《概率论》1.1-1.2
概率论知识点
第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间: 概率论术语。
我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。
样本空间的元素,即E 的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。
互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。
互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。
第1章 概率论的基本概念
试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )
交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。
1.1-1.2 随机试验 样本空间、随机事件
S4 {1, 2, 3, 4, 5, 6}.
E5: 记录某公共汽车站某日
上午某时刻的等车人数.
S5 {0, 1, 2, }.
E6:在一批灯泡中任意抽取一只,测试它的寿命.
S6 : {t | t 0}
E7: 考察某地区一昼夜最高和最低气温.
S7 {( x , y ) T0 x y T1 }.
概率论的基本概念
第一节 随机试验
重点: 概率论的主要研究对象; 随机试验的概念
一、自然界所观察到的两类现象
1. 确定性现象
在一定条件下必然发生的现象 称为确定性现象. 实例
“太阳从东边升起”,
“水从高处流向低处”, “同性电荷必然互斥”,
特征
2. 随机现象
实例1 “在相同条件下掷一枚均匀的硬币, 观察正反两面 发生的情况”. 结果有可能:发生正面、反面.
的结果有一定的规律性——称为统计规律性.
定义 在个别试验中其结果呈现出不确定性,在大量重复 试验中其结果又具有统计规律性的现象,称为随机现象.
特征
说明
研究对象 ——概率论就是研究随机现象统计规律性的一
门数学学科.
研究方法 ——将随机试验的结果数量化.
样本空间(集合)、概率、随机变量(函数)等.
二、随机试验(Experiment )
数。
E 4 :抛一枚骰子,观察出现的点数。
E 5 :记录某城市 120 急救
电话台一昼夜接到的呼唤次数。
在一批灯光中任意抽 E6 : 取一只,测试它的寿命。
E 7 :记录某地一昼夜的最高气温和最低气温。
定义: 随机试验是指具有以下三个特征的试验:
1. 可以在相同的条件下重复地进行; 可重复性 2. 每次试验的可能结果不止一个,并且能事先明确试 可知性 验的所有可能结果;
概率论第一章PPT课件
事实上,A={4,8},B={2,4,6,8,10}。
2021/3/24
-
26
AB Ω
事件的相等
若A B且B A ,则称事件A 与事件B 相等,记作A=B。
2021/3/24
-
27
2.事件的和(并)
我们称“事件A与事件B至少一个发生”的事件 为事件A与事件B的和事件,记作A+B(或A∪B)。
对于随机现象,人们经过长期实践并深入研究之后, 发现这类现象在大量重复试验或观察下,它的结果会呈现 某种规律性,这种规律性我们称之为统计规律性。
概率论就是研究和揭示随机现象统计规律性的一门数 学学科;数理统计是以概率论为基础,研究如何通过观察 和试验认识自然规律和社会规律的一门方法论学科。
2021/3/24
A
B
2021/3/24
-
25
§1.1.3 事件的关系及运算
设A,B,…,是随机试验E的事件,Ω是E 的样本空间。
1. 事件的包含关系
若事件A发生必然导致事件B发生,则称事件A包含于
事件B或事件B包含事件A,记作 A B。
例如,在例1.2中,若令
A={抽到能被4整除的号码},
B={抽到偶数号码},
件
特殊事件
试验最直接的可能结果
由若干个基本事件共同 在一起才能表达的结果
必然事件 不可能事件
每次试验必然发 生的结果,记 为Ω
每次试验必不发生的 结果,记为
2021/3/24
-
24
从集合的角度看
显然,样本空间是以基本事件为元素的集合,复 杂事件是样本空间的至少包含两个元素的真子集, 基本事件就是一个单点集,必然事件就是样本空间, 不可能事件是样本空间的空子集。
第1章 概率论的基本概念.
