 uo(t)之间的关系。电路中的
.
(n)
x(t) sX (s) x (t) s n X (s)
x(t)dt
1 sn
X
(s)
①平移函数、延迟函数
对于函数 f (t) 函数 f (t )
称为延迟函数,函数本身并
不发生改变,只是延迟α时
间才发生。
注意:t 时,函数 f (t ) 0
②延迟定理
若 f (t) F (s) 则有 f (t ) es F (s) 延迟函数的拉氏变换 原函数的拉氏变换乘以 es
显然 (t) 1, A (t) A
结论:脉冲函数是面积函数; 脉冲函数的拉氏变换就是脉冲下的面积。 换言之,复数域中的实数在时域里是脉冲函数。
☆ 关于单位脉冲函数的说明
第二章_控制系统的数学模型
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s
控制系统的数学模型
第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。
是对实际物理系统的一种数学抽象。
模型各有特点,使用时可灵活掌握。
若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。
11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。
自动控制原理:第二章 控制系统数学模型
TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入
第二章控制系统数学模型
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui
①
uo
1 C
idt
②
由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R
和
ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0
第二章 控制系统的数学模型
y
y0 y
f
( x0 )
df ( x) dx
x x0
x
1 d 2 f (x) 2! dx 2
(x)2
x x0
略去高阶无穷小项
y
y0 y
f ( x0 )
df ( x) dx
x x0
x
南华大学
§2-1 系统的微分方程
非线性系统输出 z(t) 是两个变量 x(t) 和 y(t)的函数,即 z=f(x, y) 1)确定工作点P(x 0, y 0, z 0) 2)在工作点附近展开成泰勒级数并忽略高阶项
南华大学
主要 内容
第二章 控制系统的数学模型
1. 系统微分方程的建立及非线性方程的线性化 2. 传递函数的定义、性质及典型环节的传递函数 3. 系统传递函数方框图及简化 4. 相似原理
控制理论的研究对象: 系统、输入、输出三者之间的动态关系。 描述系统这种动态关系的是系统的数学模型,
经典控制理论内系统的数学模型有两种:
2)非线性系统:方程中含有非xo(t)、xi(t)
各阶导数的其它函数形式
南华大学
§2-1 系统的微分方程
例:
..
.
X o(t ) + X o(t ) + X 02(t ) = X i (t )
..
.
X o(t ) + X o(t ) + sin X o(t ) = X i (t )
..Leabharlann .X o(t) + 2 X o(t) + 4 X o(t) = X i(t)
输入(已知)
输出(已知)
黑匣子
南华大学
§2-1 系统的微分方程
第二章 控制系统的数学模型
⇒
QQQr00(((sss)))−−=QQH0c1(((sss)))R=−=1Hcc122s(sHsH)12(s()s)
qc (t)
=
h2 (t) R2
Qc
(s)
=
H2 (s) R2
G(s)
=
Qc (s) Qr (s)
=
R1R 2C1C 2s 2
1 + (R1C1 + R2C2
机理分析法:
依据描述系统运动规律的定律并通过理论推导 来得到数学模型的方法 。
实验辨识法:
通过整理基于系统输入-输出的实验数据来 得到系统的数学模型。本章着重讨论机理分析 法。
建模特点:相似性、简化性、准确性。
数学模型类型: 经典控制理论: 微分方程(连续系统)、
差分方程(离散系统) 、传递函数、系 统方框图和信号流图; 现代控制理论:状态方程
注:如果在第(3)步结束时已经得到符合第(4)步要求的微分方程,则 无须第(4)步。
线性定常系统微分方程的一般形式
an
d nc(t) dt n
+
an−1
d n−1c(t ) dt n−1
+
...
