小学数学行程问题总体讲解
小学数学中的行程问题公式及解析
小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)
第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)第十六讲行程问题(专项复习讲义)(知识梳理+专项练习)1、行程问题行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
2、解题关键及规律同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
一、选择题1.从家到学校,小明要走8分钟,小红要走12分钟,则小明与小红的速度比为()A.8:12 B.2:3 C.3:2 D.12:82.平平骑自行车从甲地到乙地,开始时0.2时骑了3千米,剩下的路又以每分钟0.3千米的速度骑了18分钟,平平从甲地到乙地骑自行车的平均速度是()千米/时。
A.8.4 B.12 C.14 D.16.83.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200 B.1200×2-200 C.(1200+200)×2 D.(1200-200)×24.小明由家去学校然后又按原路返回,去时每分钟行a米,回来时每分钟行b米,求小明来回的平均速度的正确算式是()。
A.(a+b)÷2 B.2÷(a+b)C.1÷(+)D.2÷(+)5.芳芳和媛媛各走一段路.芳芳走的路程比媛媛多,芳芳用的时间比媛媛多,芳芳和媛媛的速度比是( ).A.5:8 B.8:5 C.27:20 D.16:156.船在水中行驶的时候,水流增加对船的行驶时间()。
A.增加B.减小C.不增不减D.都有可能二、填空题7.甲、乙二人分别从,两地出发相向而行.如果二人同时出发,则12小时相遇;如果甲先出发2小时后,乙再出发,则3小时后二人共走完全程的.甲、乙二人的速度比是( ).8.从甲城到乙城,汽车要8小时,客车要10小时,则汽车的速度比客车快25%。
小学数学10种经典行程问题解法总结
小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
小学数学必考的四类行程问题,解题就按这个思路来!
小学数学必考的四类行程问题,解题就按这个思路来!行程问题是小学数学考试的四大题型之一(计算、数论、几何、行程)。
今天我们一起学习一下如何解决这一类问题!1【一般相遇追及问题】包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。
建议熟练应用标准解法,即s=v×t结合标准线段画图(基本功)解答。
由于只用到相遇追及的基本公式即可解决,在解题的时候,一旦出现比较多的情况变化时,结合自己画出的图分段去分析情况。
例题甲乙两人相距200米,甲每分钟走45米,乙每分钟行55米。
几分钟后两人相距500米?分析与解:1.反方向运动:相背:(500-200)÷(45+55)=300/100=3(分钟)相遇再相背:(500+200)÷(45+55)=700/100=7(分钟)2.同方向运动:追上再超过:(500+200)÷(55-45)=700/10=70(分钟)追不上:(500-200)÷(55-45)=300/10=30(分钟)展开剩余84%2【复杂相遇追及问题】(1)多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
例题有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?(2)多次相遇追及问题即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。
分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。
小学六年级数学行程问题
行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。
3、基本数量关系:速度x 时间=路程路程速度和x 时间(相遇时间)=路程和(相遇路程)路程和(相遇路程)速度差x 时间(追及时间)=路程差(追击路程)路程差(追击路程)二、学法提示二、学法提示1.火车过桥:火车过桥路程=桥长+车长车长过桥时间=路程÷车速路程÷车速过桥过程可以通过动手演示来帮助理解。
2.水流问题:水流问题: 顺水速度=静水速度+水流速度水流速度逆水速度=静水速度-水流速度水流速度顺水速度-逆水速度=2x 水流速度水流速度3.3.追及问题:追击路程÷速度差追及问题:追击路程÷速度差=追及时间追及时间追击距离÷追及时间=速度差速度差4.相遇问题:相遇问题: 相遇路程÷相遇时间=速度和速度和相遇路程÷速度和=相遇时间相遇时间三、解决行程问题的关键三、解决行程问题的关键画线段图,画线段图,标出已知和未知。
标出已知和未知。
标出已知和未知。
能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,找到解决问找到解决问题的突破口。
题的突破口。
四、练习题四、练习题(一)火车过桥(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。
求客车行驶的速度和车身的长度。