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC
概率第一章
第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。
1概率论的基本概念
[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …
何书元概率引论答案
何书元概率引论答案何书元概率引论答案【篇一:课程名称:概率论计划学时45】=txt>上课时间:周二3-4节;周四(单周) 1-2节地点:文史201 任课教师:任艳霞(教授)办公室:理科1号楼1381email:基本目的:1、对随机现象有充分的感性认识和比较准确的理解。
2、联系实际问题,初步掌握处理不确定性事件的理论和方法。
教材: 何书元,《概率论》, 北京大学出版社2006年参考书1、汪仁官,《概率论引论》,北京大学出版社19942、李贤平,《概率论基础》(第二版),高等教育出版社,19973、钱敏平、叶俊,《随机数学》,高等教育出版社,20044、sheldon ross, a first course in probability (7thedition)教学安排:第一章古典概型与概率空间(10学时)1) 随机事件及古典概型(1.1-1.2节)(2学时)2) 几何概型、概率空间与概率的性质(1.3-1.5节)(2学时)3) 条件概率和乘法公式(1.6节)(2学时)4) 独立性、全概率公式、bayes公式(1.7-1.8节)(3学时)5) 概率模型举例与概率空间续(1.8-1.9节)(1学时)第二章随机变量与概率分布(9学时)1) 一维随机变量定义、离散型随机变量(2.1-2.2节)(2学时)2) 连续型随机变量(2..3节)(2学时)3) 概率分布函数(2.4节)(2学时)4) 随机变量函数的分布(2.5节)(2学时)5) p分位点(2.5节)(1学时)第三章随机向量及其分布(8学时)1) 随机向量及其分布、离散型随机向量及其分布(3.1-3.2节)(2学时)2) 连续型随机向量及其联合密度(3.3节)(2学时)3) 随机向量函数的分布(3.4、3.6节)(2学时)4) 条件分布和条件密度(3.5节)(2学时)第四章数学期望与方差(8学时)1) 数学期望(4.1-4..2节) (3学时)2) 方差(4.3节)(1学时)3) 协方差与相关系数(4.4节)(2学时)4)条件数学期望(2学时)第五章概率极限理论(10学时)1) 概率母函数与特征函数(5.1-5.2节)(2学时)2) 多元正态分布(5.3节)(2学时)3) 大数律(5.4节) (2学时)4)中心极限定理(5.5节)(2学时)5)随机变量收敛性介绍(2学时)【篇二:2011f_master】目)招生简章北京大学数学科学学院金融数学系成立于1997年,目前已形成从本科到硕士和博士的应用数学专业金融数学与精算学方向的较为系统和有品质的培养体系。
概率论 第一章1.1-1.2
河南理工大学精品课程 概率论与数理统计
16
2007 Henan Polytechnic University
英国的逻辑学家和经济学家杰文斯曾 对概率论大加赞美:“ 概率论是生活真正 概率论大加赞美: 大加赞美 的领路人, 如果没有对概率的某种估计 那 的领路人 如果没有对概率的某种估计, 么我们就寸步难行, 无所作为. 么我们就寸步难行 无所作为
14 2007 Henan Polytechnic University
河南理工大学精品课程 概率论与数理统计
3. 寻求最佳生产方案要进行《实验设计》 寻求最佳生产方案要进行《实验设计》 数据处理》 和《数据处理》; 4. 电子系统的设计 火箭卫星的研制及其 电子系统的设计, 发射都离不开《可靠性估计》 发射都离不开《可靠性估计》; 5. 处理通信问题 需要研究《信息论》; 处理通信问题, 需要研究《信息论》 6. 探讨太阳黑子的变化规律时 《时间 探讨太阳黑子的变化规律时,《 序列分析》方法非常有用; 序列分析》方法非常有用
河南理工大学精品课程 概率论与数理统计
10
2007 Henan Polytechnic University
概率论产生于17世纪, 概率论产生于 世纪,本来是由保险事业发 世纪 展而产生的,但是来自赌博者的请求, 展而产生的,但是来自赌博者的请求,却是数学 家们思考概率论问题的源泉. 早在1654年,有一个 家们思考概率论问题的源泉 早在 年 赌徒梅勒向当时的数学家帕斯卡提出了一个使他 苦恼了很久的问题: 苦恼了很久的问题: “两个赌徒相约赌若干局,谁先赢m局就算获 两个赌徒相约赌若干局,谁先赢m 全部赌本就归胜者, 胜,全部赌本就归胜者,但是当其中一个人甲赢 a(a<m)局的时候 赌博中止, 局的时候, 了a(a<m)局的时候,赌博中止,问赌本应当如何 分配才算合理? 分配才算合理?”
概率论第一二章随机变量随机事件
数.