+
a1
dc(t ) dt
+
a0c(t )
=
bm
d mr(t) dt m
+
bm −1
d m−1r(t ) dt m−1
d x(t ) + dt
Kx(t ) = f (t )
当f(t)=f1(t)时,上述方程的解为x1(t); 当f(t)=f2(t)时,上述方程的解为x2(t); 如果f(t)=f1(t)+ f2(t) ,方程的解为x(t)= x1(t)+x2(t),这就是叠加性
现代控制理论第一章-控制系统数学模型
y b0
b1
bn1
xn
注:如果输入项的导数阶次和输出项导数阶次相同,则有d。
Y (s) R(s)
bn s n an s n
b1s b0 a1s a0
d
bn1sn1 b1s b0 ansn a1s a0
例1-4 已知描述系统的微分方程为 y18y 192y 640y 160u 640u
y bn1z(n1) b1z b0 z b0 x1 b1x2 bn1xn
写成矩阵形式
x1
x2
xn
0
0
0
a0
1 0 0 a1
0 1 0 a2
0 0 0 a3
0
0
0 1 an1
x1 x2
xn
0 u 0
1
x1
第1章 控制系统数学模型
本课程的任务是系统分析和系统设计。而不论是系统分析还是系 统设计,本课程所研究的内容是基于系统的数学模型来进行的。因 此,本章首先介绍控制系统的数学模型。
本章内容为: 1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换(状态变量选取非唯一)
写成矩阵形式
x1 0 1 0 x1 0
x2
0
0
1
x2
0
u
x3 a0 a1 a2 x3 b0
x1
y 1
0
0
x2
x3
状态图如下:
一般情况下,n 阶微分方程为: y(n) an1 y(n1) a1 y a0 y b0u
选择状态变量如下:
x1 y x1 x2 y x2 x3 y
0
x2
1 M
第二章 控制系统的数学模型
两个输人一个输出的线性系统,可以应用叠加原理进行分析。
如果忽略电枢电阻R 和电动机转动惯量J ,则Tm = 0 。
上式可变为 ω = cd ua 此时,电动机转速与电枢电压成正比。
2.1 控制系统微分方程的建立
三、系统的稳态数学模型
由直流电机例分析 如果电机处于平衡状态,则方程中各阶导数均为零。 此时微分方程变成代数方程,即
3.积分定理
若f(t) n重积分,各重积分在t=0 的值为0时,
2.2拉普拉斯变换及其应用——拉氏变换的几个重要运算定理
4.位移定理 ⑴实位移定理(时间坐标中有一个位移)
该定理又称延迟定理。 ⑵复位移定理(在复数s坐标中有一位移)
2.2拉普拉斯变换及其应用——拉氏变换的几个重要运算定理
5.终值定理 6.初值定理 Nhomakorabea2.1 控制系统微分方程的建立——例3
解 ua为给定输人,ML为干扰输人,ω 为输出。
据KVL 电枢回路方程:
据牛顿转动定律,电机转子的运动方程(动力学方程):
当激磁磁通不变时,M与ia 成正比:
2.1 控制系统微分方程的建立——例3
将各式联立,消去中间变量M、ed、ia可得:
Ta :电磁时间常数 Tm :机电时间常数
4.整理微分方程,使其规范化,
将输出项放到方程左侧, 输人项放到方程右侧, 各阶导数项按阶次从高到低的顺序排列。
2.1 控制系统微分方程的建立
二、举例
例1:已知RLC 电路系
统如图所示,试列写其 输入—输出之间的微分 方程。
2.1 控制系统微分方程的建立
例2:带阻尼的弹簧系统( k-m-f ), 输入力x,输出位移y , 试列写系统的微分方程。
第二章系统的数学模型
2.2 控制系统的复数域数学模型(传递函数)
一.传递函数
1.线性定常系统的传递函数定义为:
零初始条件下,系统输出量的拉氏变换与输入 量的拉氏变换之比。
R(s) G(s) C(s)
传递函数
输出的拉氏变换 输入的拉氏变换
|零初始条件
C(s) R(s)
G(s)
零初始条件
➢ 零初始条件指的是输入、输出初始条件均为零,即
在给定工作点 ( x0,y0 )附近,将上式展开泰勒级数:
y
f (x)
df f ( x0 ) dx
1 d2 f x x0 ( x x0 ) 2! dx2
(x x0 )2
x x0
若在工作点 ( x0,y0 ) 附近增量 x x0 的变化很小,则可略去式中 ( x x0 )2 项及其后面所有的高阶项,这样,上式近似表示为:
l
s
1)
G(s)
i 1 d
l 1 e
sv (Tjs 1) (Tk2s2 2 kTk s 1)