3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。
桥的长度。
4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米?千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
小学数学解题方法解题技巧之解行程问题的方法
解行程问题的方法第一章小学数学解题方法解题技巧之已知速度、时间、距离三个数量中的任何两个,求第三个数量的应用题,叫做行程问题。
解答行程问题的关键是,首先要确定运动的方向,然后根据速度、时间和路程的关系进行计算。
行程问题的基本数量关系是:速度×时间=路程路程÷速度=时间路程÷时间=速度行程问题常见的类型是:相遇问题,追及问题(即同向运动问题),相离问题(即相背运动问题)。
(一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
:小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。
一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。
两车行驶路程之和,就是两地距离。
(56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。
例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离4 80千米中,减去两车5小时共行的路程,所得就是两车的距离。
浅谈小学数学行程问题一题多解
浅谈小学数学行程问题一题多解一、引言小学数学中的行程问题是学生学习数学的一个重要环节。
行程问题是一种实际问题,它让学生在求解过程中培养了解决问题的能力和实际运用数学知识的能力。
有时候同一个行程问题可能有多种解法,这就给学生带来了困惑和挑战。
本文将浅谈小学数学行程问题一题多解的情况,并探讨多解答案的意义和对学生的启示。
二、行程问题的基本概念行程问题是数学学习的一个重要内容,它主要是指通过给出的行程图(地图)和相关信息,解决人或车辆从一个地点到另一个地点的行程方式、距离、时间等问题。
行程问题主要包括行程路线、行程时间、行程距离等内容。
学生通过解题,可以培养对空间观念、逻辑思维、实际问题的处理能力。
行程问题中的基本概念还包括起点、终点、途经的地点、行车速度等。
学生需要根据给出的条件,运用数学知识进行推理和求解。
以下举几个小学数学行程问题的例子,说明一题多解的情况:例1:小明家到学校的距离是5公里,他步行到学校需要40分钟,骑自行车需要20分钟。
问小明骑自行车的速度是每小时多少公里?解法2:也可以通过列方程式进行求解,设小明骑自行车的速度为X,根据公式:时间=距离/速度,可以得到公式:5/X=20/60,解得X=15(km/h)。
例2:甲、乙两地相隔120公里,乙出发比甲晚3小时,两地相遇时,甲行驶了4小时,乙行驶了7小时。
问两人的行车速度分别是多少?解法1:根据题意,可以列出两个方程式:120=4a+7b,120=3a+7(b-3),解得a=20,b=10,即甲的速度是20公里/小时,乙的速度是10公里/小时。
解法2:也可以通过画速度图进行求解,根据两地相隔120公里,甲比乙快10公里/小时,可以得出甲的速度是20公里/小时,乙的速度是10公里/小时。
例3:在相距600公里的两地之间,有两辆车分别以60公里/小时、80公里/小时的速度驶往对方。
从A地出发四小时后,两车相遇,那么两地相距多远?解法1:根据题意,可以列出方程式:4*60+4x=600,解得x=180,即两地相距180公里。
六年级数学行程问题四种类型专讲完整版
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
一元一次方程行程问题知识点
一元一次方程行程问题知识点一、知识概述《一元一次方程行程问题知识点》①基本定义:一元一次方程行程问题呢,简单说就是根据路程、速度、时间这三个家伙之间的关系列出一元一次方程来解决出行方面的数学题。
路程就是走了多远,速度就是走得有多快(像每小时走多少千米这样),时间就是走了多久。
②重要程度:在数学这门学科里,行程问题可重要了。
它是一元一次方程应用里的典型题目,既能考验我们对一元一次方程的掌握,又和生活里的出行特别贴近。
懂了这个,在很多现实场景里就能算出时间、速度或者路程啥的。
③前置知识:要学一元一次方程行程问题,得先把一元一次方程的解法搞得明明白白,像方程的移项、合并同类项这些基本操作得会。
而且对速度、路程、时间的基本概念要清楚,得知道在速度不变的情况下,路程和时间成正比这种关系。
④应用价值:生活里到处都是它的影子啊。
比如说开车出去玩,知道两地的距离和车速,就能算出路上需要多久。
或者跑步锻炼的时候,知道跑的距离和花的时间,就能算出自己跑步的速度。
这对计划出行、安排时间超有用的。
二、知识体系①知识图谱:在一元一次方程这个大板块里,行程问题是应用题的一部分。
它是联系方程理论和实际生活的重要桥梁。
②关联知识:和方程的解法、有理数的运算、数与式等知识点都有联系。
解行程问题的时候,方程相加或者相减,就用到有理数的运算;列出方程里的路程、速度或者时间表达式的时候,会用到数与式相关知识。
③重难点分析:- 掌握难度:说实话有点费脑子。
