八年级数学下期中考试1

合集下载

八年级数学下期中考试试卷

八年级数学下期中考试试卷

一. 填空题:(每题2分,共30分)1.请写出命题“对顶角相等”的逆命题:____________________________.2. 小玲手里拿着长分别为30cm ,40cm 的两根木棒,现她让你帮她找出第三根木棒,使得三根木棒构成一个直角三角形,则你帮她找到第三根木棒长应为 _______cm.3.如图1-1所示,在长方形纸片ABCD 中,AB=12,BC=5,点E 在AB 上,将△DAE 沿DE 折叠,使点A落在对角线BD 上的点A ˊ处,则AE 的长为 ______________.4.如图1-2,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE=4cm,则点P 到边BC 的距离为 _____cm. 5.用不等式表示:(1)是非负数可以表示为: ;(2)x 的2倍减3的差不大于1可以表示为: .6.一次函数 与 的函数图形的交点坐标是________ ,当 _______时,7.不等式3x+4 4(x-1)的解集是__________________.8.不等式组⎪⎩⎪⎨⎧〉≥03-x -501-23-x )(,的解集是 .9.若关于x 的不等式的解集为x ,则m 的值为 . 10.在△ABC 中,∠C= ,AD 平分∠BAC ,交BC 于点D ,若DC=7,则D 到AB 的距离是 . 11.小芳准备去买苹果和梨,她带了15元钱,已知一斤苹果2元,一斤梨y 元,如果她买3斤苹果和4斤梨,那么应满足的不等关系是 . 12.不等式2x+9 3(x+2)的正整数解是 . 13.若不等式是一元一次不等式,则 .14.若|2a-6|>6-2a,则实数a 的取值范围是 .15.2x-1 5的最大整数解为______________.二.选择题:(每小题3分,共30分)1.点A 的坐标为(4 ,3 ),将点A 先向左2个单位长度,再向下平移2个单位长度得到点A ˊ那么点A ˊ的坐标是( )A.(3 ,1)B.(2 ,1)C.(4 ,3)D.(1 ,2) 2.若a 且 为实数,则下列 正确的是( ). A.ac B.ac bc C. D. 3.不等式的正整数解有( )个.A.1个B.2个C.3个D.4个4.将不等式组⎩⎨⎧≤+≥932x 01-x ,的解集在数轴上表示出来,应是 ( ).5.已知不等式a+ 与 的解集相同,则a 的值是( )。

八年级下数学期中测试卷(1)

八年级下数学期中测试卷(1)

八年级下数学期中测试卷(1)一.选择题(共8小题)1.(2020秋•和平区期末)已知△ABC的三边长分别为a,b,c,则下列条件中不能判定△ABC是直角三角形的是()A.a=1,b=1,c=B.a=2,b=3,c=4C.a=1,b=,c=2D.a=3,b=4,c=2.(2021春•西城区校级期中)下列方程中,一元二次方程是()A.x2﹣2x+1=0B.x﹣2y=0C.ax2+bx+c=0D.3.(2020春•朝阳区期末)若菱形的两条对角线的长分别为6和10,则菱形的面积为()A.60B.30C.24D.154.(2021春•曲阜市期末)下列曲线中,表示y是x的函数的是()A.B.C.D.5.(2019•德保县模拟)已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.(2019春•顺义区期末)方程(x﹣2)2=3(x﹣2)的解是()A.x=5B.x=2C.x=5或x=2D.x=1或x=2 7.(2021春•曲阜市期末)如图,四边形ABCD的对角线相交于点O,且互相平分.若添加下列条件,不能判定四边形ABCD为矩形的是()A.AC=BD B.∠DAB=90°C.AB=AD D.∠ADC+∠ABC=180°8.(2019•河东区一模)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC 上一动点,则DN+MN的最小值为()A.6B.8C.12D.10二.填空题(共8小题)9.(2014春•天津期末)二次根式有意义的条件是.10.(2009•大连)计算:()()=.11.(2019•黑龙江)如图,在平行四边形ABCD中,在不添加任何辅助线的情况下,请添加一个条件,使平行四边形ABCD是矩形.12.(2021春•西城区校级期中)方程(x﹣4)(x﹣5)=0的解为.13.(2021春•昌平区校级期中)点B(2,﹣3)关于x轴对称的点的坐标是.14.(2021春•昌平区校级期中)如图,为估计池塘两岸边A、B两点间的距离,在池塘的一侧选取点C,分别取AC、BC的中点D、E,测得DE=15m,则A、B两点间的距离是.15.(2019春•大兴区期末)一次函数y=ax+b的图象如图,则不等式ax+b>0的解集为.16.(2016•睢宁县一模)关于x的方程x2﹣mx+4=0有两个相等实根,则m=.三.解答题(共10小题)17.(2021春•海淀区校级期中)计算:(1)(3.14﹣π)0﹣|2﹣|﹣()﹣1;(2)﹣×+.18.(2021秋•芝罘区期中)如图,在△ABC中,CD⊥AB于点D,AC=20,CB=15,BD =9.求AD与△ABC的面积.19.(2021春•大兴区期中)已知:如图,在△ABC中,∠C=90°,若AC=6,AB=8,求BC的长.20.(2021春•大兴区期中)△ABC的三边长分别为a、b、c,且满足a:b:c=1::2,试判断△ABC的形状并说明理由.21.(2020春•丰台区期末)下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD是平行四边形.求作:菱形ABEF(点E在BC上,点F在AD上).作法:①以A为圆心,AB长为半径作弧,交AD于点F;②以B为圆心,AB长为半径作弧,交BC于点E;③连接EF.所以四边形ABEF为所求的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AF=AB,BE=AB,∴=.在▱ABCD中,AD∥BC,即AF∥BE.∴四边形ABEF为平行四边形.()(填推理的依据)∵AF=AB,∴四边形ABEF为菱形.()(填推理的依据)22.(2021•重庆模拟)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.23.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,F A.求证:四边形AECF是平行四边形.24.(2021春•辛集市期末)如图所示的正方形网格中,每个小正方形的边长为1,网格的中心标记为点O.按要求画四边形,使它的四个顶点均落在格点上,且点O为其对角线交点:(1)在图1中画一个两边长分别为6和4的矩形;(2)在图2中画一个平行四边形,使它有且只有一条对角线与(1)中矩形的对角线相等;(3)在图3中画一个正方形,使它的对角线与(1)中所画矩形的对角线相等.25.(2021春•东城区期中)直线l1:y=kx+b(k≠0)与直线l2:y=ax+1(a≠0)相交于点A(1,3).(1)求直线l2的表达式;(2)横、纵坐标都是整数的点叫做整点记直线l1,直线l2,和x轴围成的区域(不含边界)为W.①当k=﹣3时,直接写出区域W内的整点个数;②若区域W内的整点个数恰好为3个,求k的取值范围.26.(2021春•东城区期中)阅读下列材料:小明同学遇到了这样一个问题:如图1,M是边长为a的正方形ABCD内一定点,请在图中作出两条直线(要求其中一条直线必须过点M),将正方形ABCD的面积分割成面积相等的四个部分.小明是这样思考的:数学课上曾经做过一道类似的题目,如图2,O是边长为a的正方形ABCD的对角线的交点,将以点O为顶点的直角绕点O旋转,且两直角边分别与BA,CB相交,与正方形重叠部分(即阴影部分)的面积为一个确定的值.可以类比解决此问题.参考小明同学的想法,解答问题:(1)请你回答图2中重叠部分(即阴影部分)的面积为;(2)请你在图3中,解决原问题:(3)如图4,在四边形AOCD中,A(0,1),C(4,0),D(4,3),点P是AD的中点,在边OC上存在一点Q,使PQ所在直线将四边形AOCD的面积分成相等的两部分,请你画出该直线,并直接写出该直线的表达式.。

初中数学八年级下期中基础卷(1)

初中数学八年级下期中基础卷(1)

一、选择题1.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形 2.(0分)[ID :9908]下列四组线段中,可以构成直角三角形的是( ) A .1,2,3 B .2,3,4 C .1, 2,3D .2,3,5 3.(0分)[ID :9899]下列条件中,不能判断△ABC 为直角三角形的是 A .21a =,22b =,23c = B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:5 4.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .5.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .46.(0分)[ID :9874]顺次连结对角线相等的四边形各边中点所得的四边形是( ) A .正方形 B .菱形 C .矩形 D .梯形7.(0分)[ID :9873]若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣48.(0分)[ID :9870]函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1C .x ≥一1D .x ≥-1且x ≠1 9.(0分)[ID :9864]如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .510.(0分)[ID :9859]下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,1,3 C .4,5,6D .1,3,2 11.(0分)[ID :9855]下列各式正确的是( )A .()255-=- B .()20.50.5-=- C .()2255-= D .()20.50.5-=12.(0分)[ID :9923]如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .12513.(0分)[ID :9918]如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <214.(0分)[ID :9838]小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④15.(0分)[ID :9835]如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题16.(0分)[ID :10031]对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b ,如3※2=32532+=-.那么12※4=_____. 17.(0分)[ID :10025]如图,在矩形ABCD 中,2AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.18.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.19.(0分)[ID :10000]如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.20.(0分)[ID :9996]如果482x ⨯是一个整数,那么x 可取的最小正整数为________. 21.(0分)[ID :9979]菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.22.(0分)[ID :9953]已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______23.(0分)[ID :9936]如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.24.(0分)[ID :9934]如图,已知▱ABCO 的顶点A 、C 分别在直线x =2和x =7上,O 是坐标原点,则对角线OB 长的最小值为_____.25.(0分)[ID :10026](1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π- 三、解答题26.(0分)[ID :10121]已知a ,b ,c 在数轴上如图:化简:()22a a b c a b c -++-++.27.(0分)[ID:10075]计算:(311223-)233131÷+-+()()28.(0分)[ID:10071]为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问采用何种购买方案可以使得每月处理污水量的吨数为最多?并求出最多吨数.29.(0分)[ID:10069]如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=182km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?30.(0分)[ID:10045]某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.D4.A5.B6.B7.B8.D9.C10.D11.D12.B13.D14.C15.B二、填空题16.【解析】试题解析:根据题意可得:故答案为17.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A18.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少19.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大20.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确21.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD=3AC⊥BD∴AB5故答案为:5【点睛】本题主要22.13或;【解析】第三条边的长度为23.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx24.9【解析】【分析】过点B作BD⊥直线x=7交直线x=7于点D过点B作BE⊥x轴交x 轴于点E则OB=由于四边形OABC是平行四边形所以OA=BC又由平行四边形的性质可推得∠OAF=∠BCD则可证明△O25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可. 详解:A 选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B 选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C 选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D 选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A .∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B .∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C .∵12+)2=2,∴以1选项正确;D )2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C .【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.3.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形;B、设a=3x,b=4x,c=5x,可知222a b c,故能判定是直角三角形;+=C、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定4.A解析:A【解析】【分析】当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴2222++.AC BC=68∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB ∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.B解析:B【解析】【分析】根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,再根据四边形对角线相等即可判断.【详解】解:根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,而四边形对角线相等,则中点四边形的四条边均相等,即可为菱形,故选B.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.7.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .9.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B ∠=︒,60A ∴∠=︒,142AC AB ==. CD 是斜边上的高,30ACD ∠=︒122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.10.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A 、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误; B 、∵12+12=2≠(3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误; C 、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误; D 、∵12+(3)2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确. 故选D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.11.D解析:D【解析】【分析】【详解】解:因为()()222550.50.50.5-=-==,,所以A ,B ,C 选项均错, 故选D 12.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴==5,∵1122AB BE AE BH⋅=⋅,∴1134522BH ⨯⨯=⨯⨯,∴BH=125,则BF=245,∵FE=BE=EC,∴∠BFC=90°,∴CF==185.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.13.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.14.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.15.B解析:B【解析】【分析】由折叠的性质可得DN CN=,根据勾股定理可求DN的长,即可求BN的长.【详解】D是AB中点,6AB=,3AD BD∴==,根据折叠的性质得,DN CN=,9BN BC CN DN∴=-=-,在Rt DBN 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题16.【解析】试题解析:根据题意可得:故答案为 解析:12【解析】试题解析:根据题意可得:41124.124882====-※ 故答案为1.217.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD 即可【详解】解:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A解析:【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA =OB =AB =2,得出BD =2OB =4,由勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =OB =AB =2,∴BD =2OB =4,∴AD故答案为:【点睛】此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.18.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.19.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值..【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.20.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x 可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确 解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】 解:∵482x ⨯是一个整数, ∴34824246x x x ⨯=⨯=,∴46x 是一个整数,∴x 可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.21.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB 再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD 是菱形∴OAAC=4OBBD =3AC⊥BD∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA 、OB ,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD 是菱形,∴OA 12=AC =4,OB 12=BD =3,AC ⊥BD , ∴AB 22OA OB =+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.22.13或;【解析】第三条边的长度为解析:13【解析】第三条边的长度为23.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx解析:x≤0【解析】【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.24.9【解析】【分析】过点B作BD⊥直线x=7交直线x=7于点D过点B作BE⊥x轴交x轴于点E则OB=由于四边形OABC是平行四边形所以OA=BC又由平行四边形的性质可推得∠OAF=∠BCD则可证明△O解析:9【解析】【分析】过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E.则OB.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE 最小时,OB取得最小值,即可得出答案.【详解】解:过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E,直线x=2与OC交于点M,与x轴交于点F,直线x=7与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=2与直线x=7均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAF≌△BCD(ASA).∴BD=OF=2,∴OE=7+2=9,∴OB =22OE BE+.∵OE的长不变,∴当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=9.故答案为:9.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为解析:(1)4, 0.8,3,23;(22a a;(3)3.15﹣π.【解析】【分析】(1)依据被开方数即可计算得到结果;(22a a;(3)原式利用得出规律计算即可得到结果.【详解】解:(1)22222244,0.80.8,(3)3,33⎛⎫==-=-= ⎪⎝⎭; 故答案为:4,0.8,3,23; (2)2a 不一定等于a ,规律:2a =|a|;(3)2( 3.15)π-=|π﹣3.15|=3.15﹣π.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.三、解答题26.a -【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案.【详解】解:如图所示:∴a <0,a+b <0,c-a >0,b+c <0,()22a a b c a b c +-+ =-+++---a a b c a b c =a -;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键. 27.243【解析】【分析】根据二次根式的混合运算法则计算即可.【详解】原式=31123323÷÷+32-1=13313-+-=243.【点睛】本题考查了二次根式的混合运算,掌握各运算法则和平方差公式是关键.28.(1)m=18;(2)两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨【解析】【分析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出关于m的分式方程,求出m的值即可;(2)设购买A型设备x台,则B型设备(10-x)台,根据题意列出关于x的一元一次不等.式,求出x的取值范围,再设每月处理污水量为W吨,则W=2200x+1800(10-x)=400x+18000,根据一次函数的性质即可求出最大值.【详解】(1)由题意得:9753 m m=-,解得m=18,经检验m=18是原方程的根,故m的值为18;(2)设购买A型设备x台,B型设备(10-x)台,由题意得:18x+15(10-x)≤165,解得x≤5,设每月处理污水量为W吨,由题意得:W=2200x+1800(10-x)=400x+18000,∵400>0,∴W随着x的增大而增大,∴当x=5时,W最大值为400×5+18000=20000,即两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨.【点睛】本题考查了一次函数与不等式的综合应用,属于方案比较问题,理解题意是解题关键.29.此时B处距离D处26km远.【解析】【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【详解】在Rt △AOC 中,∵OA =OC ,AC =km ,∴OA =OC =18(km),∵AB =0.2×40=8(km),CD =0.2×30=6(km), ∴OB =10(km),OD =24(km),在Rt △OBD 中,BD26(km).答:此时B 处距离D 处26km 远.【点睛】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.30.(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。