j 1
k 1
纯微分环节
s
es
积分环节
惯性环节
振荡环节
延迟环节
典型环节
➢ 比例环节的传递函数为:
Proportional element (link)
C(s) G(s) K R(s)
齿轮传动
方框图为:
➢ 频域数学模型:
频率特性
2.1 线性系统的时域数学模型
本节主要研究描述 线性、定常、集总参量控制系统的微分方程的
建立和求解方法
线性元件的微分方程
一.微分方程:
给定量和扰动量作为系统输入量,被控制量作为系统输出 的一种系统描述方法
第第二章 控制系统的数学模型
1
sa
1
(s a)n
18
拉普拉斯变换简表
f (t)
9
sin t
10
cost
11
1 (1 eat )
a
12
1 a
(a0
(a0
a)eat
)
13
1 a2
(at
1
e at
)
14
a0t a2
(
a0 a2
t)(eat
1)
F (s)
s2 2
s
s2 2
s s(s a)
s a0 s(s a)
1 s2 (s a)
(1)独立性(可加性):线性系统内各个 激励产生的响应互不影响
xi1(t) xi2(t)
xo1(t) xo2(t)
xi1(t)+xi2(t) xo1(t)+xo2(t)
(2)均匀性(齐次性)
8
线形系统的一般形式
an
dn dtn
y(t) an1
d n1 d t n 1
y(t) ... a1
d dt
dt
s
则
证:
f (0) lim sF (s)
s
由微分定理有:
L( df (t)) sF (s) f (0) dt
两边取极限
lim[ df (t) est dt] lim[sF (s) f (0)]
s 0 dt
s
27
lim[ df (t) est dt] lim[sF (s) f (0)]
0 dt s0
s0
lim est 1
s0
[ df (t) dt] lim[sF (s) f (0)]
第2章控制系统的数学模型
自动控制理论
同一物理系统有不同形式的数学模型,而不同类型的系统 也可以有相同形式的数学模型。
相似系统: 具有相同的数学模型的不同物理系统称为相似系统。例2-1
与例2-3为力--电荷相似系统。
1/15/2020
自动控制理论
思考题:给出双RC电路的微分方程
i1 ui
R1 ic
C1
R2 i2 u C2
1
C
i1dt R1(i1 i2 ) 0
R1
ui
i2
R2
uO
R2i2 uO
进行拉氏变换
1/15/2020
R1I1 (s) (R1 R2 )I2 (s) Ui (s)
(1 Cs
R1 )I1 (s)
R1I 2 (s)
0
R2 I2 (s) UO (s)
自动控制理论
dt
L[ d 2 f (t) ] s2 F (s) sf (0) f (0) dt 2
L
d
nf dt
(t
n
)
snF (s)
n k 1
s nk
f
(k 1) (0)
⑶积分定理:(设初值为零)
L[
f
(t)dt]
F (s) s
1/15/2020
L[ f (t)(dt)n自]动控F制s(理ns)论
第2章 控制系统的数学模型
主要内容:
数学模型基础 控制系统的微分方程 控制系统的传递函数 控制系统的结构图 信号流图与梅逊公式
1/15/2020
自动控制理论
2.1 数学模型基础
1.数学模型:用数学的方法和形式表示并描述系统中各
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 控制系统的数学模型2—1 数字模型在控制系统的分析和设计中,首先要建立系统的数学模型。
自动控制系统: 相同的数学模型进行描述,研究自动控制系统其内在共性运动规律。
系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。
常用的数学模型有:数学模型的建立方法一般应尽可能采用线性定常数学模型描述控制系统。
如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。
线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。
如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。
建立系统数学模型的主要目的,是为了分析系统的性能。
由数学模型求取系统性能指标的主要途径如图2—1所示。
由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。