主要是要根据实际情况准确地把路程、速度、时间用代数式表示出来,这中间变化多。
像相向而行和同向而行的路程算法就不一样。
- 关键点:抓住路程、速度、时间之间的关系。
而且要分清楚是相遇问题、追及问题还是环形跑道之类的特别情况。
④考点分析:- 在考试里很重要。
一般分值占比挺大的。
- 考查方式有直接给条件列方程求解路程或者时间的,还有像给了一点提示后让先确定是相遇还是追及然后再列方程求解的那种弯弯绕绕的题目。
小学数学应用题行程问题公式
小学数学应用题行程问题公式小学数学中的行程问题是一个非常实际、具体的应用题类型,它涉及到许多实际生活中的场景,比如小明每天骑自行车上学的距离、小红每小时跳绳的次数等等。
通过解决这些问题,不仅可以提高学生的数学解决问题的能力,还能让学生对数学应用有更深入的理解。
在解决行程问题时,掌握一些基本公式是非常关键的。
1.距离=速度×时间在行程问题中,距离是一个核心概念,它是指两个地点之间的间隔,通常以米、千米等单位表示。
速度则表示在单位时间内所走的距离,常用的单位有:米/秒、千米/小时等。
时间是指行程所花费的时间,单位可以是小时、分钟等。
这个公式的关键是找到正确的速度和时间,并且确保单位的一致性。
例如,如果速度单位是千米/小时,时间单位是分钟,那么需要先将时间单位转换成小时,然后再代入公式中计算距离。
2.平均速度=总距离/总时间平均速度是指总行程所走过的总距离除以总行程所花费的总时间。
它可以帮助我们计算在整个行程过程中的平均速度,是一个比较人们在不同时间段内的速度差异的指标。
在解决行程问题时,有时需要考虑整个行程过程中不同时间段内的速度不同。
此时,可以先算出每段行程的速度和时间,然后累加得到总距离和总时间。
最后,将总距离除以总时间即可得到平均速度。
3.等速行驶的时间和距离当两个物体以相同的速度进行行驶时,他们的行驶时间和行驶距离之间存在一个简单的关系。
如果两个物体以相同的速度在同一时间内行驶,那么它们的行驶距离是相同的;如果它们以相同的速度在相同的距离内行驶,那么它们的行驶时间是相同的。
通过这个关系,可以解决一些等速行驶的问题。
例如,当两辆汽车以相同的速度同时出发,行驶一段距离后相遇,则可以通过设置一个相遇时间,再根据速度和时间的关系得出相遇时两辆汽车所行驶的距离。
上述公式既可以单独使用,也可以结合使用,以便更好地解决行程问题。
在解决行程问题时,首先要弄清题目给出了哪些信息,然后根据问题的要求选择合适的公式,代入数值计算得出答案。
小升初数学讲义之——行程问题
小升初——行程问题行程问题(一)行程问题是小学、初中的重难点,行程问题关系复杂,而多数小学生的分析能力还未能达到理想的水平。
体会相遇、追及问题的特点,并灵活运用列方程、比例等方法解行程问题,训练假设法、守恒等数学思维。
行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
1.一辆客车和一辆货车同时分别从A、B两城相对开出,客车每小时行9 5千米,货车每小时行8 5千米,相遇时客车比货车多行了3 0千米,求A、B两城相距多少千米?2.甲、乙二人在同一条公路上,他们相距100米,二人同时出发,朝各自的方向前进,甲的速度为每分钟100米,乙的速度为每分钟80米,问:经过多长时间两人相距200米?3.ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?4.小明去学校,去时速度为15千米/小时,返回时速度为10千米/小时,那么平均速度为多少?5.已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途经C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途经C地时甲车比乙车早到1个半小时,那么AB距离时多少?6.甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
小学六年级数学行程问题综合讲解
行程问题需要用到的基本关系:路程=速度时间速度=路程时间时间=路程速度题型一、相遇问题与追及问题相遇问题当中:相遇路程=速度和相遇时间追及问题当中:追及路程=速度差追及时间*********画路程图时必须注意每一段路程对应的问题是相遇问题还是追及问题**********【例题1】甲、乙两人从A地到B地,丙从B地到A地。
他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。
求乙的速度?考点:多次相遇问题.分析:本题可先据甲丙两人速度和及相遇时间求出总路程,再根据乙丙两人的相遇时间求出乙丙两人的速度和之后就能求出乙的速度了.解答:解:(8+10)×5÷(5+1)-10=18×5÷6-10,=15-10,=5(千米).答:乙每小时行5千米.点评:本题据相遇问题的基本关系式:速度和×相遇时间=路程,进行解答即可.【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?分析:两次相遇问题,其实两车一起走了3段两地距离,当然也用了3倍的一次相遇时间。
40×3-30=90km变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离西侧20米处,求东西两地相距多远?60×3-20=160km【例题3】快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时。