注: 1. 满足非负性,规范性,有限可加性. 2. 大数定理(n足够大,频率稳定于概率)
17
华中科技大学管理学院
2.古典型概率(等可能事件的概率)
1)古典概型(试验):
(1)有限性: Ω = {ω1 , ω 2 ,L , ω n } (2)等可能性: P (ω1 ) = P (ω 2 ) = L = P (ω n ) =
样本空间:随机试验E的所有可能结果组成的集合,记 Ω 例: Ω1={ H,T } 注意:样本空间的元素是由实验的目的决定的。 例:将一枚硬币连抛三次 1) 观察正反面出现的情况, Ω1 ={HHH,HHT……} 2) 观察正面出现的次数, Ω2 ={0,1,2,3} 样本点:样本空间中的元素,记为w
1
21
华中科技大学管理学院
例2、(会面问题)甲、乙二人约定在12点到下午5点之 间在某地会面,先到者等一个小时后即离去,设二人在这 段时间内的各时刻到达是等可能的,且二人互不影响。求 二人能会面的概率。 解: 以 x , y 分别表示甲、乙二人到达的时刻,于 是 0 ≤ x ≤ 5, 0 ≤ y ≤ 5. y
(1)非负性: 0≤P(A) ≤1; (2)规范性: P(Ω)=1; (3)可列可加性: A1 , A2 ,L两两互不相容 ,则
P ( U An ) = ∑ P ( An ).
n =1 n =1 ∞ ∞
12
华中科技大学管理学院
3. 概率的性质
(1) P(Φ)=0;
Pk)∑ (AP =A U (k).
注: 满足非负性,规范性,可列可加性.
20
华中科技大学管理学院
例1、从区间(0,1)中任取两个数,则两数之积小于
xy = 1 4
《概率论与统计原理》第1章
P (A ) P ( B A )
i
i 1
i
n
例13 两台车床加工同样的零件,第一台的废品率为 0.04,第二台的废品率为0.07,加工出来的零件混 放,并设第一台加工的零件是第二台加工零件的2 倍。现任取一零件,求它是的合格品的概率。
1.5.4 贝叶斯公式
设 Ai ( i =1,2,…,n)是样本空间的一个划分,且 P( Ai )>0,则对任意事件 B,有
例10 已知P(A)=P(B)=P(C)=1/4,P(AC) =P(BC)=1/16,P(AB)=0,求事件A,B,C都 不发生的概率。
§1.5
条件概率和事件的独立性
1.5.1 条件概率 在事件 B 发生的条件下,事件 A的条件概率为
P( AB) P( B A) P( A) 理解条件概率的意义
第一章 事件的概率
§1.1 随机事件和样本空间
1.1.1 随机现象与随机试验 1、确定性现象和随机现象
确定性现象是指在一定条件下必然会发生的现象
随机现象是指在一定条件可能发生也可能不发生的 现象,其出现的结果不确定 概率论研究的主要问题就是随机现象的规律性
2、随机试验
对随机现象的观察称为随机试验,简称为试验,用 字母E来表示 随机试验的特点: (1)可重复性 试验在相同的条件下可以重复进行
(2)可观测性 每次试验的可能结果不止一个,而且 事先能明确试验的所有可能结果
(3)随机性 在每次试验之前不能准确预知将会出现 的结果 一些随机试验的例子: E1:掷一颗均匀对称的骰子,观察出现的点数
E2:记录一段时间内某城市110报警次数 E3:从含有三件次品a1,a2,a3和三件正品b1,b2, b3的六件产品中,任取两件,观察出现正品和次品 的情况 E4:从一批电脑中任取一台,观察无故障运行的时 间 E5:设平面上有一簇间距为a的平行线,现反复用一 枚长度为l(l<a)的针投掷下去,投掷n次后,观察 针与平行线相交的数目 E6:向坐标平面区域D:x2 +y2≤100内随机投掷一点 (假设点必落在D内),观察落点M的坐标
数学基础-概率论01(离散型分布)
数学基础-概率论01(离散型分布)⽬录:1.离散型1.1 单点分布单点分布(one-point distribution)亦称⼀点分布,或称退化分布,是⼀种最简单的离散型分布。