电气的、 机械的、 液压的气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律,列写出各变量之间的数学关系式实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应曲线或频率响应曲线,从而获得系统的传递函数或频率特性。
图2-1 求取性能指标的主要途径2-2运用微分方程建立数学模型控制系统中的输出量和输入量通常都是时间的函数。
很多常见的元件或系统的输出量和输入量之间的关系都可以用一个微分方程表示,方程中含有输出量、输人量及它们各自对时间的导数或积分。
这种微分方程又称为动态方程、运动方程或动力学方程。
微分方程的阶数一般是指方程中最高导数项的阶数,又称为系统的阶数。
建立系统微分方程的一般步骤或方法是:1)根据研究问题的需要,确定系统的输入和输出。
2)对实际系统进行适当的简化,如将分布参数集中化、将非线性因素线性化等。
3)根据系统、输入和输出三者之间动态关系的原理或定律,列写系统的微分方程。
若系统比较复杂,则需分段列写微分方程,在这种情况下,必须注意各分段之间的负载效应问题。
4)消去中间变量,将方程整理成标准形式,即将与输出有关的项列在等号左边,而将与输入有关的项列在等号右边,且各阶导数按降幂排列。
列写微分方程的关键是元件或系统所属学科领域的有关规律而不是数学本身。
但求解微分方程需要数学工具。
下面分别以电路系统和机械系统为例,说明如何列写系统或元件的微分方程式。
2-2-1 电路系统电路系统的基本要素是电阻、电容和电感,而建立数学模型的基本定律是基尔霍夫电流定律∑i = 0,以及基尔霍夫电压定律 ∑u =0 。
元件与电压电流的关系电阻:Ri u = 电感:dt di Lu = 电容:⎰=idt Cu 1以下举例说明电路系统方程的建立。
例2—1 如图2—2所示为一个RLC 串联电路,试求其数学模型。
解 设输入信号)()(t u t x i =输出信号)()(0t u t y =。
按照基尔霍夫电压定律得0u u u u L R i ++=,Riu R =dtdi L u l = ⎰=idt Cu 10 消去中间变量i 得系统的微分方程为:i u u dt du RC dtu d LC =++00202 (2-1) 令T 1=LC ,T 2=RC ,同时将)()(t u t x i =与)()(0t u t y =代人可得图2—2 RLC 电路)()()()(2221t x t y dt t dy T dtt y d T =++ (2-2) 这是一个典型的二阶线性常系数微分方程,对应的系统也称为二阶线性定常系统。
例2—2 如图2-3所示为由两个RC电路串联而成的滤波网络,试建立输入电压u i 和输出电压u 。
之间动态关系的微分方程。
解 设回路电流i 1,和i 2为中间变量。
根据基尔霍夫电压定律对前一回路、 后一回路有:⎰-+=dt i i C i R u i )(121111 ⎰⎰+=-dt i C i R dt i i C 22222111)(1 ⎰=dt i C u 2201由上三式消去中间变量i 1,和i 2,整理即得u i 和u 0之间动态关系的微分方程:i u u dt du C R C R C R dt u d C R C R =++++002122112022211)( (2-3) 由上例明显看出,系统中后一部分对前一部分的负载效应,反映在流过前一回路电容C 1的电流上,没有后一回路时为i 1,而当串联上后一回路则为i 1-i 2。
从能量的角度看,负载效应就是后一回路带走了前一回路的一部分能量。
从信息传递的角度看,负载效应就是系统的两个部分之间所存在的信息的内部直接反馈作用。
2-2-2 机械系统机械系统指的是存在机械运动的装置,常用的基本要素是质量、弹簧和阻尼器。
它们遵循物理学的力学定律。
机械运动包括直线运动(相应的位移称为线位移)和转动(相应的位移称为角位移)两种。
做直线运动的物体要遵循的基本力学定律是牛顿第二定律22dt yd m F =∑式中F 为物体所受到的力,m 为物体质量,y 是线位移,t 是时间。
转动的物体要遵循如下的牛顿转动定律22dt d J T θ=∑式中T 为物体所受到的力矩,J 为物体的转动惯量,θ为角位移。
图2—3 两个RC 串联网络例2-3 如图2—4所示为一个,求其数学模型。
解 设输入量为F t x =)(,位移输出量为s t y =)(。