广东省韶关市乐昌市第一中学2023-2024学年八年级下学期期中数学试题

广东省韶关市乐昌市第一中学2023-2024学年八年级下学期期中数学试题

广东省韶关市乐昌市第一中学2023-2024学年八年级下学期期中数学试题一、单选题1.下列二次根式中,是最简二次根式的是( )A B C D 2.下列计算正确的是( )A .3BCD .3.下列各组数中,是勾股数的一组是( )A .0.3,0.4,0.5BC .2223,4,5D .9,40,41 4.下列说法正确的是( )A .菱形的对角线相等B .矩形的对角线相等且互相平分C .平行四边形是轴对称图形D .对角线互相垂直且相等的四边形是正方形 5.已知平行四边形ABCD 中,5B A ∠=∠,则C ∠=( )A .25︒B .30︒C .120︒D .150︒6.如图,△ABC 中,∠ACB =90°,AC =4,BC =3,将△ADE 沿DE 翻折,使点A 与点B 重合,则AE 的长为( )A .78 B .3 C .254 D .2587.在四边形ABCD 中AB 、CD 相交于点O ,下列说法错误的是( )A .AB CD ∥,AD BC =,则四边形ABCD 是平行四边形B .AO CO =,BO =DO 且AC BD ⊥,则四边形ABCD 是菱形C .AO OB OC OD ===,则四边形ABCD 是矩形D.A B C D∠=∠=∠=∠且AB BC=,则四边形ABCD是正方形8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形(如图1)拼成的一个大正方形(如图2).设直角三角形较长直角边长为a,较短直角边长为b.若8ab=,大正方形的面积为25,则图2中EF的长为()A.3 B.4 C.D.9.如图,在菱形ABCD中,AC=8,菱形ABCD的面积为24,则其周长为()A.20 B.24 C.28 D.4010.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则AEEB等于()AB.2 C.1.5 D二、填空题1112.如图,已知长方形的一边在数轴上,宽为1,BA BC=,则数轴上点A所表示的数为.13.如图,在Rt ABC ∆中,90ABC ∠=︒,D 、E 、F 分别为AB 、BC 、CA 的中点,若5BF =,则DE =.14.如图,所有涂色四边形都是正方形,所有三角形都是直角三角形.若正方形A ,B ,C 的面积分别为3,9,6,则正方形D 的面积为.15.如图,菱形ABCD 的周长为8,120BAD ∠=︒,点E 是AB 的中点,点P 是对角线BD 上的一个动点,则APE V 周长的最小值是.16.如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交ED 于点P ,若1AE AP ==,PB ①APD AEB ≌△△;②点B 到直线AE 的距离③EB ED ⊥;④4ABCD S =正方形三、解答题17.计算下列各小题:(1))11-.18.如图,在矩形ABCD中,O为BD的中点,过点O作EF BD⊥分别交BC,AD于点E,F.求证:四边形BEDF是菱形.19.如图,在四边形ABCD中,AD BC∥,E为BD上一点,且BE BC=,AB EF=,ABD BFE∠=∠,求证:四边形ABCD为平行四边形.20.如图,学习了勾股定理后,数学活动兴趣小组的小娟和小燕对离教室不远的一个直角三角形花台斜边上的高进行了探究:两人在直角边AB上距直角顶点10B米远的点D处同时开始测量,点C为终点.小娟沿D B C→→的路径测得所经过的路程是15米,小燕沿D A C→→的路径测得所经过的路程也是15米,这时小娟说我能求出这个直角三角形的花台斜边上的高了,小燕说我也知道怎么求出这个直角三角形的花台斜边上的高了.亲爱的同学们你能求出这个直角三角形的花台斜边上的高吗?若能,请你求出来:若不能,请说明理由?21.老师在数学课上提出这样一个问题:已知21(0)x x x +=-≠,求221x x +的值. 小明通过观察、分析、思考,形成了如下思路:先将等式两边都除以x ,得到1x x +的值,再利用完全平方公式求出221x x +. 参考小明的思路,解决下列问题:(1)已知210(0)x x x --=≠,求221x x +的值;(2)已知213(0)x x x +=≠22.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF AB ⊥,OG ∥EF .(1)求证:四边形OEFG 是矩形;(2)若10AD =,4EF =,求BG 的长.23.已知正方形ABCD 的边长为8,点E 在边AD 上,点F 在边DC 的延长线上,且AE CF =.(1)如图1,分别连接BE BF EF 、、,则BEF △的形状是________;(2)如图2,连接EF交对角线AC于点M,若2AE=,求DM的长;、上,且GH=连接EF交GH于点O,当EF与GH (3)如图3,若点G、H分别在AB CD的夹角为45︒时,求AE的长.。

