第4章 扭转
材料力学 第四章 扭转
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m
或
P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:
由
Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103
第四章 扭转(张新占主编 材料力学)
2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到
切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用
第四章:扭转
T Ip
——切应力公式
扭转
4、圆轴扭转时横截面上的最大切应力
max 发生在横截面周边上各点处
max
T max TR T Ip Ip Ip R
max
取 I p /R = Wt —抗扭截面系数 最大切应力: max
max
O
T
T Wt
注意: 以上公式只适合于扭转圆轴, 且材料服从胡克定律。
R γ l
剪切胡克定律:
当切应力不超过材料的剪切比例极 限,切应力与切应变成正比,即:
Gγ
G ——剪变模量
对各向同性材料,E, , G 之间关系: G
E 2(1 )
扭转
四、圆轴扭转时的应力 1、实验现象:
圆周线——形状、大小、
间距不变,各圆周线绕轴 线相对转动了一个角度。
横截面上的最大切应力
max
T 1000 6 Pa 41.7 10 Pa 41.7 MPa 6 Wt 24 10
扭转
例4-4 如图所示,圆轴 AB的 AC 段为空心,CB段为实 心。已知 D 3cm、 d 2cm ;圆轴传递的功率 P 7.5kW,转速 n 360 r/ min。试求 AC及CB段的 Me Me 最大与最小切应力。 解:(1)计算扭矩
许用切应力
u
n
max
u s u b
T
max
塑性材料 脆性材料
对等截面圆轴
Wt
圆轴强度计算可解决工程中的三类问题:
(1)强度校核;(2)截面设计;(3)确定许用载荷。
扭转
例4-5 如图阶梯轴, d1 80mm、d 2 50mm;外力偶矩 M 2 3.2 kN m 、M 3 1.8kN m; M 1 5 kN m 、 材料的许用切应力[ ] 60 MPa 。试校核该轴强度。
材料力学第四章 扭转
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
材料力学第4章扭转
(2)计算扭矩
从受力情况看,在轴的AB,BC,CD三段内,各横截面上的扭矩是不相等的。
现在用截面法,根据平衡方程计算各段内的扭矩。 在AB段,用截面1—1截取,取左段为研究对象,并假设该截面上的扭矩T1为 正,如图4.5(c)所示。由平衡方程 MA+T1=0 于是有 T1=-MA=-1 910 N²m ,得
相反的切应力′,于是组成力偶矩为(′dxdz)dy的力偶。根据平衡方 程 ,得 ′dxdz)dy
( dydz)dx=( 于是
如图4.7(a)所示的单元体在其两对相互垂直的平面上只有切应力而无正应力 。这种应力状态称为纯剪切应力状态。显然,薄壁圆筒发生扭转时处于纯剪
切应力状态。由于这种单元体的前、后两平面上无任何应力,所以可将其改
图4.3 根据平衡方程 ,即
T-Me=0
得 T=Me
显然,若截取后取右段为研究对象,则在同一横截面上可求得扭矩的数值大
小相等而方向相反。为使同一横截面上的扭矩正、负号一致,对扭矩的符号 规定如下:按右手螺旋法则确定扭矩矢量T,当T的指向与横截面的外法线方
向一致时,扭矩为正(见图4.4(a)),反之,为负(见图4.4(b))。
依据上述分析,可知薄壁圆筒的扭转时,横截面上各处的切应力值均相等, 其方向与圆周相切。由于横截面上的扭矩都是该截面上的应力与横面积dA之 乘积的合成,如图4.6(d)所示,可得
所以
(2)切应力互等定理 在承受扭转的薄壁圆筒上,用两个横截面、两个径向截面和两个圆柱面截取 出边长分别为dx,dy,dz的单元体,并放大为图4.7(a)所示。单元体的左、 右两侧面是圆筒横截面的一部分,所以有切应力。切应力值根据公式(4.2) 计算,数值相等但图4.7方向相反,于是组成一个力偶矩为( dydz)dx的力偶 。为保持平衡,单元体的上、下两个面必须有切应力,并组成力偶以与力偶 ( dydz)dx相平衡。由 可知,上、下两个面上存在大小相等、方向
材料力学 第4章_扭转
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学 第4章扭转变形
1、T为横截面上的扭矩
max
2、Ip为截面参数,取决于截面形状 与尺寸 3、ρ为所求点距圆心距离。
d 2
max
最大切应力
r
max
d
T Tr T I p I p / r Wp