两车分别从两站同时开出,相向而行,在离中点18千米处相遇。
甲乙两站相距多少千米?分析:中点相遇问题,实际上是相遇问题和追及问题的综合。
第一步:相同的时间,快车比慢车多行18×2=36千米解:∵快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时快车与慢车的时间比是6 : 10∴相遇时,快车行了全程的:5/(5+3)=5/8全程是225÷5/8=360(千米)变式1、快车每小时行48千米,慢车每小时行42千米。
小学数学知识点:行程问题
小学数学知识点:行程问题公式:1. 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2.常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3.常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4.行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/24)水流速度=(顺水速度–逆水速度)/25.基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例题:例1:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
分析:本题关键在求得火车行驶120秒和80秒所对应的距离。
解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。
评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。
例2:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。
解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲的速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。
小学数学路程问题
小学数学路程问题1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4、行程问题的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
解题关系式:同时同地相背而行:路程=速度和×时间。
同时相向而行:路程=速度和×相遇时间同时同向而行(速度慢的在前,快的在后):追及时间=路程÷速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间练习:1.一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2.5小时相遇,两车站相距多少千米?2.两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇?3.甲、乙二人分别从相距110千米的两地相对而行。
5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?4.甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。
第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少?5.两辆摩托车分别从相距440千米的两地同时相向而行,因雪后路滑,5小时后才相遇。
甲车比原计划每小时少行15千米,乙车比原计划每小时少行7千米。
已知原计划甲车每小时的速度是乙车的1.2倍,求两车原计划每小时各行多少千米?6.甲.乙两车同时从A.B两地相向而行,第一次两车在距B地64公里处相遇,相遇后两车仍以原速度继续行驶,并在到达对方站后立即原路返回.途中两车在距A地48公里处相遇,两次相遇点相距多少公里?7.甲,乙两车同时从A,B两地出发相向而行,4小时后相遇,相遇后甲车继续行驶3小时到达B 地.乙车每小时行24千米,问A,B地相距多少千米?8..甲乙二人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇,若乙先出发2小时,则甲动身3小时后二人相遇,求甲乙二人速度.9:甲港和乙港相距662千米,上午9点一艘“寒山”号快艇从甲港开往乙港,中午12点另一艘“天远”号快艇从乙港开往甲港,到16点两艇相遇,“寒山”号每小时行54千米,“天远”号的速度比“寒山”号快多少千米?(用两种方法解)10: 甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。
小学数学思维方法: 行程问题初步
行程问题初步【知识要点】一、行程问题初步:1.路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。
平均速度=总路程÷总时间。