人教版八年级下册数学期中试卷1

人教版八年级下册数学期中试卷1

人教版八年级下册数学期中试卷一.选择题(共8小题)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.已知x<y,则下列不等式一定成立的是( )A.﹣x<﹣y B.3x<4y C.6﹣x<6﹣y D.x﹣2<y﹣1 3.如图,AD是等腰直角三角形ABC的顶角平分线,AD=4,则CD等于( )A.8B.4C.3D.24.如图,在△ABC中,∠ACB=90°,AD平分∠BAC,BC=10cm,点D到AB的距离为4cm,则DB=( )A.6cm B.8cm C.5cm D.4cm5.不等式<x+1的解集在数轴上表示正确的是( )A.B.C.D.6.若点A(a+b,1)与点B(﹣5,a﹣b)关于原点对称,则点P(a,b)的坐标是( )A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,2)7.如图,在△AOB中,AO=1,BO=AB=.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为( )A.1B.C.D.8.如图,已知△ABC中,AB=AC,点D,E是射线AB上的两个动点(点D在点E的右侧),且CE=DE,连接CD,若∠ACE=x°,∠BCD=y°,则y关于x的函数关系式是( )A.y=90﹣x(0<x<180°)B.y=x(0<x<180°)C.y=90﹣x(0<x<180°)D.y=x(0<x<180°)二.填空题(共6小题)9.点P(﹣2,﹣3)向左平移1个单位,则所得到的点的坐标为 .10.在平面直角坐标系中,一次函数y=kx和y=﹣x+b的图象如图所示,则不等式kx>﹣x+b的解集为 .11.△ABC中,∠C=90°,∠A=30°,BC=0.5cm,则AB的长是 cm.12.关于x的不等式组恰好有2个整数解,则实数a的取值范围是 .13.现有一批学生住若干间宿舍,若每间住4人还余19人,若每间住6人将有一间宿舍不满不空,则学生人数最多有 人.14.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果DE∥AB,那么n的值是.三.解答题(共13小题)15.解不等式:﹣1>0.16.解不等式组:.17.如图,BE是△ABC的角平分线,在AB上取点D,使DB=DE.(1)求证:DE∥BC;(2)若∠A=65°,∠AED=45°,求∠EBC的度数.18.如图,在正方形网格中,三角形ABC的三个顶点和点D都在格点上(正方形网格的交点称为格点),点A,B,C的坐标分别为(﹣2,4),(﹣4,0),(0,1),平移三角形ABC 使点A平移到点D,点E,F分别是B,C的对应点.(1)请画出平移后的三角形DEF,并分别写出点E,F的坐标;(2)三角形DEF内部有一点P(a,a﹣4)和三角形ABC内部的点Q是对应点,请直接写出点Q的坐标.(用含a的式子表示)19.如图在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠B=50°,求∠EDF的度数.20.图1,图2都是由边长为1的小正方形构成的网格,△ABC的三个顶点都在格点上,请在该4×4的网格中,分别按下列要求画一个与△ABC有公共边的三角形:(1)使得所画出的三角形和△ABC组成一个轴对称图形.(2)使得所画出的三角形和△ABC组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.已知关于x,y的方程组的解都为正数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式(2a+1)x>2a+1的解集为x<1.22.如图,直线y1=﹣x+1与直线y2=2x+6分别与x轴交于点A,B,两直线交于点P.(1)求点P的坐标及△ABP的面积;(2)利用图象直接写出当x取何值时,y1<y2.23.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连接OB,OC.若△ADE的周长为12cm,△OBC的周长为32cm.(1)求线段BC的长;(2)连接OA,求线段OA的长;(3)若∠BAC=n°(n>90),直接写出∠DAE的度数 °.24.已知方程组的解为满足a为非正数,b为负数.(1)求m的取值范围;(2)化简:|2m﹣6|+|2m+4|;(3)在m的取值范围内,当m为何整数时,关于x不等式2mx+x<2m+1的解集为x>1.25.2020年6月1日上午,国务院总理李克强在山东烟台考察时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.波波准备购进A、B两种类型的便携式风扇到华润万家门口出售.已知2台A型风扇和5台B 型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)波波准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,波波准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,波波共有几种进货方案?哪种进货方案的费用最低?最低费用为多少元?26.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC绕点C旋转.(1)当△DEC绕点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;②当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.27.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数 ;②线段OD的长 ;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.参考答案与试题解析一.选择题(共8小题)1.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不合题意;B.既是轴对称图形,也是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:B.2.【分析】根据x<y,应用不等式的基本性质,逐项判断即可.【解答】解:A.∵x<y,∴﹣x>﹣y,故本选项不合题意;B.不妨设x=﹣1.2,y=﹣1时,则3x>4y,故本选项不合题意;C.∵x<y,∴﹣x>﹣y,∴6﹣x>6﹣y,故本选项不合题意;D.∵x<y,∴x﹣1<y﹣1,∴x﹣2<y﹣1,故本选项符合题意;故选:D.3.【分析】根据等腰三角形顶角平分线、底边上的中线、底边上的高三线合一的性质及直角三角形斜边上的中线等于斜边的一半的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,∴BD=CD,∵∠BAC=90°,∴AD=BC=CD,∵AD=4,∴CD=4.4.【分析】过点D作DE⊥AB于E,根据角平分线的性质得到DC=DE,结合图形计算,得到答案.【解答】解:过点D作DE⊥AB于E,由题意得,DE=4cm,∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DC=DE=4(cm),∴BD=BC﹣DC=6(cm),故选:A.5.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.6.【分析】直接利用关于原点对称点的性质得出关于a,b的方程组,进而得出答案.【解答】解:∵点A(a+b,1)与点B(﹣5,a﹣b)关于原点对称,∴,解得:,故点P(a,b)的坐标是(2,3).7.【分析】由旋转性质可判定△AOA'为等腰直角三角形,再由勾股定理可求得AA'的长.【解答】解:由旋转性质可知,OA=OA'=1,∠AOA'=90°,则△AOA'为等腰直角三角形,∴AA'===.故选:B.8.【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x°+∠BCE和∠ADC=∠DCE=y°+∠BCE,由三角形外角的性质得出∠ABC=∠ADC+∠BCD,即x°+∠BCE=y°+∠BCE+y°,即x=2y,可得y关于x的函数关系式.【解答】解:在△ABC中,AB=AC,∴∠ACB=∠ABC=x°+∠BCE,∵CE=DE,∴∠ADC=∠DCE=y°+∠BCE,∵∠ABC=∠ADC+∠BCD,即x°+∠BCE=y°+∠BCE+y°,即x=2y,∴y关于x的函数关系式为y=x(0<x<180°).故选:B.二.填空题(共6小题)9.【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位所得点的横坐标是﹣2﹣1=﹣3,纵坐标不变,即新点的坐标为(﹣3,﹣3).故答案为(﹣3,﹣3).10.【分析】结合图象,写出直线y=kx在直线y=﹣x+b上方所对应的自变量的范围即可.【解答】解:如图所示:∵一次函数y=kx和y=﹣x+b的图象交点为(1,2),∴关于x的一元一次不等式kx>﹣x+b的解集是:x>1.故答案为:x>1.11.【分析】利用直角三角形30°角所对的直角边等于斜边的一半直接得出AB=2BC=1cm.【解答】解:在△ABC中,∠C=90°,∠A=30°,BC=0.5cm,∴AB=2BC=1cm.故答案为1.12.【分析】先解不等式组得出1.5<x<2a+3,根据不等式组恰有2个整数解得出3<2a+3≤4,解之即可得出答案.【解答】解:解不等式2x﹣3>0,得:x>1.5,解不等式x﹣2a<3,得:x<2a+3,∵不等式组恰好有2个整数解,∴3<2a+3≤4,解得:0<a≤0.5,故答案为:0<a≤0.5.13.【分析】设有x间宿舍,则有学生(4x+19)人,理解“有一间宿舍不满不空”,最后一间房的人数大于0小于6,根据题意列出方程即可求解.【解答】解:方法1:设有x间宿舍,∵最后一间不空也不满,∴最后一间房的人数大于0小于6,∴4x+19=6x﹣1或4x+19=6x﹣2或4x+19=6x﹣3或4x+19=6x﹣4或4x+19=6x﹣5,解得x=10,11,12,当x=10时,4×10+19=59;当x=11时,4×11+19=63;当x=12时,4×12+19=67;故学生人数最多有67人.方法2:设有x间宿舍,依题意有1≤6x﹣(4x+19)≤5,解得10≤x≤12,则当x=12时,4×12+19=67(人).故学生人数最多有67人.故答案为:67.14.【分析】根据旋转方向和线段位置画出图形可得答案.【解答】解:如图:∵顺时针旋转n°后,DE∥AB,∴D'E'∥AB,延长AC、E'D'交于点G,∴∠CGD'=∠CAB=45°,∵∠CD'E'=60°,∴∠GCD'=15°,∵∠GCD'+∠D'CE'+∠ACE'=180°,∠D'CE'=90°,∴∠ACE'=75°,∴n的值为75.故答案为:75°.三.解答题(共13小题)15.【分析】先去分母,然后移项及合并同类项即可解答本题.【解答】解:﹣1>0,去分母,得x﹣1﹣3>0,移项及合并同类项,得x>4.16.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x≥﹣2,解不等式②得,x<1,所以,不等式组的解集是﹣2≤x<1.17.【分析】(1)根据角平分线的定义可得∠DBE=∠EBC,从而求出∠DEB=∠EBC,再利用内错角相等,两直线平行证明即可;(2)由(1)中DE∥BC可得到∠C=∠AED=45°,再根据三角形的内角和等于180°求出∠ABC,最后用角平分线求出∠DBE=∠EBC,即可得解.【解答】解:(1)∵BE是△ABC的角平分线,∴∠DBE=∠EBC,∵DB=DE,∴∠DEB=∠DBE,∴∠DEB=∠EBC,∴DE∥BC;(2)∵DE∥BC,∴∠C=∠AED=45°,在△ABC中,∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣65°﹣45°=70°.∵BE是△ABC的角平分线,∴∠DBE=∠EBC=.18.【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)根据三角形DEF内部有一点P(a,a﹣4)和三角形ABC内部的点Q是对应点,即可写出点Q的坐标.【解答】解:(1)如图,三角形DEF即为所求,点E(2,﹣2),F(6,﹣1);(2)由(1)可知:三角形ABC右移6个单位,下移2个单位得到三角形DEF,因为三角形DEF内部有一点P(a,a﹣4)和三角形ABC内部的点Q是对应点,所以点Q的坐标为(a﹣6,a﹣2).19.【分析】(1)根据DE⊥AB,DF⊥AC可得∠BED=∠CFD=90°,由于∠B=∠C,D 是BC的中点,根据全等三角形的性质即可得出结论.(2)根据直角三角形的性质求出∠B=50°,根据等腰三角形的性质即可求解.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵D是BC的中点,∴BD=CD,在△BED与△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF;(2)解:∵∠B=50°,∴∠C=∠B=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,∴∠EDF=360°﹣90°﹣90°﹣80°=100°.20.【分析】(1)直接利用轴对称图形的性质分析得出答案;(2)直接利用中心对称图形的性质分析得出答案.【解答】解:(1)如图所示:△ADC即为所求(答案不唯一);(2)如图所示:△BEC即为所求(答案不唯一).21.【分析】(1)利用加减消元法解关于x、y的二元一次方程,用a表示出x、y,再根据方程组的解都是正数列出不等式组,然后解不等式组即可;(2)根据不等式的性质3可得2a+1<0,再解不等式可得a的取值范围,然后再结合(1)中a的取值范围可得答案.【解答】解:(1),①+②得,2x=8a+10,解得x=4a+5,①﹣②得,2y=﹣2a+8,解得y=﹣a+4,∵x、y都是正数,∴,解得,﹣<a<4.(2)∵不等式(2a+1)x>2a+1的解为:x<1.∴2a+1<0,解得a<﹣,∵﹣<a<4;∴﹣<a<﹣,∴a=﹣1.22.【分析】(1)根据直线y1=﹣x+1与直线y2=2x+6分别与x轴交于点A,B,两直线交于点P,可以求得点A、B、P的坐标,然后即可计算出△ABP的面积;(2)根据图象,可以得到当x取何值时,y1<y2.【解答】解:(1),解得,即点P的坐标为(﹣2,2),当y1=﹣x+1=0时,得x=2,当y2=2x+6=0时,得x=﹣3,即点A的坐标为(2,0),点B的坐标为(﹣3,0),∴AB=2﹣(﹣3)=2+3=5,∴△ABP的面积是:=5,由上可得,点P的坐标为(﹣2,2),△ABP的面积是5;(2)由图象可得,当x>﹣2时,y1<y2.23.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【解答】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=12cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=32cm,∴OA=OB=OC=10cm;(3)∵∠BAC=n°,∴∠ABC+∠ACB=(180﹣n)°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=n°﹣(180°﹣n°)=2n°﹣180°.故答案为:(2n﹣180).24.【分析】(1)首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围;(2)根据(1)化简即可求解;(3)根据不等式的性质得到2m+1<0,再根据整数的性质求得m的值.【解答】解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3.故m的取值范围是﹣2<m≤3;(2)|2m﹣6|+|2m+4|=6﹣2m+2m+4=10;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∵m为整数,∴m=﹣1.25.【分析】(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,根据“2台A 型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,根据“购进A型风扇不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元”,即可得出关于m 的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案.【解答】解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,依题意,得:,解得:.答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,依题意,得:,解得:71≤m≤75,又∵m为正整数,∴m可以取72、73、74、75,∴波波共有4种进货方案,方案1:购进A型风扇72台,B型风扇28台;方案2:购进A型风扇73台,B型风扇27台;方案3:购进A型风扇74台,B型风扇26台;方案4:购进A型风扇75台,B型风扇25台.∵B型风扇进货的单价大于A型风扇进货的单价,∴方案4:购进A型风扇75台,B型风扇25台的费用最低,最低费用为75×10+25×16=1150元.答:波波共有4种进货方案,方案4:购进A型风扇75台,B型风扇25台的费用最低,最低费用为1150元.26.【分析】(1)①证明△ADC是等边三角形即可.②如图2中,作CH⊥AD于H.想办法证明∠ACD=2∠B即可解决问题.(2)小扬同学猜想是正确的.过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,想办法证明△CBN≌△CEM(AAS)即可解决问题.【解答】解:(1)①∵∠B=30°,∠ACB=90°,∴∠CAD=90°﹣30°=60°,∵CA=CD,∴△ACD是等边三角形,∴∠ACD=60°,∴旋转角为60°,故答案为60°.②如图2中,作CH⊥AD于H.∵CA=CD,CH⊥AD,∴∠ACH=∠DCH,∵∠ACH+∠CAB=90°,∠CAB+∠B=90°,∴∠ACH=∠B,∴∠ACD=2∠ACH=2∠B=2α,∴旋转角为2α.故答案为2α.(2)小扬同学猜想是正确的,证明如下:过B作BN⊥CD于N,过E作EM⊥AC于M,如图3,∵∠ACB=∠DCE=90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∵BN⊥CD于N,EM⊥AC于M,∴∠BNC=∠EMC=90°,∵△ACB≌△DCE,∴BC=EC,在△CBN和△CEM中,∠BNC=∠EMC,∠1=∠3,BC=EC,∴△CBN≌△CEM(AAS),∴BN=EM,∵S△BDC=•CD•BN,S△ACE=•AC•EM,∵CD=AC,∴S△BDC=S△ACE.27.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD =OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.21。