Wp Ip r
称为抗扭截 面系数
最大扭转切应力 发生在圆轴表面
同样适用于空心圆截面杆受扭的情形
T3
3 3
MD D x
(2)2-2截面上的应力计算
由扭矩图得知T2=-9.56kNm T IP 9560 40 10 3 26.6MPa 4 12 π 110 10 / 32 (2) 强度计算 危险横截面在AC段,Tmax=9.56kNm
τ max Tmax 9560 36.6MPa 3 9 WP π 110 10 / 16
T1 2M
M
A
C
T
M
x
2M
§4-3 圆轴扭转横截面上的应力
问题分析与研究思路
M
1
2
T M
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。 连续体的静不定问题 。 分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件 几何方面:实观观测 合理假设
连续体的变形协调条件(数学公式)
D3
IP
D4
32
, WP
D3
16
4-4 圆轴扭转强度条件与合理设计
一、扭转失效 低碳钢扭转破坏
塑性材料扭转失效时,先发生屈服,最终沿横截面 断裂。
铸铁扭转破坏
脆性材料扭转失效时,变形很小,最终沿与轴线成 45°螺旋面断裂。
理论力学第四章扭转
内力T称为截面n-n上的扭矩。
Me
Me
x T
Me
扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为 负值。
+
T
-
扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
4
32 7640180 80109 π 2 1
86.4 103 m 86.4mm
d1 86.4mm
4.直径d2的选取
按强度条件
A M e1 d1
B d2 C
M e2
M e3
3 16T 3 16 4580
②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
结论:
0, 0
横截面上
0 0
根据对称性可知切应力沿圆周均匀分布;
t D, 可认为切应力沿壁厚均匀分布, 且方向垂直于其半径方向。
t
D
微小矩形单元体如图所示:
①无正应力
②横截面上各点处,只产生垂 直于半径的均匀分布的剪应力
强度计算三方面:
① ②
校核强度:
max
Tm a x WP
设计截面尺寸:
WP
Tmax
[ ]
[ ]
Wt
实:D3 16 空:1D6(3 1 4)
③ 计算许可载荷: Tmax WP[ ]
例4.2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。 材料的许用切应力[t ] = 80MPa ,试校核该轴 的强度。
《材料力学》第四章 扭转
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学:第四章 扭转
回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题
材料力学-第4章 扭转
材料力学-第4章 扭转
圆轴扭转横截面上的应力
变 形
O
dx
ρ
R A
d
O’
( ) G G
d
dx
应变特征
B B´
A
B B´
应力分布
C
C
D D´
D D´
应力公式
BB Rd G G G AB dx
19
材料力学-第4章 扭转
圆轴扭转横截面上的应力
材料力学
第四章 扭 转
1
材料力学-第4章 扭转
内容提纲:
• • • • • • • • 概述及示例 外力偶矩、扭矩和扭矩图 圆轴扭转横截面上的应力 圆轴扭转破坏与强度条件 圆轴扭转变形与刚度条件 扭转静不定问题 非圆截面轴扭转 薄壁杆扭转
2
材料力学-第4章 扭转
概述及示例
3
材料力学-第4章 扭转
9
材料力学-第4章 扭转
扭力偶矩计算与扭矩
• 在工程中,功率常用千瓦 Pkw (kW) 或马力 P 给出,角 速度用转速 n(r/min (转/分钟)) 给出,则外力偶矩的计算 公式为
PkW M e 9549 nr /min M e 7024 P 马力 nr /min
1 Pkw (千瓦) 1000 N m /s 1 P (马力) 735.5 N m /s
45o
32
材料力学-第4章 扭转
圆轴扭转破坏与强度条件
从破坏类型可见,对于脆性材料(如铸 铁),其破坏机理是斜截面上的最大拉应力 因此,本质上讲,应对斜截面上的正应力 进行强度计算。然而,由于斜截面上的正应力和 横截面上的剪应力间有固定的关系,所以,习惯 上仍按最大剪应力进行强度计算
材料力学课件 第四章 扭 转
3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a
b
dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转
T ( 2 A 0t)
( L ) R
剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4
材料力学04(第四章 扭转)
M1
Ⅱ
M3
C
A
d
lAC 解: 1、 先用截面法求各段轴的扭矩: BA段
T1 955N m T2 637N m
AC段
M2 Ⅰ
M1
d
lAB
Ⅱ lAC
3
M3
AB
B
A
CA
C
2、 各段两端相对扭转角:
T1l AB 955 10 N mm 300mm AB GI p 80 103 MPa π 70mm 4 32 3 1.52 10 rad 3 T2l AC 637 10 N mm 500mm CA π GI P 3 80 10 MPa 70mm4 32 3 1.69 10 rad
可见空心圆轴的自重比实心圆轴轻。 讨论: 为什么说空心圆轴比实心圆轴更适合于做受扭构 件?
例 圆柱螺旋弹簧如图(簧杆斜度a < 5°) 受轴向压 力(拉力) F 作用。已知:簧圈平均直径为D,簧杆 直径 d,弹簧的有效圈数 n,簧杆材料的切变模量 G ,且簧圈平均直径 D >> d 。 试推导弹簧的应力 计算公式。
塑性材料: =(0.5-0.577) 脆性材料: = (0.8-1.0)t
例1 实心等截直轴,d=110mm,
(1) 试求截面Ⅱ上距轴线40mm处的点的剪应力。
(2) 若已知[τ]=40MPa,试校核轴的强度。
解:①内力分析
由扭矩图得知T2=9.56kN.m
危险横截面在AC段, Tmax=9.56kN.m ②应力计算
τρ
T2 ρ 9560 40 10 26.6MPa 4 12 Ip π 110 10 / 32
3
第四章:扭转
2 2
64.22
45.02
0.611
A1
d12
58.62
小 结 在最大切应力相同的情况下,空心轴所用的材料是实心轴的
61.1%,自重也减轻了 38.9%。其原因是:圆轴扭转时,横截面上应力
呈线性分布,越接近截面中心,应力越小,此处的材料就没有充分发挥 作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到 了充分利用,而且也减轻了构件的自重。但空心轴的制造要困难些,故 应综合考虑。
解:1)用截面法求各段扭矩 AB 段:
1
2
T1 MA 900 N m
BC 段:
T
T2 M c 600 N m
600Nm
画出扭矩图如图所示
900Nm
第五节:圆轴扭转时的变形
AB 截面 极惯性矩
I P1
πd14 32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
πd
4 2
32
第一节:扭转的概念
扭转:是杆的又一种基本变形形式。其受力特点是:构件两 端受到两个作用面与杆的轴线垂直的、大小相等的、转向相 反的力偶矩作用,使杆件的横截面绕轴线发生相对转动。
扭转角:任意两横截面间的相对角位移。如图所示的 φ 角。
轴:工程中以扭转为主要变形的构件。如钻探机的钻杆,电 动机的主轴及机器的传动轴等。
叠加原理
CA CB BA
AB 段:
BA =
T1l1 GI P1
×
1800
=-0.8110
BC 段:
CB =
T2l2 GI P2
×
1800
=0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
材料力学课件-第四章 扭转-薄壁杆件的扭转
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds
材料力学 第四章 扭转
T Wt
1 max
BA
TL GI t
其中
Wt b2 h
I t b3h
h b
, ,
随矩形截面的长、短边尺寸之比
而变化。
三
开口薄壁截面杆的自由扭转
类似狭长矩形截面,在开口薄壁杆件截 面上,切应力沿着周边或周边的切线形成环 流,方向与截面扭矩一致;角点处切应力为 零;中线上切应力为零;长边边缘处接近均 匀分布。
§4-5 非圆截面轴扭转的概念
一 约束扭转和自由扭转 非轴对称问题,扭转时横截面 产生翘曲 (Warp) 。平面假设不 再成立。 自由扭转 等直非圆截面杆受扭时,两端 面变形不受限制,即可自由翘 曲,则各截面翘曲程度相同。 横截面上仍旧只存在切应力。 约束扭转
T
T
端面受限制而不可自由翘曲,则各截面翘曲程度不同,截面 上除切应力外,还产生正应力。
D 3
16
1 29 10
4
d D 0.944
6
m
3
max
(2) W p
D 3
16 max 空心优于实心 Q A D 2 3.2 (3) Q A 2 2 D d
T
T 51.7MPa< Wp
强度安全。
D 53mm
N2
N3
C
②若全轴选同一直径,应为多少?