2.相遇问题数量关系:距离和=速度和×相遇所需时间3.追及问题数量关系:追及距离=速度差×追及所需时间二、比例类行程问题:主要讲解如何利用比例求解行程问题,而行程问题中的三个量:速度、时间、路程在某些时候存在比例关系.【典型例题】例1骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。
这就需要通过已知条件,求出时间和路程。
假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。
B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。
因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是20÷(15-10)=4(时)。
由此知,A,B是上午7点出发的,甲、乙两地的距离是15×4=60(千米)。
要想中午12点到,即想(12-7=)5时行60千米,速度应为60÷(12-7)=12(千米/时)。
例2 划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?解一:路程一定时,速度越快,所用时间越短。
在这两个方案中,速度不是固定的,因此不好直接比较。
在第二个方案中,因为两种速度划行的时间相同,所以以3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。
六年级数学下册行程问题
六年级数学下册行程问题行程问题(1)【知识要点】行程问题的三个基本量是:速度、时间、路程,它们之间的关系是:速度×时间=路程,路程÷速度=时间,路程÷时间=速度行程问题按所行方向的不同,可分为①相遇问题(相向而行)②相离问题(相背而行)③追及问题(同向而行),其基本数量关系是:①相遇问题:速度和×相遇时间=路程②相离问题:速度和×时间=相距路程③追及问题:速度差×时间=追及路程【基本练习】1、一辆客车和一辆小车同时从甲、乙两地相对开出,经过2.5小时相遇。
已知,甲乙两地相距多少千米?客车每小时行72千米,是小车速度的342、客、货两车同时从相距378千米的两地相对开出,客车每小时行72千米,货车每小时行63千米,经过几小时两车相遇?相遇时客车比货车多行多少千米?3、甲、乙两车同时从相距540千米的两地相对开出,经过3.6小时相遇。
已知甲车每小时行72,乙车每小时行多少千米?4、甲、乙两车同时从相距567千米的两地相对开出,经过3.5小时相遇。
已知甲、乙两车的速度比是5:4,甲、乙两车每小时各行多少千米?5、甲、乙两船同时从武汉出发开往上海,已知甲船每小时行52千米,乙船每小时行45千米,8小时后,两船相距多少千米?【例1】一辆客车和一辆货车同时从甲、乙两地相对开出,在距中点12千米处相遇。
已知客、货两车的速度比是6:5,甲、乙两地相距多少千米?分析:时间一定,路程和速度成正比例,客、货两车的速度比是6:5,所以相遇时两车所行的路程的比也是6:5,即甲车行了全程的611,乙车行了全程的511;又两车在距中点12千米处相遇,也就是相遇时甲车比乙车多行了12×2=24千米。
解答:12×2÷(611-511)=练习1:1、甲、乙两车同时从A 、B 两地相对开出,在距中点15千米处相遇。
已知甲、乙两车的速度比是7:8,A 、B两地相距多少千米?2、两辆汽车同时从A 地出发开往B 地,甲、乙两车的速度比是6:5,甲车达到B 地后立即返回,在距B 地12千米处与乙车相遇。
小五行程问题专项解析五份
小学数学应用题分类解题-行程应用题在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,规定第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度X时间速度=距离^时间时间=距离避度按运动方向,行程问题可以提成三类:1、相向运动问题(相遇问题)2、同向运动问题(追及问题)3、背向运动问题(相离问题)一、相向运动问题相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和财目遇时间相遇时间=两地距离避度和速度和=两地距离林相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,通过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇通过几小时?二、同向运动问题(追及问题)两个运动物体同向而行,一快一慢,慢在前快在后,通过一定期间快的追上慢的,称为追及。
解答追及问题的关键,是求出两个运动物体的速度之差。
基本公式有:追及距离=速度差巽及时间追及时间=追及距离遴度差速度差=追及距离涎及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?例3、一个人从甲村步行去乙村,每分钟行80米。
他出发以后25分钟,另一个人骑自行车追他,10分钟追上。
骑自行车的人每分钟行多少米?三、背向运动问题(相离问题)背向运动问题(相离问题),是指地点相同或不同,方向相反的一种行程问题。
小学数学小升初数学所有类型行程问题(相遇问题追及问题火车行船问题环形跑道)集齐了(图文结合)
行程问题基础篇
【练习2】
1,甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人 西镇,同时相向出发,丙遇到乙后3分钟再遇到甲。求两镇之间相距多少米?