沪科版八年级下册数学期中试卷1

沪科版八年级下册数学期中试卷1

沪科版八年级下册数学期中试卷一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(3分)下列方程中是一元二次方程的是( )A.y=3x2﹣1B.(x+2)(x+3)=x2﹣1C.x2=0D.x2﹣=32.(3分)下列二次根式中,是最简二次根式的是( )A.B.C.D.3.(3分)下列条件中,不能判定△ABC为直角三角形的是( )A.a:b:c=5:12:13B.∠A:∠B:∠C=2:3:5C.a=9k,b=40k,c=41k(k>0)D.a=32,b=42,c=524.(3分)下列二次根式中,与是同类二次根式的是( )A.B.C.D.5.(3分)某手机厂商一月份生产手机20万台,计划二、三月份共生产手机45万台,设二、三月平均每月增长率为x,根据题意列出方程为( )A.20(1+x)2=45B.20(1+x)+20(1+x)2=45C.20(1+2x)=45D.20+20(1+x)+20(1+x)2=456.(3分)如图,数轴上A点表示的数为﹣2,B点表示的数是1.过点B作BC⊥AB,且BC=2,以点A为圆心,AC的长为半径作弧,弧与数轴的交点D表示的数为( )A.B.+2C.﹣2D.﹣+27.(3分)已知,则(x+y)2000(x﹣y)2001的值为( )A.B.C.﹣1D.18.(3分)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,若CD=6,AD=10,则BD的长为( )A.8B.12C.6D.149.(3分)关于x的方程a2x2+(2a﹣1)x+1=0,下列说法中正确的是( )A.当a=时,方程的两根互为相反数B.当a=0时,方程的根是x=﹣1C.若方程有实数根,则a≠0且a≤D.若方程有实数根,则a≤10.(3分)如图,在等腰Rt△ABC中,AB=BC=4,点D在边BC上且CD=1,点E,F 分别为边AB,AC上的动点,连接DE,EF,DF得到△DEF,则△DEF周长的最小值为( )A.5B.2C.3D.+2二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)化简:= .12.(3分)若式子在实数范围内有意义,则x的取值范围是 .13.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是 尺.14.(3分)如图,将边长为12的正方形纸片,沿两边各剪去一个一边长为x的长方形,剩余的部分面积为64,则根据题意可列出方程为 .(方程化为一般式)15.(3分)一个直角三角形的两边长分别为6,8.则斜边上的高为 .16.(3分)如图,已知等腰△ABC,AB=AC.过点A,C分别作AB,AC的垂线交于点D,AD与BC相交于点E.若BE=4,AD=6,则AB的长为 .三、(本大题共7小题,满分52分)17.(5分)计算:(3﹣)2++×.18.(6分)解方程:x2﹣8x=4.19.(7分)已知关于x的方程x2+2x+m﹣2=0.(1)当该方程的一个根为0时,求m的值及方程的另一根;(2)若该方程有两个不相等的实数根,求符合条件的正整数m的值.20.(8分)如图,四边形ABCD中,AB=BC=2,∠B=60°,AD=2,CD=4.(1)求∠BCD的度数.(2)求四边形ABCD的面积.21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图1中,画一个正方形,使它的面积为10;(2)在图2中,西一个三角形ABC,使它的三边长分别为AB=,BC=2,AC=5;(3)请写出图2中所画△ABC的面积为 .(直接写出结果)22.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?23.(10分)如图,在Rt△ABC中,∠ABC=90°,分别以边AB,AC为直角边向外作等腰直角三角形ABD和等腰直角三角形ACE,连接CD,BE,DE,CD交BE于点F.(1)线段CD与线段BE有怎样的数量关系和位置关系,请给出你的证明;(2)若AB=3,AC=5,求DE的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.【分析】根据一元二次方程的定义逐个判断即可.【解答】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.整理后为5x+7=0,是一元一次方程,不是一元二次方程,故本选项不符合题意;C.是一元二次方程,故本选项符合题意;D.是分式方程,不是整式方程,不是一元二次方程,故本选项不符合题意;故选:C.2.【分析】直接利用二次根式的性质结合最简二次根式化简得出答案.【解答】解:A、=,不是最简二次根式,不合题意;B、是最简二次根式,符合题意;C、=2,不是最简二次根式,不合题意;D、=3,不是最简二次根式,不合题意;故选:B.3.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、因为a:b:c=5:12:13,设a=5x,b=12x,c=13x,(5x)2+(12x)2=(13x)2,故△ABC是直角三角形;B、∠A:∠B:∠C=2:3:5,且∠A+∠B+∠C=180°,所以∠C=180°×=90°,故△ABC是直角三角形;C、因为(9k)2=(41k)2﹣(40k)2,故△ABC是直角三角形;D、因为(32)2≠(52)2﹣(42)2,故△ABC不是直角三角形.故选:D.4.【分析】各式化为最简二次根式,利用同类二次根式定义判断即可.【解答】解:A、原式=,符合题意;B、原式=2,不符合题意;C、原式=3,不符合题意;D、原式不能化简,不符合题意.故选:A.5.【分析】考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产45万台”,即可列出方程.【解答】解:设二、三月平均每月增长率为x,根据题意列出方程为20(1+x)+20(1+x)2=45,故选:B.6.【分析】首先在直角三角形中,利用勾股定理可以求出线段CA的长度,然后根据AC=AD即可求出AD的长度,接着可以求出数轴上点D所表示的数.【解答】解:∵CA==,∴AC=AD=,∴D到原点的距离是﹣2.∴点D所表示的数是﹣2.故选:C.7.【分析】直接利用二次根式有意义的条件得出x,y的值,进而利用积的乘方运算法则计算得出答案.【解答】解:∵,∴x=2,y=﹣,则(x+y)2000(x﹣y)2001=(2﹣)2000×(2+)2001=[(2+)×(2﹣)]2000×(2+)=(4﹣3)2000×(2+)=1×(2+)=2+.故选:B.8.【分析】如图,过点D作DE⊥AB于点E,根据角平分线的定义得到DE=DC=6,根据勾股定理得到AE===8,由全等三角形的性质得到BC=BE,设BC=BE=x,根据勾股定理即可得到结论.【解答】解:如图,过点D作DE⊥AB于点E,∵BD平分∠ABC,∴∠CBD=∠EBD,又∵DE⊥AB,DC⊥BC,∴DE=DC=6,∵AD=10,∴AE===8,在Rt△CBD与Rt△EBD中,,∴Rt△CBD≌Rt△EBD(HL),∴BC=BE,设BC=BE=x,∴AB=8+x,∵AC2+BC2=AB2,∴162+x2=(8+x)2,∴x=12,∴BC=12,∴BD===6,故选:C.9.【分析】根据根与系数的关系及根的判别式可得出答案.【解答】解:当a=时,方程a2x2+(2a﹣1)x+1=0没有实数根,故A选项不符合题意,当a=0时,方程的根是x=1,故B选项不符合题意,若方程有实数根,则a≤,故C选项不符合题意,故选:D.10.【分析】作D关于AB的对称点G,作D关于AC的对称点H,连接BG,CH,FH,GH,当G,E,F,H在同一条直线上时,△DEF的周长最小,由对称性求出GH即可.【解答】解:如图,作D关于AB的对称点G,作D关于AC的对称点H,连接BG,CH,FH,GH,∵∠ABC=90°,∴∠GBE=∠ABC=90°,∴G,B,D,C在同一条直线上,由对称性可知,GB=DB=3,CH=CD=1,∠FCH=∠FCD=45°,FH=FD,EG=ED,∴∠HCG=90°,GC=GB+BD+DC=3+3+1=7,∴GH===5,∴DE+EF+FD=GE+EF+FH≥GH=5,∴△DEF的周长的最小值5.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分)11.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.12.【分析】利用分式和二次根式有意义的条件确定关于x的不等式,从而确定答案.【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.13.【分析】根据勾股定理列出方程,解方程即可.【解答】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.14.【分析】如果设剪去的边长为x,那么根据题容易列出方程为122﹣(12x×2﹣x2)=64.【解答】解:设剪去的边长为x,那么根据题容易列出方程为122﹣(12x×2﹣x2)=64,化为一般形式为:x2﹣24x+80=0,故答案为:x2﹣24x+80=0.15.【分析】分为两种情况:①斜边是8有一条直角边是6,再由三角形面积即可得出结果;②6和8都是直角边,根据勾股定理求出斜边,由勾股定理即可得出结果.【解答】解:分为两种情况:①斜边是8有一条直角边是6,由勾股定理得:第三边长==2,设斜边上的高为h,由同一三角形面积相等得:×8h=×6×2,解得:h=,②6和8都是直角边,由勾股定理得:第三边长==10,设斜边上的高为a,由同一三角形面积相等得:×10×a=×6×8,解得:a=,故答案为:或.16.【分析】过点B作BM⊥AB,在BM上截取BN=CD,得到△ABN和△ACD,则BN=CD,AN=AD=6,再根据等腰三角形的性质等得到DE=CD,最后利用勾股定理求解即可.【解答】解:过点B作BM⊥AB,在BM上截取BN=CD,∵DC⊥AC,BM⊥AB,∴∠ABN=∠ACD=90°,在△ABN和△ACD中,,∴△ABN≌△ACD(SAS),∴BN=CD,AN=AD=6,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠AEB=90°,∠DCE+∠ACB=90°,∴∠AEB=∠DCE,∵∠AEB=∠CED,∴∠CED=∠DCE,∴CD=DE,在Rt△ABN中,AB2=AN2﹣BN2=36﹣BN2,在Rt△ABE中,AB2=BE2﹣AE2=﹣(6﹣DE)2=48﹣36+12DE﹣DE2=12+12BN﹣BN2,∴36﹣BN2=12+12BN﹣BN2,∴BN=2,∴AB====4,故答案为:4.三、(本大题共7小题,满分52分)17.【分析】先根据完全平方公式和二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=9﹣6+3+4+=9﹣6+3+4+2=12.18.【分析】利用配方法求解即可.【解答】解:∵x2﹣8x=4,∴x2﹣8x+16=4+16,即(x﹣4)2=20,∴x﹣4=±2,∴x1=4+2,x2=4﹣2.19.【分析】(1)求出m=2,解方程可得出答案;(2)两个不相等实数根结合根的判别式即可得出关于m的一元一次不等式,解不等式即可得出m的取值范围,则可得出答案.【解答】解:(1)当x=0时,0+0+m﹣2=0∴m=2,∴x2+2x=0,∴x=0或x=﹣2,即方程的另一根是﹣2;(2))∵关于x的方程x2+2x+m﹣2=0有两个不相等的实数根,∴Δ=22﹣4(m﹣2)=﹣4m+12>0,∴m<3,∵m为正整数,∴m=1,2.20.【分析】(1)连接AC,根据AB=BC=2,∠B=60°,得出△ABC是等边三角形,求得AC=2,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠BCD=150°;(2)根据四边形的面积等于三角形ABC和三角形ACD的和即可求得.【解答】解:(1)连接AC,∵AB=BC=2,∠B=60°,∴△ABC是等边三角形,∴AC=2,∠ACB=60°,∵AD=2,CD=4,则AC2+CD2=22+42=20,AD2=(2)2=20,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BCD=150°;(2)S=S△ABC+S△ACD=BC•BC+AC•CD=×2××2+×2×4=4+.21.【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.(3)利用三角形的面积公式计算即可.【解答】解:(1)如图,正方形ABCD即为所求作.(2)如图,△ABC即为所求作.(3)S△ABC=×5×2=5,故答案为:5.22.【分析】(1)根据一周的销售量=500﹣10×单价上涨的金额,即可得出y与x的函数关系式;(2)利用一周的销售利润=每件的销售利润×一周的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合超市对该种商品投入不超过5000元,即可确定结论.【解答】解:(1)依题意得:y=500﹣10(x﹣30)=﹣10x+800(x≥30).(2)依题意得:(x﹣20)(﹣10x+800)=8000,整理得:x2﹣100x+2400=0,解得:x1=40,x2=60.当x=40时,20(﹣10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(﹣10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.23.【分析】(1)由“SAS”可证△ADC≌△ABE,可得CD=BE,∠ADC=∠ABE,由角的数量关系可证CD⊥BE;(2)由勾股定理可得BC2+DE2=BD2+CE2,即可求解.【解答】解:(1)CD=BE,CD⊥BE,理由如下:∵等腰直角三角形ABD和等腰直角三角形ACE,∴AB=DA,AC=AE,∠BAD=∠EAC,∴∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴CD=BE,∠ADC=∠ABE,∵∠ADC+∠BDC+∠ABD=90°,∴∠ABE+∠CDB+∠ABD=90°,∴∠BFD=90°,∴CD⊥BE;(2)∵AB=3,AC=5,∠ABC=90°,∴BC===4,∵等腰直角三角形ABD和等腰直角三角形ACE,∴BD=AB=3,CE=AC=5,∵CD⊥BE,∴BC2=CF2+BF2,BD2=BF2+DF2,CE2=CF2+EF2,DE2=DF2+EF2,∴BC2+DE2=BD2+CE2,∴16+DE2=18+50,∴DE=2.。

人教版八年级数学下册期中考试卷附答案

人教版八年级数学下册期中考试卷附答案

人教版八年级数学下册期中考试卷附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为()A.-6 B.6 C.16-D.162.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.74610-⨯B.74.610-⨯C.64.610-⨯D.50.4610-⨯4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围()A.1162a-<-B.116a2-<<-C.1162a-<-D .1162a--7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14B.16C.90α-D.44α-8.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为().A.1 B.31-C.2 D.222-9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.14二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123-=________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.9的算术平方根是________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中3,y=23.3.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.(1)求证:BG DE=;(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、C6、A7、A8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、03、3.4、45.5、30°6、45三、解答题(本大题共6小题,共72分)1、原方程无解2、3xy,33、–1≤x<34、(1)略(2)略5、(1)略;(2)8.6、(1)A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。

人教版八年级(下)期中数学试卷

人教版八年级(下)期中数学试卷

人教版八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)使二次根式有意义的a的取值范围是()A.a≥0B.a≠﹣1C.a≥﹣1D.a≤﹣12.(3分)下列计算正确的是()A.B.C.D.3.(3分)下列二次根式是最简二次根式的是()A.B.C.D.4.(3分)下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15,17 5.(3分)下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC6.(3分)下列命题的逆命题成立的是()A.全等三角形的面积相等B.相等的两个实数的平方也相等C.等腰三角形的两个底角相等D.全等三角形的对应角相等7.(3分)如图,Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD、AE分别是其角平分线和中线,过点B作BG⊥AD于G,交AC于F,连接EG,则线段EG的长为()A.B.1C.D.28.(3分)如图,在矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.4B.5C.6D.9.(3分)任何实数α,可用[α]表示不大于α的最大整数,例如[4]=4,.现对72进行如下操作:72[]=8[]=2[]=1.这样对72只进行3次操作后变为1,只需要进行3次操作后变为1的所有正整数中,最大的是()A.256B.255C.80D.8110.(3分)如图,正方形ABCD中,P为CD上一点,线段AP的垂直平分线MN交BD于N,M为垂足,交正方形的两边于E、F,连接PN,则下列结论:①∠APN=45°;②PC =BN;③∠DNF=∠DAP;④MN=MF+NE,其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(本题共6小题,每小题3分,共18分)11.(3分)计算:=.12.(3分)已知是整数,则满足条件的最小正整数n为.13.(3分)已知x=﹣1,则代数式x2+5x﹣6的值是.14.(3分)菱形ABCD的对角线AC=6cm,BD=8cm,AH⊥BC于H,则AH的长是.15.(3分)如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠OAE=15°,则∠AEO的度数为.16.(3分)如图,正方形ABCD的边长为12,点E、F分别为AB、BC上动点(E、F均不与端点重合),且AE+CF=4,P是对角线AC上的一个动点,则PE+PF的最小值是.三、解答题(共8个小题,共72分)17.(8分)计算:(1);(2).18.(8分)已知a=+2,b=2﹣,求下列各式的值:(1)a2+2ab+b2;(2)a2﹣b2.19.(8分)如图,在平行四边形ABCD中,点E,F分别为AB和CD上两点,BE=DF,求证:AF=CE.20.(8分)如图,每个小正方形的边长都为1(1)四边形ABCD的周长=;(2)四边形ABCD的面积=;(3)∠ABC是直角吗?判断并说明理由.21.(8分)在四边形ABCD中,AB=3,BC=4,AD=5,CD=5,∠ABC=90°,求对角线BD的长.22.(10分)如图在平面直角坐标系中,A(﹣8,0),C(0,26),AB∥y轴且AB=24,点P从点A出发,以1个单位长度/s的速度向点B运动;点Q从点C同时出发,以2个单位长度/s的速度向点O运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.(1)当四边形BCQP是平行四边形时,求t的值;(2)当PQ=BC时,求t的值;(3)当PQ恰好垂直平分BO时,求t的值.23.(10分)如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC分别于P、F点,连接PC.(1)若点E为BC的中点,求证:F点为DC的中点;(2)若点E为BC的中点,PE=6,,求PF的长;(3)若正方形边长为4,直接写出PC的最小值.24.(12分)如图1,在矩形ABCD中,点E在BA的延长线上,AE=AD,EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)求证:+=;(3)如图2,连接AG,求证:EG﹣DG=AG.。

2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米3.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3554.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺5.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②6.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 7.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 8.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <3 9.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .610.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .311.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .412.要使代数式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤二、填空题13.比较大小:52_____13.14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知菱形ABCD 的两条对角线长分别为12和16,则这个菱形ABCD 的面积S=_____.18.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.19.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

新人教版八年级数学下册期中考试卷(完整版)

新人教版八年级数学下册期中考试卷(完整版)

新人教版八年级数学下册期中考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C.45357x x++= D.45357x x--=7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.68.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、B7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、-2 -33、14、15、46、24三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)略;(2)△ABC 的周长为5.4、略.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

新人教版八年级数学下册期中试卷及答案

新人教版八年级数学下册期中试卷及答案

新人教版八年级数学下册期中试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.比较大小:23________13.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩ (2)410211x y x y -=⎧⎨+=⎩2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD是矩形.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、D8、A9、C 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、13k <<.4、()()2a b a b ++.5、(-2,0)6、32三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、(12)3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略6、(1)饮用水和蔬菜分别为200件和120件 (2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。

北京市第一零一中学2023-2024学年八年级下学期期中数学试题(解析版)

北京市第一零一中学2023-2024学年八年级下学期期中数学试题(解析版)