假如随机变量X仅取数值a,即P{X=a}=1,则称随机变量X服从单点分布或退化分布。
单点分布的均值E(x)=a,⽅差Var(x)=0。
如果随机变量X有有限均值和零⽅差,则随机变量X服从单点分布。
概率函数:$$P(x)= \begin{cases} {1}, & \text {x=a} \\ 0, & \text{x!=a} \end{cases}$$期望值$E(X)=a$;⽅差 $Var(X)=0$特点:该分布下数据衡等于a1.2 两点分布两点分布( two-point distribution)即“伯努利分布”或者0-1分布,是⼀个离散型概率分布。
在⼀次试验中,事件A出现的概率为P,事件A不出现的概率为q=1-p概率函数:$$P(x)= \begin{cases} p, & \text {x=a} \\ q, & \text{x=b} \end{cases}$$两点分布的均值$E(X)=pa+qb$,⽅差$V(X)=pq(a-b)^2$。
特点:该分布下数据仅有两个可取值,且任意⼀次随机,取a或b的概率不变1.3 均匀分布离散型均匀分布是⼀个离散型概率分布,其中有限个数值拥有相同的概率,典型的如抛硬币,掷⾊⼦概率密度函数:期望:$E(X)=\int_{-\infty}^{\infty} xf(x) dx=\int_{a}^{b} \frac{x}{b-a}dx=\frac{b-a} {2}$⽅差:$V(X)=\frac {(b-a)^2} {12}$特点:1.4 ⼆项分布⼆项分布就是重复n次独⽴的伯努利试验,在每次试验中只有两种可能的结果,⽽且两种结果发⽣与否互相对⽴,并且相互独⽴,与其它各次试验结果⽆关,事件发⽣与否的概率在每⼀次独⽴试验中都保持不变,则这⼀系列试验总称为n重伯努利实验,当试验次数为1时,⼆项分布服从0-1分布。
1-1节和1-2节
积事件也可记作
A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,因此“产品合格”是 “长度合格”与“直径合格”的交或积事件. 图示事件A与B 的积事件.
A AB
B
推广 称 Ak 为n 个事件 A1 , A2 , , An 的积事件,
k 1
n
即A1 , A2 ,, An同时发生;
察出现的点数”.
“1”, “2”, “3”, “4”, “5” 或 “6”
实例4
“从一批含有正
其结果可能为:
品和次品的产品中任意抽
取一个产品”.
正品 、次品.
实例5
“过马路交叉口时,
可能遇上各种颜色的交通
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短.
随机现象的分类
个别随机现象:原则上不能在相同条件下重
称为事件 A 与事件B的和事件记作A B,显然 . A B { | A或 B}. 实例 某种产品的合格与否是由该产品的长度与 直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. A B 图示事件 A 与 B 的并.
, 推广 称 Ak 为 n 个 事 件 A1 , A2 , , An 的 和 事 件即
领域的趋势还在不断发展. 在社会科学领 领域 , 特别是经济学中研究最优决策和经
济的稳定增长等问题 , 都大量采用《概率 统计方法》. 法国数学家拉普拉斯(Laplace) 说对了: “ 生活中最重要的问题 , 其中绝大 多数在实质上只是概率的问题.” 英国的逻辑学家和经济学家杰文斯 曾对概率论大加赞美:“ 概率论是生活真正
( A B ) C ( A C ) ( B C ) ( A C )( B C ).
概率论主要内容概括1-3
21
概率密度函数的两个性质
连续型的概率非负性和概率完备性表现为 (1)非负性 :f(x) 0,(- <x< +);
= (2)归一性: f ( x)dx 1.