2,有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行 1000米,乙车每分钟行800米,丙车每分钟行700米。丙车遇到甲车后20分钟又遇 到乙车。求东西两站的距离。
行程问题基础篇
【例题1】货车和客车同时从东西两地相向而行,货车每小 时行48千米,客车每小时行42千米,两车在距中点18千米处 相遇。东西两地相距多少千米?
【思路导航】 由条件“货车每小时行48千米,客车每小时行42千米”可知货、
客车的速度和是48+42=90千米。由于货车比客车速度快,当货车过 中点18千米时,客车距中点还有18千米,因此货车比客车多行 18×2=36千米。因为货车每小时比客车多行48-42=6千米,这样货 车多行36千米需要36÷6=6小时,即两车相遇的时间。所以,两地相 距90×6=540千米。
2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而 下用了18小时。已知这段航道的水流是每小时3千米,求甲、乙两个码头 间水路长多少千米?
3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水 中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只 轮船往返一次需要多少时间?
行程问题基础篇
【练习5】 1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而 上需要16小时。如果客船顺流而下需要12小时,那么客船在静水中的速 度是多少?
2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流 而上需要10小时。如果乙船逆流而上需要20小时,那么乙船在静水中的 速度是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟答:他走后一半路程用了42.5分钟。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。
顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。
甲、乙两地距离是12*1+3=15千米解法2,顺水每小时比逆水多行驶8千米,实际第二小时比第一小时多行驶6千米,顺水行驶时间=6/8=3/4小时,逆水行驶时间=2-3/4=5/4,顺水速度:逆水速度=5/4:3/4=5:3,顺水速度=8*5/(5-3)=20千米/小时,两地距离=20*3/4=15千米。
答:甲、乙两地距离之间的距离是15千米。
4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车线路骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车。
到达甲站时,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?分析:骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出。
骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5*8=40(分钟)。
答:他从乙站到甲站用了40分钟。
5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。
现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。
问:甲现在离起点多少米?分析:甲、乙速度相同,当乙游到甲现在的位置时,甲也又游过相同距离,两人各游了(98-20)/2=39(米),甲现在位置:39+20=59(米)答:甲现在离起点59米。
6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?分析:解法1:甲比乙1小时多走8千米,一共多走32*2=64千米,用了64/8=8小时,所以距离是8*(56+48)=832(千米)解法2:设东西两地距离的一半是X千米,则有:48*(X+32)=56*(X-32),解得X=416,距离是2*416=832(千米)解法3:甲乙速度比=56:48=7:6,相遇时,甲比乙多行=(7-6)/(7+6)=1/13,两地距离=2*32/(1/13)=832千米。
答:东西两地间的距离是832千米。
7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?分析:老师速度=4+1.2=5.2(千米),与李相遇时间是老师出发后(20.4-4*0.5)/(4+5.2)=2(小时),相遇地点距离学校4*(0.5+2)=10(千米),所以骑车人速度=10/(2+0.5-2)=20(千米)答:骑车人每小时行驶20千米。
8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?分析:解法1,快车5小时行过的距离是慢车12.5-5=7.5小时行的距离,慢车速度/快车速度=5/7.5=2/3。