北京一零一中2023-2024学年度第二学期期中练习初二数学一、选择题(本大题共8小题,共24分)在下列各题的四个选项中,只有一个是符合题意的.1. 函数中,自变量x 的取值范围是( )A. x >5B. x <5C. x≥5D. x≤5【答案】C【解析】【详解】根据题意得x-5≥0,所以x≥5,故选C.2. 在中,,,的对边分别是a ,b ,c ,下列条件中,不能判定是直角三角形的是( )A. B. C. ,, D. ,,【答案】C【解析】【分析】本题主要考查了直角三角形的判断,分别根据有一个角是直角的三角形是直角三角形,勾股定理的逆定理判断即可.【详解】∵,∴,∴是直角三角形.则A 不符合题意;设,,,根据题意,得,解得,,即,所以是直角三角形.ABC A ∠B ∠C ∠ABC A B ∠∠=︒+90::3:2:1A B C ∠∠∠=1a =1b =1c =1a =b =2c =A B ∠∠=︒+90=90C ∠︒ABC 3A x ∠=2B x ∠=C x ∠=23180x x x ++=︒30x =︒390x =︒=90A ∠︒ABC则B 不符合题意;∵,∴是等边三角形.则C 符合题意;∵,∴是直角三角形;则D 不符合题意.故选:C .3. 将一次函数的图象沿y 轴向上平移4个单位长度,所得直线的解析式为( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式.【详解】解: 一次函数的图象沿y 轴向上平移4个单位长度, 所得直线的解析式为.故选A .4. 在平行四边形中,,则的度数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.根据平行四边形的对角相等、邻角互补以及图形可知与是对角,即可求出和的度数;再根据与是邻角,即可求得.【详解】解:如图:∵四边形为平行四边形,a b c ==ABC 2224a b c +==ABC 21y x =-23y x =+25y x =-24y x =-24y x =+ 21y x =-∴21423y x x =-+=+ABCD 100A C ∠+∠=︒B ∠50︒80︒100︒130︒A ∠C ∠A ∠C ∠B ∠A ∠B ∠ABCD∴.∵,∴,∴.故选D .5. 下列各曲线中,不能表示y 是x 的函数的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了函数的概念,“一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数”,熟悉函数的定义是解决问题的关键.根据定义,逐一判定是否对于的每一个确定的值,都有唯一确定的值与其对应,即可解决问题.【详解】解:A :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;B :在x 正半轴一段范围,对于x 的每一个取值,y 有两个值与之对应,不是的函数,该选项符合题意;C :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;D :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;故选:B .6. 如图,在菱形中,对角线,相交于点O ,E 是的中点,连接,若,.则四边形的周长为( )A. 8B. C. D. 【答案】C 180A B A C ∠+∠=︒∠=∠,100A C ∠+∠=︒50A ∠=︒130B ∠=︒x y x y x y x x y y x y x y x y x ABCD AC BD ABEO OB =120BAD ∠=︒AEOD 6+8+【分析】本题考查了菱形的性质,直角三角形斜边中线等于斜边一半的性质以及勾股定理的应用,熟练掌握相关知识点是解题的关键.利用菱形的性质和勾股定理求出菱形的边长,利用直角三角形的中位线定理得出的长,即可计算出菱形的周长.【详解】解: 为菱形,,对角线,相交于点O ,,,,在中,,,,设,则,利用勾股定理得,,即,解得,(舍去), ,E 是的中点,, 四边形的周长为:.故选:C .7. 能说明命题“若x 为无理数,则也是无理数”是假命题的反例是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.逐一计算每个选项的平方数,按照无理数定义验证即可解决问题.【详解】解:A :,是无理数,不符合题意;B :,不是无理数,符合题意;C :,是无理数,不符合题意;D :EO ABCD ABCD 120BAD ∠=︒AC BD ∴AC BD ⊥60BAO DAO ∠=∠= AB AD BC CD ===OB OD ==Rt AOB △ 60BAO ∠= ∴30ABO = ∠∴12AO AB =AO x =2AB x =222OB AO AB +=222((2)x x +=12x =22x =-∴4AB AD == AB ∴122AE EO AB ===∴AEOD 2248AE EO AD OD +++=+++=+2x π122πx =2212x ==221)6x =-=-225x =+=+8. 如图,某自动感应门的正上方A 处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高米的学生正对门,缓慢走到离门米的地方时(米),感应门自动打开,则人头顶离感应器的距离等于( )A. 米B. 米C. 2米D. 米【答案】A【解析】【分析】本题考查了矩形的判定与性质,勾股定理.熟练掌握矩形的判定与性质,勾股定理是解题的关键.如图,作于,则四边形是矩形,,,,由勾股定理得,【详解】解:如图,作于,则四边形是矩形,∴,,∴,由勾股定理得,,故选:A .二、填空题(本大题共8小题,共24分)9. 已知点,,在一次函数的图象上,则,的大小关系是______.【答案】【解析】2.5AB =1.6CD 1.21.2BC =AD 1.5 1.8 2.4DE AB ⊥E BCDE 1.2DE BC == 1.6BE CD ==0.9AE =AD =DE AB ⊥E BCDE 1.2DE BC == 1.6BE CD ==0.9AE = 1.5AD ==()11,A y -()23,B y 2y x =-+1y 2y 12y y >【分析】本题主要考查了比较一次函数值的大小,根据解析式得到y 随x 增大而减小,再由即可得到答案.【详解】解:∵一次函数解析式为,,∴y 随x 增大而减小,∵知点,,在一次函数的图象上,且,∴,故答案为:.10. 已知x+1,则代数式x 2﹣2x +1的值为____.【答案】2【解析】【分析】利用完全平方公式将所求的代数式进行变形,然后代入求值即可.【详解】解:原式为:,将代入上式,原式故答案为:2.【点睛】此题考查了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.11. 如图,在平面直角坐标系中,函数与的图象相交于点,则关于x 的不等式的解集是______.【答案】13-<2y x =-+10k =-<()11,A y -()23,B y 2y x =-+13-<12y y >12y y >221x x -+()2=1x -1x =+)22=(1)=11=2x -+-xOy 1y kx =23y ax =+()1,2A -3kx ax <+1x >-【解析】【分析】本题考查了一次函数与一元一次不等式的关系,观察图象写出直线在直线下方所对应的自变量的范围即可.【详解】解:观察图象可知,当时,直线在直线下方,故关于x 的不等式的解集是,故答案为:.12. 如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.若图2中阴影小正方形的面积为49.则a 的值为______.【答案】4【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质,根据题意可得图2中阴影小正方形的边长为,再由图2中阴影小正方形的面积为49即可求出答案.【详解】解:由题意得,图2中阴影小正方形的边长为,∵图2中阴影小正方形的面积为49,∴图2中阴影小正方形的边长为7,∴,∴,故答案为:4.13. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点A 表示的数是,若以点为圆心,的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.1y kx =23y ax =+1x >-1y kx =23y ax =+3kx ax <+1x >-1x >-23a +2a 233a a a +-=+233a a a +-=+37a +=4a =1AC BC BD ===2-A AD E E A E【答案】【解析】【分析】根据勾股定理可以求得和的长,再根据和,点表示的数为,即可写出点表示的数.【详解】解:,,,,,点表示的数是,点表示的数为故答案为:【点睛】本题考查勾股定理、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.14. 已知平面直角坐标系下,点A 、C 的坐标为,,点B 的坐标为.若的面积为5,则b 的值为______.【答案】8或【解析】【分析】本题考查了平面直角坐标系中的坐标与图形,利用横、纵坐标得到线段的长度解题的关键.根据点B 、C 的坐标三角形的底,根据点A 的坐标可知边上的高,利用三角形面积计算公式求解即可.【详解】点A 、C 的坐标为,,点B 的坐标为,的底为,高为2,的面积为5,2-+AB AD AD AE A 2-E 1AC BC BD === 90ACB ABD ∠=∠=︒AB ∴===AD ∴===AD AE = AE ∴= A 2-∴E 2-+2-()1,2A ()3,0C (),0Bb ABC 2-BC ()1,2A ()3,0C (),0B b ∴ABC 3BA b =- ABC,,或,故答案为:8或.15. 漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位是时间的一次函数,如表是小明记录的部分数据,则时.h 的值为______.…1235…… 2.4 2.8 3.24…【答案】3.6【解析】【分析】本题考查了待定系数法求一次函数解析式,解二元一次方程组,掌握待定系数法求一次函数解析式是解题的关键.设水位h (cm )是时间t (min )的一次函数解析式为,根据表格代入数据解方程组即可求出解析式,将代入即可求解.【详解】解:设水位h (cm )是时间t (min )的一次函数解析式为,根据表格得,解得,一次函数解析式为,当,.故答案为:3.6.16. 如图,在中,,于点E ,于点F ,、交于点H ,、的延长线交于G ,给出下列结论:①;②点D 是中点:③;④若平分,则;其中一定正确的结论有______.(填序号)1|3|252ABC S b =⨯-⨯=△∴|3|5b -=8b ∴=2b =-2-()cm h ()min t 4t =cm ()min t ()cm h h kt b =+4t =h kt b =+2.42 2.8k b k b +=⎧⎨+=⎩0.42k b =⎧⎨=⎩∴0.42h t =+4t =0.442 3.6h =⨯+=ABCD Y 45DBC∠=︒DE BC ⊥BF CD ⊥DE BF AD BF A BHE ∠=∠AG AB BH =BG DBC ∠)1BE CE =【答案】①③④【解析】【分析】本题考查了平行四边形的性质、等腰三角形的性质,全等三角形的性质和判定,①由证明即可;③先证明,从而得到,然后由平行四边形的性质可知;④连接,证是等腰直角三角形,,设,得出,进而得出.②无法证明点D 是中点.【详解】解:,,,,四边形是平行四边形,,,故①正确;和中,,,,,正确;连接,如图:平分,,在HBE CBF HEB CFB ∠=∠∠=∠,BHE DEC △≌△BH DC =AB BH =CH CEH △DH CH =EH EC a ==DH CH ===)1BE DE EC ==+AG DE BC BF CD ⊥⊥ ,90DEC HFD ∴∠=∠=︒9090DHF EDC EDC C ∴∠+∠=︒∠+∠=︒,DHF C ∴∠=∠ ABCD AB CD A C ∴=∠=∠,DHF BHE ∠=∠ A BHE∴∠=∠BHE DCE △HBE CDE BE DEBEH DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BHE DCE ∴ ≌BH DC EH EC ∴==,AB CD = AB BH ∴=,③CH BG 45DBC DBC ∠∠=︒,22.5HBE ∴∠=︒,,是等腰直角三角形,,,,设,,,,④正确∵是平行四边形,∴,∴,,又,∴三个角对应相等无法证明全等,∴无法证明,即无法证明点D 是中点,故②错误,综上①③④正确,故答案为:①③④.三、解答题:(本大题共10小题,共52分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1(2)【答案】(1)(222.5CDE ∴∠=︒90EH EC DEC =∠=︒ ,CEH ∴ 45EHC CDE HCD ∴∠=︒=∠+∠22.5HCD CDE ∴∠=︒=∠DH CH ∴=EH EC a ==DH CH ∴===)1DE DH HE a a ∴=+=+=+))11BE DE a EC ∴===ABCD AG BC DGF CBF ∠=∠GDF BCF ∠=∠90DFG CFB ∠=∠=︒DFG CFB DG CB =AG +2+4【解析】【分析】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.(1)先根据二次根式的乘除法逐项化简,再合并同类二次根式即可.(2)先将转化为再利用平方差公式,即可求解.【小问1详解】;【小问2详解】18. 如图,在平行四边形中,点E ,F 对角线上,且,连接、、、、求证:四边形是平行四边形.【答案】证明见解析【解析】【分析】根据平行四边形的性质,得到,,进而得到,即可证明四边形是平行四边形.【详解】证明:连接交于点O,2+=+4=+2=+22⎡⎤=-⎢⎥⎣⎦()32=-=ABCD AC AE CF =DE EB BF FD DEBF OA OC =OB OD =OE OF =DEBF BD AC四边形为平行四边形,,,,,四边形为平行四边形.【点睛】本题考查了平行四边形的性质与判定,熟练掌握相关性质与判定定理是解题关键.19.(1)直接写出和的值:______,______;(2)求的值.【答案】(11.(2)1.【解析】【分析】本题考查二次根式的混合运算和异分母分式的加法运算.(1)分别把,和进行计算即可;(2)先进行异分母分式的加法运算,再将和的值代入即可.【小问1详解】解:由已知,,1. ABCD OA OC ∴=OB OD =AE CF = OE OF ∴=∴DEBF a =b =a b +ab a b +=ab =1111s a b=+++a =b =a b +ab a b +ab a b +==1ab ===【小问2详解】解:.20. 如图,已知网格中有一个,顶点A 、B 、C 、D 都在格点上,要求仅利用已有的格点和无刻度直尺作图(注意:不能用圆规),找出格点P (一个即可),使平分.小明和小天分别采用了不同的方法:小明:在边上找到格点P ,连接,可知平分.小天:在边上找到某个格点E ,连接,发现线段上存在格点P ,使平分.请根据两人的思路,分别在图1和图2中完成小明和小天的图形(标出两人所说的点,画出相应的图形)【答案】见解析【解析】【分析】本题主要考查了等腰三角形的性质与判定,平行四边形的性质,根据两人的思路进行作图求解即可.【详解】解:如图1和图2所示,即为所求;图1中易证明,则,再由平行四边形的性质结合平行线的性质可得,则,则点P 即为所求;图2中,易证明,点P 为的中点,则由三线合一定理可得平分.21. 如图.在中,点D 、E 、F 分别是边、、的中点,且.求证:四边形为矩形.()()11112111111b a a b s a b a b a b ab +++++=+====+++++++ABCD Y BP ABC ∠AD BP BP ABC ∠BC AE AE BP ABC ∠AB AP =ABP APB ∠=∠APB CBP ∠=∠ABP CBP ∠=∠AB BE =AE BP ABC ∠ABC AB AC BC 2BC AF =ADFE【答案】见解析【解析】【分析】本题考查了三角形中位线的性质、矩形的判定、等腰三角形的性质以及三角形的内角和.先根据中位线的性质得到,得到四边形为平行四边形,再利用等腰三角形的性质和三角形内角和证明,则求证可证.【详解】证明:∵点D 、E 、F 分别是边、、的中点,∴,,∴四边形为平行四边形,∵F 为中点,,∴,∴,∵,∴,则,即,∴四边形为矩形.22. 探究函数性质时,我们经历了列表、描点、连线画出函数的图象,观察分析图象特征,概括函数性质的过程.小玉同学根据学习函数的经验,对函数进行了探究.