f(x)
f ( x )dx 1
0
x
22
分布函数F(x)性质F(x)=P(Xx), -<x<
(1) 0 F ( x) 1, 对一切x R成立 (2) F ( x)是x的不减函数, 即 任给x1 , x2 R, x2 x1有 F ( x2 ) F ( x1 ) (3) F () lim F ( x) 0
通常求出随机变量的分布并不是一件容易的事, 而人 们更关心的是用一些数字来表示随机变量的特点, 这 些与随机变量有关的数字, 就是随机变量的数字特征. 最常用的数字特征为数学期望, 方差等。
26
期望
EX xk pk
k 1 n
EX
xf ( x)dx
(1)E(c)=c; (2)E(aX)=aE(X); (3)E(X+b)=EX+b;
有利于A的基本事件数 m P( A) 试验的基本事件总数 n
7
概率公理化定义
注意到概率古典定义和频率定义都具有非负性、 正则性、可加性。 1933年,前苏联数学家柯尔 莫哥洛夫通过规定概率应具备的基本性质给出 一般性的公理化定义。 定义:设试验E的样本空间为Ω,对于试验E 的每 一个事件A ,即对于样本空间Ω的每一个子集A, 都赋予一个实数P(A),若P(A)满足下面3条公理: 公理1:对任何事件A,有P(A)≥0。 (非负性) 公理2:对于必然事件Ω, P(Ω)= 1。(正则性) 公理3:对于任意可列个互斥事件A1,A2,…,An, …, 满足P(ΣAi)= ΣP(Ai)。(可列可加性) 则称实数P(A)为事件A的概率。
概率论第一章 概率论的基本概念 PPT
试验者
n
nA
fn (A)
德.摩根
2048
1061
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
K.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有
放回地进行重复抽球,观察抽出红色球的次数。
基本事件:随机事件仅包含一个样本点ω,单点子集{ω}。 复合事件:包含两个或两个以上样本点的事件。
事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。
如,在试验E1中{H}表示“正面朝上”,就是个基本事件。
两个特殊的事件
必然事件:Ω; 不可能事件:φ.
既然事件是一个集合,因此有关事件间的关系、 运算及运算规则也就按集合间的关系、运算及运算规 则来处理。
如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况; E2: 掷一颗骰子,观察出现的点数; E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差;
E6: 在区间0,1上任取一点,记录它的坐标。
1.1.3 随机事件与样本空间
v样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. v样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
例1-2:
分别写出例1-1各试验 Ek 所对应的样本空间
概率论1-1,2,3
35
一、 频率(Frequency)
设在 n 次试验中,事件 A 发生了m 次, 则称
m f n 为事件 n
A 发生的 频率
频率稳定性
在充分多次试验中,事件的频率总 在一个定值附近摆动,而且,试验次数 越多,一般来说摆动越小. 这个性质叫 做频率的稳定性.
36
频率稳定性的实例
蒲丰( Buffon )投币
① 古典定义 ② 统计定义
概率的最初定义
基于频率的定义
③ 公理化定义
1930年后由前 苏联数学家柯尔莫哥洛夫给出
即通过规定概率应具备的 基本性质来定义概率.在此基础 上建立起了概率论的宏伟大厦.
46
二、概率的公理化定义
设E是随机试验,S是它的样本空间,对 于S中的每一个事件A,赋予一个实数,记为 P(A) ,称为事件A的概率,如果集合函数 P( ) 满足下述三条公理: 公理1 0 P(A) (1) 1 公理2 P(S)=1 (2) 公理3 若事件A1, A2 ,… 两两互不相容,则有 P ( A1 A2 ) P ( A1 ) P ( A2 ) (3) 这里事件个数可以是有限或无限的 .
事件发生的可能性 越大,概率就 越大!
31
了解事件发生的可能性即概率的 大小,对人们的生活有什么意义呢?
我先给大家举几个例子,大家再补 充几个例子.
32
例如,了解发生意外人身事故的 可能性大小,确定保险金额.
33
了解来商场购物的顾客人数的各种 可能性大小,合理配置服务人员.
34
了解每年最大洪水超警戒线可能 性大小,合理确定堤坝高度.
E1 : 投一枚硬币3次,观察正面出现的次数
1 {0,1,2,3}
概率论-第一章1.1-1.2小节
设A为随机事件,如果试验的结果ω属于A,则称
事件A发生.即
事件A发生
试验的结果 A
我们称一个随机事件发生当且仅当它所包 含的一个样本点在试验中出现。
随机事件与集合
样本空间 = { } :全集
样本点 : 中的元素
A A
随机事件 A :由具有某些特性的样本点 所组成 的样本空间 的一个子集,即 A .
概率论就是研究随机现象这种本质规律的一门数 学学科.
接下来,如何来研究随机现象?
随机现象是通过随机试验来研究的.
问题
什么是随机试验?
凡是对现象的观察或为此而进行的实验, 都称之为试验。
注:这里试验的含义十分广泛,它 包括各种各样的科学实验,也包括 对事物的某一特征的观察。
§1. 随机试验(Random Experiment)
定义 随机试验E的所有可能结果组成的集合 称为E的样本空间, 记为S={ω}
E的一个可能的结果,称为样本点(Sample point) 由一个样本点组成的单 点集,称为基本事件
S
随机试验的例子及其样本空间表示
E1:抛一枚硬币,观察正面H反面T的出现情况;
S1 H , T
E2:抛一枚硬币两次,观察正面H反面T的出现情况;
即每次试验一定不发生的事件.