由牛顿定律得:k f m F F F F ++=22dtsd M F ksF dtdsfF m k f ===代人力平衡方程式后得 ks dt dsf dt s d MF ++=22 (2-4) 令f M T /1=, k K k f T /1/2==,并将)()(t y t x ,代入上式得该机械运动系统的数学模型:)()()()(22221t Kx t y dt t dy T dt t y d T T =++ (2-5) 该系统是二阶线性定常系统。
例2-4 图2-5所示为一机械旋转系统。
转动惯量为J的圆柱体,在转矩T的作用下产生角位移θ,求该系统的输入—输出描述。
解 假定圆柱体的质量分布均匀,质心位于旋转轴上,而且惯性主轴和旋转主轴线相重合,则其运动方程可写成:k f T T T dtd J--=22θθθωk T dt d f f T k f ===式中f ──粘性摩擦系数,常数图2-4带阻尼的质量弹簧系统 图2-5 机械旋转系统 (a)原理图 (b)分离体图ω──角速度k──弹性扭转变形系数,常数就得到输入与输出关系的微分方程:T k dt d f dt d J=++θθθ22 (2-6) 由以上描述的数学模型可以看出,系统的数学模型由其结构、参量及基本定律决定。
还有如机电系统、热工系统、化工系统,都可以通过其物理、化学机理找到其数学模型。
2-2-3 线性系统微分方程的通用形式在一般线性系统,描述系统动态方程的标准形式为)()()()()()()()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (2-7)式中:)(t x 为系统输入信号;)(t y 为系统输出信号;a i (i =0,1,2,…,n)、b j (j =0,1,2,…,rn)为系数,n 为输出信号的最高求导次数;m 为输入信号的最高求导次数。
若a i 和b j 均为常数时,上式为常系数线性微分方程,所描述的系统为定常线性系统。
2-3 线性系统的传递函数微分方程:时间域;微分积分求解;环节增减分析不便,阶数高求解繁难 不同的初始条件,输出响应不同传递函数:复数域;代数运算求解;环节增减分析方便,阶数高求解因式分解 初始条件必须为零,研究动态特性,经典控制理论最基本数学方法 微分方程与传递函数:连续系统利用传递函数还可研究系统参数变化或结构变化对动态过程的影响,因而使分析系统的问题大为简化。
另外,还可以把对系统性能的要求转化为对系统传递函数的要求,使综合设计的问题易于实现。
2-3-1 传递函数的概念传递函数是描述线性定常系统输入-输出关系的一种最常用的表达式。
引入微分算子:dt d s =, 则⎰=dt s1。
系统的传递函数可以定义为:在所有初始条件均为零时,系统输出的拉氏变换与系统输入的拉氏变换之比:)()()(s X s Y s G =。
(2-8) 设有一线性定常系统,其微分方程表达式为2-7式。
假定初始条件均为零.........,前式的拉氏变换可写为:)()()()(01110111s X b s b s b s b s Y a s a s a s a m m m m n n n n ++++=++++----由此可得系统的传递函数为:01110111)()()(a s a s a s a b s b s b s b s X s Y s G n n n n m m m m ++++++++==---- (2-9) 举例说明:例2-5 由例2-1的RLC 电路,求其传递函数。
解1 由式(2-2)RLC 电路的微分方程: )()()()(2221t x t y dt t dy T dtt y d T =++ 初始条件为零,对上式进行拉氏变换得:)()()1(221s X s Y s T s T =++∴传递函数为: 11)()()(221++==s T s T s X s Y s G 解2 在推导电网络的传递函数时,对于无源元件电感L、电容C 和电阻R,分别用它们的复阻抗求解往往是比较简便的。
令Z 1=R+Ls,为电阻和电感的复数阻抗之和; Z 2=1/Cs 为电容的复数阻抗。
则:1111/1/1)()()(22122120++=++=++=+==s T s T RCs LCs Cs Ls R Cs Z Z Z s U s U s G i另外例课本2-10,2-11,2-12。
2-3-2传递函数的性质1)传递函数的定义,只是对线性系统而言,严格地说,还只是对定常系统而言。
2)传递函数通常是复变量s的有理分式,其分子、分母多项式各项系数均为实数,这些系数均由系统的物理参数所确定,且m n ≥。