下面是小玉的探究过程,请补充完整:(1)函数的自变量取值范围是全体实数;(2)绘制函数图象①列表:下表是x 与的几组对应值:x…01234…EF AB ∥DF AC ∥ADFE 90BAC ∠=︒AB AC BC EF AB ∥DF AC ∥ADFE BC 2BC AF =BF AF CF ==,B BAF FAC C ∠=∠∠=∠180B BAF FAC C ∠+∠+∠+∠=︒()2180BAF FAC ∠+∠=︒90BAF FAC ∠+∠=︒90BAC ∠=︒ADFE 112y x =-+112y x =-+1y 2-1-…543b 345…其中,______;②描点、连线:在同一平面直角坐标系中,描出上表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,探究函数性质①函数图象上的最低点坐标是______;②的数图象关于直线______对称;(4)已知函数图象和函数的图象无交点,直接写出m 的取值范围是______.【答案】(1)原说法正确,理由见详解 (2)①2,②见详解(3)①,②1. (4)【解析】【分析】本题主要考查了函数的图像和性质.(1)根据对于任意x ,是否有意义回答即可.(2)①把代入函数即可求出b的值. ②描点画出函数图像即可.(3)①根据函数图像即可得出答案,②根据函数图像即可得出答案,(4)根据可得出当时,即可求出m 取值范围.【小问1详解】解:对于任意x ,均有意义上.的1y b =xOy ()1,x y 1y 1y 1y x =22x y m =+112y x =-+()1,232m <1y 1x =1122y x =-+≥1x =122m +<1y∴函数的自变量取值范围是全体实数【小问2详解】①当时,,∴,故答案为:2.②的图象如下:【小问3详解】①函数图象上的最低点坐标是,故答案为:②函数图象关于直线对称,故答案为:1.【小问4详解】∵,且当时,,∴当时,,即,解得:,故答案为:.23. 一次函数的图像与轴交于点,且经过点.(1)当时,求一次函数的解析式及点的坐标;112y x =-+1x =1121122y x =-+=-+=2b =1y 1y ()1,2()1,21y 1x =1122y x =-+≥1x =12y =1x =22y <122m +<32m <32m <()40y kx k k =+≠x A ()2,B m =2m A(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.【答案】(1)y=x +,点A 的坐标为(-4,0) (2)【解析】【分析】(1)当m =2时,把点C 的坐标代入y =kx +4k (k ≠0),即可求得k 的值,得到一次函数表达式,再求出点A 的坐标即可;(2)根据图像得到不等式,解不等式即可.【小问1详解】解:∵m =2,∴将点C (2,2)代入y =kx +4k ,解得k =;∴一次函数表达式y =x +,当y =0时,x +=0,解得x =-4∵一次函数y =x +的图像与x 轴交于点A ,∴点A 的坐标为(-4,0).【小问2详解】解:如图,y =kx +4k (k ≠0)过定点,∵当时,,对于x 的每一个值,函数的值大于一次函数y =kx +4k (k ≠0)的为1x >-x =y x ()40y kx k k =+≠k 134313k ≤-13134313431343()=+4k x ()4,0-1x =-1y x ==-=y x ()=+4k x值,∴,,解得k ≤−.∴k≤−.【点睛】本题考查了待定系数法求一次函数解析式,利用函数图像解不等式,数形结合是解答本题的关键.24. 如图,一次函数的图象与x 轴交于点A ,与y 轴交于点B ,点D 为x 轴上的点(在点A 右侧),为的垂直平分线,垂足为点E,且,连接.(1)求证:四边形是菱形;(2)连接,求的长.【答案】(1)证明见解析(2)【解析】【分析】本题考查了菱形的判定和性质,勾股定理,平行四边形的判定和性质,直角三角形的性质,熟练掌握菱形的判定与性质是解题的关键;(1)根据为的垂直平分线,得E 为中点,,根据,再证,得,判定四边形是平行四边形,根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)根据一次函数与x 、y 轴交点得出,,再根据勾股定理求出,根据菱形的性质求出,再次利用勾股定理求出,依据直角三角形的性质定理即可得出.【小问1详解】为的垂直平分线,,,,,1x =-41k k -+≤-1313443y x =-+AC BD BC OD ∥CD ABCD OE OE AC BD BD 90BEC DEC DEA ∠=∠==︒BC OD ∥BEC DEA △≌△BC DA =ABCD OA OB AB AD BD OE AC BD BE DE ∴=90BEC DEC DEA ∠=∠==︒ BC OD ∥BCE DAE ∴∠=∠在和中,,,四边形是平行四边形,为的垂直平分线,四边形是菱形;【小问2详解】一次函数的图象与x 轴交于点A ,与y 轴交于点B ,点A 坐标为,点B 坐标为,,,在中,由(1)得:四边形是菱形,,E 为中点,,在中,E 为中点,连接,.25. 已知,矩形,,对角线、交于点O ,,点M 在射线上,满足,作于E ,的延长线交于F BEC DEA △BEC DEA BE DEBCE DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BEC DEA △≌△BC DA ∴=∴ABCD AC BD ∴ABCD 443y x =-+∴()3,0()0,4∴3OA =4OB =Rt AOB△5AB ===ABCD 5AD AB ∴==BD 8OD OA AD ∴=+=Rt AOB△AB === BDOE 12OE AB ∴===ABCD AD AB >AC BD DAC α∠=BC 2DMC α∠=DE AC ⊥DE BC(1)如图1,点M 在线段上①依题意补全图形,并直接写出______(用含的式子表示)②连接,请用等式表示线段与的数量关系,并证明.(2)当时,设,,请直接写出线段的长(用含m 、n 的式子表示)【答案】(1)①画图见解析,;②,证明见解析 (2)或或【解析】【分析】(1)①根据题意先补全图形,由矩形的性质得到,再根据同角的余角相等得到;②如图所示,延长交于N ,设交于G ,由矩形的性质可得,,先证明,再证明,得到,则;再证明,得到,可得;证明,得到,即可推出;(2)分当点M 在上,且时,当点M 在上,且时,当点M 在线段延长线上时,三种情况画出对应的图形讨论求解即可.【小问1详解】解:①补全图形如下:∵四边形是矩形,∴,∴,∵,∴,∴;BC CDF ∠=αOM OM DF 30α≠︒AD m =CF n =FM α12OM DF =32n m -32m n -2m n +90ADC ∠=︒CDF DAC α==∠∠MO AD MO DF AC BD OA OB OC OD ====,90BAD ∠=︒DBC α∠=BDM DBM α∠==∠BM DM =MO BD ⊥GFM GMF GND GDN ==∠∠,∠∠GF GM GN GD ==,DF MN =()AAS AON COM ≌ON OM =12OM DF =BC FC MC >BC FC MC <BC ABCD 90ADC ∠=︒90DAC DCA ∠+∠=︒DE AC ⊥90CDF DCE ∠+∠=︒CDF DAC α==∠∠故答案为:;②,证明如下:如图所示,延长交于N ,设交于G ,∵四边形是矩形,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∵,∴,,∴,∴,∴,即;∵,∴,又∵,∴,∴,α12OM DF =MO AD MO DF ABCD AC BD OA OB OC OD ====,90BAD ∠=︒DAC α∠=90OAB OBA α==︒-∠∠AB CD 90OAB OBA ODC OCD α====︒-∠∠∠∠DBC α∠=2DMC DBM BDM α=+=∠∠∠BDM DBM α∠==∠BM DM =MO BD ⊥DF AC AD BC ⊥,∥90DFC ADE α==︒-∠∠90DNM NMB α==︒-∠∠GFM GMF GND GDN ==∠∠,∠∠GF GM GN GD ==,GF GD GM GN +=+DF MN =AD BC ∥OAN OCM ONA OMC ==∠∠,∠∠OA OC =()AAS AON COM ≌ON OM =∴,即;【小问2详解】解:如图所示,当点M 在上,且时,取线段的中点N ,连接,则是的中位线,∴,;由矩形的性质可得,∴,∴,由(1)得,∴,∴,∴四边形是平行四边形,∴,∴;如图所示,当点M 在上,且时,取线段的中点N ,连接,则是的中位线,∴,;由矩形的性质可得,2DF MN OM ==12OM DF =BC FC MC >DF ON CN ,ON DBF 12ON BF =ON BF ∥90BC AD m DCF ===︒,∠12CN FN DF ==90CN OM NCF NFC α===︒-,∠∠90EMF α=︒-∠EMF NCF =∠∠CN OM ∥ONCM 12CM ON BF ==()333222n m FM BC BF CM BC BF m m n -=--=-=--=BC FC MC <DF ON CN ,ON DBF 12ON BF =ON BF ∥90BC AD m DCF ===︒,∠∴,∴,由(1)得,∴,∴,∴,∴四边形是平行四边形,∴,∴;如图所示,当点M 线段延长线上时,延长交于N ,∵,∴,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴,在12CN FN DF ==90CN OM NCF NFC α===︒-,∠∠OBM OM BD α=∠,⊥90OMB α=︒-∠EMF NCF =∠∠CN OM ∥ONCM 12CM ON BF ==()333222m n FM BF CM BC BF BC m n m -=+-=-=--=BC AC DM ,AD BC ∥ACB DAC α∠=∠=MCN ACB α==∠∠2DMC N MCN α=+=∠∠∠N MCN DAC α===∠∠∠CM MN DA DN m ===,90DFM α=︒-∠18090290FDM ααα=︒-︒+-=︒-∠FDM DFM ∠=∠MF DM =n CM m CM +=-2m n CM -=∴;综上所述,的长为或或.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,矩形的性质,三角形中位线定理,平行四边形的性质与判定等等,利用分类讨论的思想求解是解题的关键.26. 在平面直角坐标系中,对于点和直线.作点关于的对称点,点是直线上一点,作线段满足且,如果线段与直线有交点,则称点是点关于直线和点的“垂对点”.如下图所示,点是点关于直线和点的“垂对点”.2m n MF CF CM +=+=FM 32n m -32m n -2m n +xOy M l M l M 'N l M P 'M P M N ''=90PM N '∠=︒M P 'l P M l N P M l N(1)如图1,已知点,若点,则点关于轴和点的“垂对点”的坐标为______;若点,求点关于轴和点的“垂对点”的坐标;(2)若点、点是直线上的点,点,且满足点是点关于轴和点的“垂对点”,直接写出点的坐标______;(3)已知点,,,,其中.点在四边形的边上,直线,若四边形的边上存在点是点关于直线和点的“垂对点”,请直接写出的取值范围(用含的式子表示)______.【答案】(1)①;②(2)点的坐标为:或 (3)【解析】分析】(1)①根据“垂对点”定义,结合坐标系,即可求解;②点,作关于轴的对称点,过点作轴,过点作的垂【()2,0M -①()10,2N -M y 1N ②()20,4N M y 2N P M P 2y x =--()5,0N -P M x N M (),0A a -(),0B a (),2C a a (),2D a a -0a >M ABCD :l y x t =+ABCD P M l N t a ()0,2()2,2-P ()20-,()1,3-55a t a-≤≤()20,4N ()2,0M -y ()2,0M 'M 'AB y ∥2,P N AB线段,垂足分别为,进而根据“垂对点”定义,结合坐标系,证明,得出的坐标为,即可求解;(2)当在轴上方时,过点作轴,过点作的垂线段,垂足分别为,同(1)可得,得出,根据在上,代入即可求解,当在轴下方时,同法可求;(3)当时,设正方形的中心为,得出,,将绕点逆时针旋转得到,与交于点,证明四边形是正方形,得出是等腰直角三角形,确定点的轨迹,进而根据点与点重合时为临界点,连接,进而得出,结合图形可得当时,存在点是点关于直线和点的“垂对点”,根据对称性即可得出.【小问1详解】解:①如图所示,点,则点关于轴和点的“垂对点”的坐标为如图所示,点,作关于轴的对称点,过点作轴,过点作的垂线段,垂足分别为,,B A ()2AAS AN M BM P ''≌P ()2,2-M x M 'AB x ∥,P N AB ,B A ()AAS ANM BMP ' ≌()2,27P m -+P 2y x =--M x 0t >ABCD Q ()0,Q a (),Q a t t '-M SN ' M '90︒M TP ' EN TP E M SET 'EHK P P C D E '5t a =5t a ≤P M l N 55a t a -≤≤()10,2N -M y 1N ()0,2()20,4N ()2,0M -y ()2,0M 'M 'AB y ∥2,P N AB ,B A根据新定义可得:,∴,∴,∴,∴的坐标为,∴点关于轴和点的“垂对点”的坐标为【小问2详解】解:如图所示,当在轴上方时,过点作轴,过点作的垂线段,垂足分别为,2290,N M P N M PM '''∠=︒=290AM N PM B M PB '''∠=︒-∠=∠()2AAS AN M BM P ''≌24,2AM PB AN BM ''====P ()2,2-M y 2N P ()2,2-M x M 'AB x ∥,P N AB ,B A同(1)可得,∴∵点、点是直线上的点,设,则,∵点,∴∴,即又∵在上,∴,解得:∴;当在轴下方时,如图所示,()AAS ANM BMP ' ≌,AN M B AM PB ''==M P 2y x =--(),2M m m --(),2M m m '+()5,0N -5,2AM m AN m '=+=--()()()225P m n m m +--+++,()2,27P m -+P 2y x =--2722m +=-72m =-()2,0P -M x∵点、点是直线上的点,设,则,∵点,∴∴,,∴,即又∵在上,∴,解得:∴综上所述,点的坐标为:或【小问3详解】解:如图所示,当时,M P 2y x =--(),2M m m --(),2M m m '+()5,0N -5,2AM m AN m '=+=+52AB m m =+--5BP AM m ==+()()225P m m m m +++-+,()22,3P m +-P 2y x =--()3222m -=-+-12m =-()1,3P -P ()20-,()1,3-0t >设正方形的中心为,∵点,,,,其中.∴即,∵关于直线直线的对称点为,则∴,∴,设直线与坐标轴的交点分别为则,∴,则是等腰直角三角形,则∵在直线上,设绕点逆时针旋转(根据新定义,与直线有交点)得到,∴是等腰直角三角形,∵点是点关于直线和点的“垂对点”,∴是等腰直角三角形,设与的交点为,将绕点逆时针旋转得到,与交于点,如图所示,ABCD Q (),0A a -(),0B a (),2C a a (),2D a a -0a >02,20a a a Q -++⎛⎫ ⎪⎝⎭()0,Q a Q :l y x t =+Q '90Q FQ '∠=︒FQ FQ t a '==-(),Q a t t '-:l y x t =+,F H()()0,,,0F t H t -OF OH =OFH 45HFQ ∠=︒N :l y x t =+N Q '90︒Q N ''l N 'NQN ' P M l N M NP ' MM 'FN S M SN ' M '90︒M TP ' EN TP E∴∵∴,∴四边形是矩形又∵∴四边形是正方形,∴∵设与轴的交点为,与轴的交点为点,则,,是等腰直角三角形,当在正方形的边上运动时,在正方形上运动,当点在上运动时,在直线上运动,∴当点与正方形有交点时,存在点是点关于直线和点的“垂对点”,即点与点重合时为临界点,连接,如图所示,90M SN M TP ''∠=∠=︒M S ST'⊥90M SN M SE ''∠=∠=︒M SET 'M S M T''=M SET 'TP NE⊥45FHO ∠=°TP x K y G EHK OKG EFG M ABCD M 'A B C D ''''N y x t =+P TE P ABCD P M l N P C D E '∵四边形是正方形,又∴轴,∵是等腰直角三角形,又,,则的纵坐标之差为,∴,,∵是等腰直角三角形,∴,∴∴当时,存在点是点关于直线和点的“垂对点”,根据对称性可得,故答案为:.【点睛】本题考查了坐标与图形,一次函数与坐标轴交点问题,等腰直角三角形的性质与判定,正方形的性质,全等三角形的性质与判定,轴对称的性质,熟练掌握一线三等角证明全等三角三角形确定点的坐标是解题的关键.M TES '45M ES EHK'∠=︒=∠D E x '∥EFG (),Q a t t '-Q F D E ''∥,F E a (),E a t a --2FG a =GKO 3OG OK OB BK OB BC a ==+=+=5t a=5t a ≤P M l N 55a t a -≤≤55a t a -≤≤。