例. 将一颗骰子抛掷若干次,直到掷出的点数之 和超过 2 为止.
写出样本空间与事件A ={恰好抛掷骰子一次} .
解: = { 3 , 4 , 5 , 6 , 12 , 13 , 14 , 15 , 16 , 21 , 22 , 23 , 24 , 25 , 26 , 111 , 112 , 113 , 114 , 115 , 116 } A={3,4,5,6}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计分二个部分:
概率论: 建立概念、理论和方法; 理论性较强.
数理统计: 在前者基础上,建立应用方法,实用性较强. 该课程是: 研究和揭示随机现象的统计规律性的一门数学学科.
随机现象: 不确定性现象;
统计规律性: 硬币例子….
数学学科: 用到微积分、代数等.
应用: 工、农、科技、国民经济、社会经济、日常生活等,….
应用小例:
1.抓阄问题: 为什么不分先后?
2.机枪射击飞机问题: 单发子弹的命中率很小,但大量重复射击,则命中的机会就大多了.为什么?
3. 80台同类型设备独立工作,出故障率为1%,一台设备出故障能由一人维修.今用二种方式维护这80台设备:
方式一:由4人维护,每人负责20台;
方式二:3人共同维护这80台.
问哪种方案效果好?
4.一家保险公司在某年中有10000人投保,每人付12元保险费.一年中人的死亡率为6‟,死亡时其家属可从保险公司领赔偿金1000元.问该保险公司该年中盈利如何?
预备知识:排列、组合、集合论基础
高等数学,线性代数(次要)学习这一课程,要求大家掌握本课程的基本概念和基本方法,能处理一些简单的随机现象问题,具有初步分析和解决实际问题的能力.
第一章随机事件及其概率
1.1 随机试验、样本空间
一.随机现象
在自然界里,在生产实践和科学实验中,人们观察到的现象大体上可归结为二类:
一类如:①重物在高处释放,总是下落到地面;
②一个大气压下,水在100℃时总会沸腾;
③同性电荷必互斥.
这种在一定条件下,可以预言的,或者说必然会出现的现象称为必然现象. 早期的科学就是研究这一类现象的规律性,所用的数学工具如:数学分析、几何、代数、微分方程等是大家所熟悉的.
另一类现象如:
①掷一个硬币,其结果可能是正面朝上或反面朝上;
②新生婴儿可能是男或女;
③开炮之前无法知道弹着点的确切位置;
④抓阄试验,事先各人不知自己将抓到的确切结果.
这类现象事先无法预知其确切结果, 或者说在相同条件下, 重复进行试验, 每次结果未必相同, 称这类现象为随机现象.
这类现象在一次观察或试验中,其结果具有不确定性. 但人们经过长期实践并深入研究后,发现这类现象在大量重复观察或试验中,它的结果却呈现出某种规律性.如:
①多次重复掷一个均匀硬币,得正面朝上次数约占总次数的一半. 如K·Pearson 做了24000次试验,得12012次正面朝上;
②从我国的人口统计来看,男女出生率大致相等.
概率统计这一学科就是研究和揭示随机现象的
这种规律性的. 研究随机现象时,常要做各种各样的试验.
二.随机试验
“试验”:包括各种科学实验及对随机现象的观察. 下面举一些试验的例子:
E1:掷一枚硬币,观察正面H、反面T出现的情况; E2:将一枚硬币连掷二次,观察H、T 出现的情况; E3:掷一颗骰子,观察出现的点数;
E4:记录某电话总机一分钟内收到的呼叫次数;
E5:在一批灯泡中任取一只,测试它的寿命(小时). 以上试验具有如下特点:
1°可以在相同的条件下重复进行;
2°每次试验的可能结果不止一个, 且能事先明确试验的所有可能结果;
3°进行一次试验之前,不能确定哪一个结果会出现.
在概率论中, 称具有以上三个特点的试验为随机试验,以后简称试验.
我们是通过研究随机试验来研究随机现象的.
三.样本空间
将试验E的所有可能结果组成的集合,称为试验E的样本空间,记为S.样本空间的元素称为样本点.