两车行1个单程用5小时,如果不停,再次相遇需要5*2=10小时,如果两车都停0.5小时,则需要10.5小时再次相遇。
快车多停30分钟,这段路程快车与慢车一起走,需要30/(1+2/3)=18(分钟)所以10.5小时+18分钟=10小时48分钟解法2:回程慢车比快车多开半小时,这半小时慢车走了0.5/12.5=1/25全程,两车合起来少开1/25,节省时间=5*1/25=0.2小时,所以,从第一次相遇到第二次相遇需要=5*2+1-0.2=10.8小时。
答:两车从第一次相遇到第二次相遇需要10小时48分钟。
9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。
这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。
问:汽车速度是劳模步行速度的几倍?解:汽车走单程需要60/2=30分钟,实际走了40/2=20分钟的路程,说明相遇时间是2:20,2点20分相遇时,劳模走了60+20=80分钟,这段距离汽车要走30-20=10分钟,所以车速/劳模速度=80/10=8答:汽车速度是劳模步行速度的8倍。
10、已知甲的步行的速度是乙的1.4倍。
甲、乙两人分别由A,B两地同时出发。
如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?分析:两人相向而行,路程之和是AB,AB=速度和*0.5;同向而行,路程之差是AB,AB=速度差*追及时间。
速度和=1.4+1=2.4,速度差=1.4-1=0.4。
所以:追及时间=速度和/速度差*0.5=2.4/0.4*0.5=3(小时)答:甲追上乙需要3小时。
11、猎狗发现在离它10米的前方有一只奔跑着的兔子,马上紧追上去。
兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?分析:狗跑2步时间里兔跑3步,则狗跑6步时间里兔跑9步,兔走了狗5步的距离,距离缩小1步。
狗速=6*速度差,路程=10*6=60(米)答:狗追上兔时,共跑了60米。
12、张、李两人骑车同进从甲地出发,向同一方向行进。
张的速度比李的速度每小时快4千米,张比李早到20分钟通过途中乙地。
当李到达乙地时,张又前进了8千米。
那么甲、乙两地之间的距离是多少千米?分析:解法1,张速度每小时8/(20/60)=24(千米),李速度每小时24-4=20(千米),张到乙时超过李距离是20*(20/60)=20/3(千米)所以甲乙距离=24*(20/3/4)=40(千米)解法2:张比李每小时快4千米,现共多前进了8千米,即共骑了8/4=2小时,张从甲到乙用了2*60-20=100分钟,所以甲乙两地距离=(100/20)*8=40千米。
答:甲、乙两地之间的距离是40千米。
13、上午8时8分,小明骑自行车从家里出发;8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他;然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米。
问这时是几时几分?分析:爸爸第一次追上小明离家4千米,如果等8分钟,再追上时应该离家8千米,说明爸爸8分钟行8千米,爸爸一共行了8+8=16分钟,时间是8点8分+8分+16分=8点32分。
答:这时8点32分。
14、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。
当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
那么兔子睡觉期间,乌龟跑了多少米?分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米答:兔子睡觉期间乌龟跑了8020米。
15、一辆大轿车与一辆小轿车都从甲地驶往乙地。
大轿车的速度是小轿车速度的0.8倍。
已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟后,才继续驶往乙地;在小轿车出发后中途没有停,直接驶往乙地,最后小轿车却比大轿车早4分钟到达乙地。
又知大轿车是上午10时从甲地出发的,求小轿车追上大轿车的时间。
分析:解法1,大车如果中间不停车,要比小车多费17-5+4=16分钟,大车用的时间与小车用的时间之比是速度比的倒数,即1/0.8=5/4,所以大车行驶时间是16/(5-4)*5=80分钟,小车行驶时间是80-16=64分钟,走到中间分别用了40和32分钟。
大车10点出发,到中间点是10点40分,离开中点是10点45分,到达终点是11点25分。
小车10点17分出发,到中间点是10点49分,比大车晚4分;到终点是11点21分,比大车早4分。
所以小车追上大车的时间是在从中间点到终点之间的正中间,11点5分。
解法2:大轿车的速度是小轿车速度的0.8倍,大轿车的用时是小轿车用时的1/0.8=1.25倍,大轿车比小轿车多用时17-5+4=16分钟,大轿车行驶时间=16*(1.25/0.25)=80分钟,小轿车行驶时间=16/(0.25)=64分钟,小轿车比大轿车实际晚开17-5=12分钟,追上需要=12*0.8/(1-0.8)=48分钟,48+17=65分=1小时5分,所以,小轿车追上大轿车的时间是11时5分答:小轿车追上大轿车的时间是11点5分。