人教版数学八年级下册《期中考试卷》(含答案)

人教版数学八年级下册《期中考试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。

人教版八年级数学下册期中考试卷(及答案)

人教版八年级数学下册期中考试卷(及答案)

人教版八年级数学下册期中考试卷(及答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D 510.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若二次根式x1-有意义,则x的取值范围是▲.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为________.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.6.如图,已知OA OB=,数轴上点A对应的数是__________。

2022—2023学年人教版数学八年级下册期中考试模拟试卷 (1)

2022—2023学年人教版数学八年级下册期中考试模拟试卷 (1)

八年级下册数学期中模拟卷姓名___班级___考号___得分___一.选择题(共10小题,每小题3分,共30分)1.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠12.下列计算正确的是()A.=2B.•=C.﹣=D.=﹣33.已知四边形ABCD中∠A,∠B,∠C,∠D的度数之比,能判定四边形是平行四边形的是()A.1:2:3:4 B.1:2:2:1 C.2:2:3:4 D.2:3:2:34.满足下列条件的三角形中,不是直角三角形的是()A.三边长之比为3:4:5 B.三内角之比为3:4:5C.三内角之比为1:2:3 D.三边长的平方之比为1:2:35.用四根长度相等的木条制作学具,先制作图(1)所示的正方形ABCD,测得BD=10cm,活动学具成图(2)所示的四边形ABCD,测得∠A=120°,则图(2)中BD的长是()A.cm B.cmC.cm D.cm6.菱形ABCD的边长为8,有一个内角为120°,则较长的对角线的长为()A.B.8 C.D.47.如图,∠AED=90°,正方形ABCD和正方形AEFG的面积分别是289和225,则以DE为直径的半圆的面积是()A.4πB.8πC.16πD.32π8.下列命题的逆命题是真命题的是()A.若a=b,则a2=b2 B.如果a>0,b<0,则a﹣b>0C.有两边相等的三角形是等腰三角形 D.全等三角形的周长相等9.如图,在矩形ABCD中,对角线AC、BD相交于点O,DF垂直平分OC,交AC于点E,交BC于点F,连接AF,若BD=2,DF=2,则AF的长为()A.B.2C.D.310.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二.填空题(共6小题,每小题3分,共18分)11.化简:=.12.二次根式是一个整数,那么正整数a最小值是.13.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.15.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.三.解答题(共72分)17.化简:.18.已知:a=﹣2,b=+2,分别求下列代数式的值:(1)a2b﹣ab2(2)a2+ab+b2.19.由边长为1的小正方形构成网格,每个小正方形的顶点叫格点,点A、B、C都是格点,点P是AB与网格线的交点.仅用无刻度的直尺在给定的网格中完成画图,画图过程用虚线表示,画图结果用实线表示,并回答下题:(1)直接写出AC=;(2)在图1中,画△ABC的角平分线AD;(3)在图2中,在AB的上方找一个格点D,使∠ABD=45°;(4)在图2中,在边AB上画点E,使∠AEC=45°.20.已知:如图,四边形ABCD是平行四边形,P,Q是对角线BD上的两个点,且BP=DQ.求证:PA=QC.21.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?22.如图,在正方形ABCD中,AB=4,E是BC的中点,F是CD上一点,且DF=3CF.(1)求证:AE⊥EF;(2)求四边形AEFD的面积.23.数学活动:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸展平,如图1.再一次折叠纸片,使点A落在EF上(点N为点A的对应点),并使折痕经过点B,得到折痕BM,同时,得到线段BN,记折痕BM与折痕EF交于点G,如图2.根据以上折叠过程,解决如下问题:(1)证明四边形AEFD为矩形;(2)探究EG与GN的数量关系;(3)连接AG,探究四边形AGNM的形状.24.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)当四边形ABCD为平行四边形时(如图3),当E、A、F在一条直线上时,过B作BH⊥BC交FD于点H,若,且,直接写出BH的值.。

八年级数学下册期中考试卷

八年级数学下册期中考试卷

2019年八年级数学下册期中考试卷【】多做练习题和试卷,可以使学生了解各种类型的题目, 使学生在练习中做到举一反三。

在此查字典数学网为您提供2019年八年级数学下册期中考试卷, 希望给您学习带来帮助, 使您学习更上一层楼!2019年八年级数学下册期中考试卷一、选择题(每小题3分, 共3分8=24分)1.在、、、、、中分式的个数有 ( )A.2个B.3个C.4个D.5个2.利用分式的基本性质将变换正确的是 ( )A. B. C. D.xx2-2x=xx-2x3.函数y= 的图象经过点(2, 8), 则下列各点不在y= 图象上的是( )A: (4, 4) B: (-4, -4) C: (8, 2) D: (-2, 8)4、对分式 , , 通分时, 最简公分母是 ( )A.24x2y3B.12x2y2C.24xy2D.12xy25.对于反比例函数 , 下列说法不正确的是( )A、点(-2, -1)在它的图象上。

B、它的图象在第一、三象限。

C.当x0时, y随x的增大而增大。

D、当x0时, y随x的增大而减小。

6、若分式的值为0, 则x的值是( )A.-3B.3C.3D.07、已知下列四组线段:①5, 12, 13 ; ②15, 8, 17 ; ③1.5, 2, 2.5 ; ④。

其中能构成直角三角形的有( )A.四组B.三组C.二组D.一组8、如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块, 一只蚂蚁要从顶点A出发, 沿长方体的表面爬到和A 相对的顶点B处吃食物, 那么它需要爬行的最短路线的长是( )A. B. C. D.二、填空题(每小题3分, 共3分6=18分)9、计算: 2-2 =10、自从扫描隧道显微镜发明后, 世界上便诞生了一门新学科, 这就是纳米技术, 已知52个纳米的长度为0.000 000 052米, 用科学记数法表示的这个数为_________________________________米。

浙教版八年级(下)期中数学试卷(范围:第1-4章)

浙教版八年级(下)期中数学试卷(范围:第1-4章)