下面是样本空间的例子(对应前面的试验E i):
S1={H,T};
S2={HH,HT,TH,TT};
S3={1,2,3,4,5,6};
S4={0,1,2,…};
S5={t∣0
t}.
注:样本空间的元素是由试验的目的所确定的.
1.2 随机事件
一.随机事件
对于试验E,样本空间为S,A为S的任一子集,称A为E的随机事件,简称事件.且有S
A⊂.
在一次试验中,称
事件A发生⇔A中的一个样本点出现.
如:掷二颗骰子,考察点对出现的情况.这时
S={(m,n)|m,n=1,2, (6)
A={(m,n)|m=n,n=1,2,…,6} 是一个事件,若掷的结果是(2,2),则说事件A发生了.
又如:灯泡寿命试验E, S={t|t≥0},考虑事件
B={t|t≥1000}
若测试的一个灯泡寿命是1500小时,则说B发生了.
特殊事件有:
基本事件:由一个样本点构成的单点集.
必然事件:样本空间S,在每次试验中必然发生.
不可能事件:空集φ,在每次试验中都不发生. 二.事件的关系与运算
1°B
A⊂:称事件B包含了事件A,即A的每一个样本点都包含在B中.
此时, 若A发生⇒ B发生.
φ.
显然S
A⊂
⊂
A=B: 若B
B⊂.称A与B相等.
A⊂且A
2°x
⋃∣A
∆
B
A{
x∈}, 称为事件A与B
x∈ or B
的和事件.如:
S={HH,HT,TH,TT}
A∆{HH,HT}, B∆{HH,TT}
则 A∪B={HH,HT,TT}.
A∪B发生⇔ A,B中至少有一个发生.
n 个事件n A A ,,1 的和事件: n
i i A 1=.
可列个事件 ,,21A A 的和事件: ∞
=1i i A .
3°x B A {∆⋂∣A x ∈且}B x ∈, 称为事件A 与B 的积事件.简记为AB.
如2°中的A,B, 则A ∩B={HH}.
A ∩
B 发生 ⇔ A,B 同时发生.
n 个事件n A A A ,,,21 的积事件: n
i i A 1=.
可列个事件 ,,21A A 的积事件: ∞=1i i A .
4°对于样本空间S ,事件A,B,若S B A =⋃,φ=⋂B A ,则称B 为A 的对立事件(or:逆事件),记为A ,即 B A =.
5°x B A {∆-|A x ∈且}B x ∉,称为A 与B 的差事件. 如:2°中A,B,则差事件A-B={HT}.
A- B 发生 ⇔ A 发生但B 不发生.
A S A -=;
B A AB A B A =-=-.
6°若φ=AB ,则称A 与B 互不相容,即A 与B 不能同时发生.
对于n 个事件n A A A ,,,21 ,若
φ=j i A A , j i ≠, n j i ,,2,1, =, 则称这n 个事件两两互不相容.
事件运算顺序:先逆、后积运算,再和运算,有括号者先算括号.
事件运算规律:
交换律: A B B A ⋂=⋂, A B B A ⋃=⋃ 结合律: )()(C B A C B A ⋂⋂=⋂⋂
⋃
A⋃
⋃
⋃
)
B
=
)
C
(C
(
B
A
分配律: )
⋃
A⋂
B
⋂
⋃
⋂
C
=
(C
)
A
(
(
)
B
A
A⋃
B
⋂
⋃
C
⋂
=
⋃
A
)
)
A
(
(
(C
B
)
德莫根律: B
B
A⋃
A
⋂.
=
⋃, B
B
A
A⋂
=
注:事件间的关系与运算常借用Venn图作直观分析.例1设A、B、C为三个事件,用A、B、C的运算关系表示下列各事件:
1)A、B都发生,而C不发生;
2)A、B、C都发生;
3)A、B、C中不多于一个发生;
(等价说法:至少有两个不发生.)
4)A、B、C中至少有两个发生.
5)正好有二个事件发生.
例2设一个工人生产了四个零件,A i表示事件“他生产的第i个零件是正品”,i=1,2,3,4. 试用A i表示下列各事件:
1)没有一个产品是次品;
2)至少有一个产品是次品;
3)只有一个产品是次品;
4)至少有三个产品不是次品.。