浙教版八年级(下)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.2.(3分)要使式子有意义,则a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠03.(3分)下列计算正确的是()A.B.C.D.4.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8 B.9 C.10 D.115.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF6.(3分)一元二次方程x2+kx﹣4=0的一个根是x=﹣1,则另一个根是()A.4 B.﹣1 C.﹣3 D.﹣27.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22人数 2 5 2 2 1则这12名队员年龄的众数、中位数分别是()A.2岁,20岁B.2岁,19岁C.19岁,20岁D.19岁,19岁8.(3分)下列说法:①伸缩门的制作运用了四边形的不稳定性;②夹在两条平行线间的垂线段相等;③成中心对称的两个图形不一定是全等形;④一组对角相等的四边形是平行四边形;⑤用反证法证明“四边形中至少有一个角是钝角或直角”时,必先假设“四边形中至多有一个角是钝角或直角”,其中正确的是()A.①②B.③④C.①②④D.①②⑤9.(3分)如图,四边形ABCD中,AB∥CD,AB=5,DC=11,AD与BC的和是12,点E、F、G分别是BD、AC、DC的中点,则△EFG的周长是()A.8 B.9 C.10 D.1210.(3分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(本题有6小题,每小题4分,共24分)11.(4分)若最简二次根式与是同类二次根式,则a=.12.(4分)给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是.13.(4分)已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B (1,2),则点C,D的坐标分别为.14.(4分)一个多边形从一个顶点最多可以引8条对角线,则这个多边形共有条对角线.15.(4分)已知2,3,5,m,n五个数据的方差是2,那么8,9,11,m+6,n+6五个数据的方差是.16.(4分)如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为.三、解答题17.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点都在格点上.(1)请按下列要求画图:①将△ABC先向右平移5个单位,再向上平移1个单位,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2;(2)若(1)所得的△A1B1C1与△A2B2C2,关于点P成中心对称,直接写出对称中心P点的坐标.18.(8分)解方程:(1)4(x﹣3)=3x(x﹣3)(2)x2﹣5=3x计算:(3)(4)19.(8分)如图,在平行四边形ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.(10分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:(2)求电动汽车一次充电后行驶里程数的中位数、众数:(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?21.(10分)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.22.(12分)已知关于x的一元二次方程a(2x+a)=x(1﹣x),总有两个不相等的实数根为x1,x2,设(1)求a的取值范围;(2)当a=﹣2时,求S的值;(3)当a取什么整数时,S的值为1;23.(12分)新定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=60°,∠B=70°,求∠C,∠D 的度数(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论(3)已知:在“等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=10,AD=8.求对角线AC的长.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形;故A不符合题意;B、既不是中心对称图形;故B不符合题意;C、是中心对称图形;故C符合题意;D、不是中心对称图形;故D不符合题意;故选:C.【点评】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)要使式子有意义,则a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠0【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,a+2≥0,解得,a≥﹣4且a≠0,故选:D.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式被开方数是非负数、分式分母不为0是解题的关键.3.(3分)下列计算正确的是()A.B.C.D.【分析】根据二次根式的性质对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=5;B、原式=;C、原式=5;D、原式=,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8 B.9 C.10 D.11【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得:(n﹣2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:C.【点评】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n﹣2)×180°=360°×4.5.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,缺少夹角相等∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,AD=BC,∴△ADE≌△CBF,∴OE=OF;D、同理△ABE≌△CDF,∴OE=OF故选:B.【点评】本题需注意当大的平行四边形利用了对角线互相平分时,那么对角线是原平行四边形的一部分的四边形要想判断是平行四边形一般应用对角线互相平分的四边形是平行四边形进行证明.6.(3分)一元二次方程x2+kx﹣4=0的一个根是x=﹣1,则另一个根是()A.4 B.﹣1 C.﹣3 D.﹣2【分析】设方程的另一个根为m,由根与系数的关系即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,则有m×(﹣1)=﹣4,解得:m=3.故选:A.【点评】本题考查了根与系数的关系以及解一元一次方程,牢记两根之积等于是解题的关键.7.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22人数 2 5 2 2 1则这12名队员年龄的众数、中位数分别是()A.2岁,20岁B.2岁,19岁C.19岁,20岁D.19岁,19岁【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有4个.故选:D.【点评】此题考查了中位数和众数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.(3分)下列说法:①伸缩门的制作运用了四边形的不稳定性;②夹在两条平行线间的垂线段相等;③成中心对称的两个图形不一定是全等形;④一组对角相等的四边形是平行四边形;⑤用反证法证明“四边形中至少有一个角是钝角或直角”时,必先假设“四边形中至多有一个角是钝角或直角”,其中正确的是()A.①②B.③④C.①②④D.①②⑤【分析】直接利用四边形的性质以及中心对称图形的性质和反证法分别分析得出答案.【解答】解:①伸缩门的制作运用了四边形的不稳定性,正确;②夹在两条平行线间的垂线段相等,正确;③成中心对称的两个图形不一定是全等形,错误;④一组对角相等的四边形是平行四边形,错误;⑤用反证法证明“四边形中至少有一个角是钝角或直角”时,必先假设“四边形中没有一个角是钝角或直角”.其中正确的是①②.故选:A.【点评】此题主要考查了四边形的性质以及中心对称图形的性质和反证法,正确把握相关定义是解题关键.9.(3分)如图,四边形ABCD中,AB∥CD,AB=5,DC=11,AD与BC的和是12,点E、F、G分别是BD、AC、DC的中点,则△EFG的周长是()A.8 B.9 C.10 D.12【分析】连接AE,并延长交CD于K,根据平行线的性质得到∠BAE=∠DKE,∠ABD=∠EDK,根据三角形中位线的性质得到BE=DE,根据全等三角形的性质得到DK=AB,AE=EK,EF为△ACK的中位线,求得EF=CK=(DC﹣DK)=(DC﹣AB),根据三角形的中位线得到EG=BC,FG =AD,根据三角形的周长得到即可得到结论.【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,∴EF=CK=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵AD+BC=12,AB=5,即DC﹣AB=6,∴EG+GF=3,FE=3,∴△EFG的周长是6+8=9.故选:B.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④正确.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不一定正确;∴①②④正确,故选:B.【点评】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)若最简二次根式与是同类二次根式,则a=2.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:由题意,得7a﹣1=8a+1,解得a=2,故答案为:7.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.(4分)给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是x=±2.【分析】根据题目中的新定义,可以得到相应的方程,从而可以求得相应的x的值.【解答】解:∵y=x3,∴y′=3x5,∵y′=12,∴3x2=12,解得,x=±3,故答案为:x=±2.【点评】本题考查解一元二次方程﹣直接开平方法、新定义,解答本题的关键是明确题目中的新定义,利用解方程的方法解答.13.(4分)已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B (1,2),则点C,D的坐标分别为(1,﹣3),(﹣1,﹣2).【分析】已知平行四边形ABCD两条对角线的交点坐标是坐标系的原点,平行四边形ABCD两条对角线相互平分,所以点A与点C、点B与点D关于原点对称,由于已知点A,B的坐标,故可求得C,D 的坐标.【解答】解:由题意知:点A与点C、点B与点D关于原点对称,∵点A,B的坐标分别为(﹣1,(1,∴点C,D的坐标分别是(2,(﹣1,故答案为:(1,﹣6),﹣2).【点评】本题考查平行四边形的性质与点的坐标的表示、解题的关键是掌握关于原点对称的点的特征,已知点(a,b),则其关于原点对称的点的坐标为(﹣a,﹣b).14.(4分)一个多边形从一个顶点最多可以引8条对角线,则这个多边形共有44条对角线.【分析】先由n边形从一个顶点出发可引出(n﹣3)条对角线,求出n的值,再根据n边形对角线的总条数为即可求出这个多边形所有对角线的条数.【解答】解:设这个多边形的边数是n,由题意,解得n=11,所以这个多边形共有对角线:.故答案为:44【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线及n边形对角线的总条数为是解题的关键.15.(4分)已知2,3,5,m,n五个数据的方差是2,那么8,9,11,m+6,n+6五个数据的方差是2.【分析】方差是用来衡量一组数据波动大小的量,每个数都加6所以波动不会变,方差不变.【解答】解:由题意知,原数据的平均数,则平均数变,则原来的方差S12=[(x1﹣)4+(x2﹣)2+…+(x7﹣2]=2,现在的方差S32=[(x1+6﹣﹣8)2+(x2+8﹣﹣6)2+…+(x8+6﹣﹣6)8]=[(x6﹣)2+(x2﹣)5+…+(x5﹣2)]=2.所以方差不变.故答案为:2.【点评】本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.16.(4分)如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为2或2或.【分析】分两种情况:(1)当∠BPC=90°时,①由直角三角形的性质即可得出BP=2;②当点P在边AD上,AP=DP=2时,由等边三角形的性质和勾股定理求出BP即可;(2)当∠BCP=90°时,CP=AM=,由勾股定理求出BP即可.【解答】解:分两种情况:(1)当∠BPC=90°时,①点P在AB边上时,∵∠B=60°,∴∠BCP=30°,∴BP=BC=6;②点P在边AD上,AP=DP=2时∵四边形ABCD是平行四边形,∴CD=AB=2,∠D=∠B=60°,∴DP=CD,∴△PCD是等边三角形,PC=CD=7,∴BP===2;(2)当∠BCP=90°时,如图5所示:则CP=AM=,∴BP==;综上所述:当△PBC为直角三角形时,BP的长为2或2或.故答案为:2或2或.【点评】本题考查了平行四边形的性质、勾股定理、勾股定理的逆定理,熟练掌握平行四边形的性质,在解答此题时要注意分类讨论,不要漏解.三、解答题17.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点都在格点上.(1)请按下列要求画图:①将△ABC先向右平移5个单位,再向上平移1个单位,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2;(2)若(1)所得的△A1B1C1与△A2B2C2,关于点P成中心对称,直接写出对称中心P点的坐标.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)根据中心对称的规律即可求得.【解答】解:(1)△A1B1C7如图所示.(2)△A2B2C7如图所示.(3)△A1B1C2与△A2B2C6,关于点P成中心对称,点P的坐标是(2.5.【点评】本题考查作图﹣旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(8分)解方程:(1)4(x﹣3)=3x(x﹣3)(2)x2﹣5=3x计算:(3)(4)【分析】(1)先移项得到4(x﹣3)﹣3x(x﹣3)=0,然后利用因式分解法解方程;(2)先把方程化为一般式,然后利用公式法解方程;(3)化简二次根式,然后合并即可;(4)根据二次根式的运算法则进行计算即可.【解答】解:(1)4(x﹣3)=5x(x﹣3)4(x﹣4)﹣3x(x﹣3)=6,(x﹣3)(4﹣3x)=0,所以x1=4,x2=;(2)x2﹣5=5xx2﹣3x﹣8=0,∵a=1,b=﹣2,△=(﹣3)2﹣5×1×(﹣5)=29,x==,所以x1=,x2=;(3)=7﹣2+5=9﹣2;(4)=(7﹣4)+2=﹣1+2.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查公式法解一元二次方程以及二次根式混合运算.19.(8分)如图,在平行四边形ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【分析】欲证明AF∥EC,只要证明∠F=∠E,只要证明ADF≌△CBE即可.【解答】证明:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图,根据信息解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图:(2)求电动汽车一次充电后行驶里程数的中位数、众数:(3)一次充电后行驶里程数220千米以上(含220千米)为优质等级,若全市有这种电动汽车1200辆,估计优质等级的电动汽车约为多少辆?【分析】(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)根据众数和中位数的定义解答可得;(3)用优质等级所占的百分数乘以汽车总辆数,即可解答.【解答】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)由条形图知,220千米的数量最多;100辆汽车里程数的中位数为=220千米;(3)1200×=720(辆),答:估计优质等级的电动汽车约为720辆.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.【分析】(1)设1月份到3月份销售额的月平均增长率为x,由题意得关于x的一元二次方程,求解,并保留符合题意的答案即可;(2)设三月份时该玩具的销售价格在每个40元销售的基础上下降y元,根据实际售价乘以降价后的销量等于3月份的销售额,列方程求解,并验证是否符合题意,从而问题可解.【解答】解:(1)设1月份到3月份销售额的月平均增长率为x,由题意得:40×100(2+x)2=5760∴(1+x)2=1.44∴1+x=±3.2∴x1=8.2=20%,x2=﹣4.2(舍去)∴1月份到5月份销售额的月平均增长率为20%.(2)设三月份时该玩具的销售价格在每个40元销售的基础上下降y元,由题意得:(40﹣y)(100+10y)=5760∴y2﹣30y+176=0∴(y﹣4)(y﹣22)=0∴y1=6,y2=22当y=22时,3月份该玩具的销售价格为:40﹣22=18<30,舍去∴y=7,3月份该玩具的销售价格为:40﹣8=32元∴4月份该玩具的销售价格为32元.【点评】本题考查了一元二次方程在实际问题中的应用,明确单价乘以销量等于销售额及平均增长率类型习题的计算方法,是解题的关键.22.(12分)已知关于x的一元二次方程a(2x+a)=x(1﹣x),总有两个不相等的实数根为x1,x2,设(1)求a的取值范围;(2)当a=﹣2时,求S的值;(3)当a取什么整数时,S的值为1;【分析】(1)根据方程总有两个不相等的实数根,求得△>0,解不等式即可得到结论;(2)把a=﹣2代入方程,求得方程的两根,进而求得S的值.(3)根据一元二次方程根与系数的关系即可得到关于a的不等式,从而求得a的范围,再根据S的值为1,即S2=x1+x2+2=1﹣2a+2|a|=1.即可确定a的值.【解答】解:(1)∵a(2x+a)=x(1﹣x),∴x4+(2a﹣1)x+a7=0,∵方程总有两个不相等的实数根,∴△=(2a﹣2)2﹣4a2=﹣4a+1>8,∴a<,∴a的取值范围为a<;(2)当a=﹣2时,原方程化为x5﹣5x+4=2.解得x1=4,x6=1.∴S=2+5=3.(3)∵,∴S2=x1+x6+2,∵x1+x2=5﹣2a,x1x7=a2.S2=x3+x2+2=1﹣4a+2|a|=1.当5≤a<时,5﹣2a+2a=8.当a<0时,1﹣5a﹣2a=1,舍去).即当3≤a<时,S的值为2.∵a为整数,∴a=0时,S的值为1.【点评】本题主要考查了一元二次方程的根与系数的关系,熟练掌握根序号不合适与系数的关系是解题的关键.23.(12分)新定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=60°,∠B=70°,求∠C,∠D 的度数(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论(3)已知:在“等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=10,AD=8.求对角线AC的长.【分析】(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=70°,根据四边形内角和定理求出∠C即可;(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=6,BN=DM=4,求出CN、BC,根据勾股定理求出AC即可.【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠B=70°,∴∠D=∠B=70°,∴∠C=360°﹣70°﹣70°﹣60°=160°;(2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,如图3所示:∵∠ABC=90°,∠DAB=60°,AD=3,∴∠E=30°,∴AE=2AB=20,∴DE=AE﹣AD=20﹣8═12,∵∠EDC=90°,∠E=30°,∴CD==4,∴AC===4;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,AD=6,∴∠ADM=30°,∴AM=AD=5,∴DM=AM=4,∴BM=AB﹣AM=10﹣4=6,∵四边形BNDM是矩形,∴DN=BM=7,BN=DM=4,∵∠BCD=60°,∴CN==2,∴BC=CN+BN=8,∴AC===4.综上所述:AC的长为4或4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下期中考试
(时间120分钟 总分120分)
班级 姓名
一.选择题(每小题3分,共30分)
1.如果m<n<0,那么下列结论错误的是 ( )
A 、m -9<n -9;
B 、—m>—n ;
C 、
n 1>m 1; D 、n m >1. 2.已知(x+3)2+m y x ++3=0中,y 为负数,则m 的取值范围是 ( )
A 、m<9
B 、m>9
C 、m>-9
D 、m<-9
3.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )
A 、①②
B 、②④
C 、 ①④
D 、②③
4.如图,一张矩形报纸ABCD 的长AB=a cm ,宽BC=b cm ,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,
则a ∶b 等于( )
A 、2∶1
B 、1∶2
C 、3∶1
D 、1∶3
5..如果把分式
b
a a
b +中的a 、b 都扩大2倍,那么分式的值一定( ) (第4题图) A 、是原来的2倍 B 、是原来的4倍 C 、是原来的2
1 D 、不变 6..若关于x 的方程
2121--=-+x m x x 产生增根,则m 是( ) A 、1 B 、2 C 、3 D 、4
7.如图,AB 是斜靠在墙上的一个梯子,梯脚B 距墙1.4m ,
梯上点D 距墙1.2m ,BD 长0.5m ,则梯子的长为( )
A 、3.5m
B 、3.85m
C 、4m
D 、4.2m (第7题图)
8.一个钢筋三角架三边长分别为20cm 、50cm 、60cm ,现要做一个与其相似的钢筋三脚架,而只有长为30cm 和50cm 的两跟钢筋,要求以其中的一根为一边,从另一跟截下两段(允许有余料)作为另两边,则不同的截发有( )
A 、一种
B 、两种
C 、三种
D 、四种
9.如图,测量小玻璃管口径的量具AB C ,AB 的长为12cm,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(DE ∥AB),那么小玻璃管口径DE 是 ( )
A 、8 cm
B 、10 cm
C 、20 cm
D 、 60cm
10.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( ).
A 、0.36π平方米
B 、0.81π平方米
C 、2π平方米
D 、 3.24π平方米
二.填空题(每小题3分,共15分)
11.不等式6-2x >0的解集是_ __ _____.
12.24m 2n +18n 的公因式是__________;
13. 若k b
c a a c b c b a =+=+=+。

则k= . 14.如图,在△ABC 中,点D 在AB 上,请再添一个适
当的条件,使△ADC ∽△ACB ,那么可添加的条件
是 。

(只需填写一个满足要求的条件)
15. 如图,⊿ABC 中,∠C = 0
90,CD 是斜边AB 上的高, AD = 9,BD = 4,那么 CD= ,AC = .
三.计算题(16-18每小题8分,19题5分,共29分)
16.解不等式(组),并要求把解集在数轴上表示出来。

(1) 312
5->+-x x (2) ⎪⎩⎪⎨⎧-≥-+<-x x x x 23712
1)1(334
17.分解因式 (1)
2()4()4x y x y ---+ (2) 222224)(b a b a -+
18.计算与化简
(1)计算19)1(9
61222--⨯+÷++-a a a a a a
(2)先化简再求值2
244422+--+--x x x x x 其中x=2
19. 解方程 14
222=-+-x x x
四.解答题 (7+7+7=21分)
20.如图在平面直角坐标系中,A 点坐标为(8,0),B 点坐标为(0,6)
C 是线段AB 的中点。

请问在x 轴上是否存在一点P ,使得以P 、A 、C 为顶点的三角形与△AOB 相似?若存在,求出P 点坐标;若不存在,说明理由。

21.某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

该商场为促销制定了如下两种优惠方式:第一种:买一支毛笔附赠一本书法练习本;第二种:按购买金额打九折付款。

八年级(5)班的小明想为本班书法兴趣小组购买这种毛笔10支,书法练习本 x (x ≥10)本。

试问小明应该选择哪一种优惠方式才更省钱?(要求利用一次函数与不等式(组)的知识进行解答)
22. 已知:如图,ΔABC 中,∠B=∠C=30°.请你设计三种不同的分法,将ΔABC 分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似三角形但不全等的直角三角形.请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数或记号,并在各种分法的空格线上填空.(画图工具不限,不要求写出画法,不要求说明理由).
分法一分法二分法三
分法一:分割后所得的四个三角形中,Δ≌Δ,RtΔ∽RtΔ.
分法二:分割后所得的四个三角形中,Δ≌Δ,RtΔ∽RtΔ.
分法三:分割后所得的四个三角形中,Δ≌Δ,RtΔ∽RtΔ.
五.解答题(8+8+9=25分)
23. 某市向民族地区得某县赠送一批计算机,首批270台将于近期内运到,经与某物流公司联系,得知用A型汽车每辆可运45台,B型汽车每辆可运60台,若A型汽车每辆运费为350元,B型汽车每辆运费为400元,若运送这批计算机同时用这两种型号得汽车,其中B 型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A,B两种型号汽车各多少辆?运费是多少元?
24.新域广场省政府办公楼前,五星红旗在空中飘扬,同学们为了测出旗杆的高度,设计了三种方案,如图(1),图(2),图(3)所示,并测得(1)中,BO=60米;OD=3.4米,CD=1.7米;图(2)中,CD=1米,FD=0.6米,EB=18米;图(3)中,BD=90米,EF=0.2米,此人的臂长(GH)为0.6米。

请你任选其中的一种方案。

(1)说明其运用的物理知识。

(2)利用同学们实测的数据,计算出旗杆的高度。

25. 如图,点C,D在线段AB上,且△PCD是等边三角形。

(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PBD;
(2)当△ACP∽△PBD时,试求∠APB的度数。

相关文档
最新文档