③主动轮与从动轮如何安下,扭矩如 图,由强度条件得:
N m 9549 (kN m) n
7257
4202
Wt
3 d1
T d1 16 [ ]
3
16T
16T
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
第四章 扭转/二 外力偶矩、扭矩和扭矩图
例题 已知圆轴受外力偶矩mA 、mB 、mC 作用而处于 匀速转动平衡状态,试求1-1、2-2截面上的扭矩。
mA
1
2
mC
1
mB
2
第四章 扭转/二 外力偶矩、扭矩和扭矩图
mA
1 2
mC
已知圆轴受外力偶矩作 用,匀速转动。则
1
mB
2
用截面法求内力(根据已知扭矩的方向判断 截面所需内力矩的方向):
m1
d1
m2
d2
m3
A
0.8m
B
1.0m
C
0.8kN· m
1.5kN· m
m1
d1
m2
d2
m3
I P1 I P2
d14
A
0.8m
B
1.0m
C
32 4 d 2 236cm 4 32
25.1cm 4
AB
BC
1.5kN· m
M n1 L1 0.0318rad GI P1
的扭矩图。如将A、D轮的位置更换放置是否合理?
A
II
B
I
C
D
III
I
II
III
第四章 扭转/二 外力偶矩、扭矩和扭矩图
解:
经由A、B、C、D轮传递的外力偶矩分别为
mA 9549 PA 10 9549 318.3( N m) n 300
mB 9549
PB 2 9549 63.7( N m) n 300
第四章 扭转/三 圆轴扭转时的强度计算
低碳钢
铸铁
塑性材料受扭时,先发生屈服,继续增大扭力偶矩,沿横截面被剪断;脆性材料受扭 时,变形始终小,最后在与轴线约成45度倾角的螺旋面发生断裂.
因此,受扭轴破坏的标志仍为屈服或断裂.试样扭转屈服时横截面上的最大切应力, 称为扭转屈服应力;试样扭转断裂时横截面上的最大切应力,称为扭转强度极限. 扭转屈服应力和扭转强度极限,统称为扭转极限应力.
M n 2 L2 GI P 2
AC AB BC 0.0318rad 0.0079rad 0.0239rad
图示一空心传动轴,轮1为主动轮,力偶矩m1=9KN·m,轮2、轮3、轮4为从动轮,力偶矩 分别为m2=4KN·m,m3=3.5KN·m,m4=1.5KN·m。已知空心轴内外径之比d/D=1/2, 试设计此轴的外径D,并求出全轴两端的相对扭转角φ 24。G=80GPa,[τ ]=60MPa。
第四章 扭转/三 圆轴扭转时的强度计算
N p1 14 m1 9550 9550 9550 1114 N .M n n1 120 7 7 m2 9550 557 N .M , m3 9550 185.7 120 360 m1 1114 1114 d 3 ( 0.07)3 = 16.54 MPa max(E)= Wp1 16 16 m2 max(H)= = 22.69 MPa Wp2 m3 max(C)= = 21.98 MPa Wp3
mC 95.5( N m),
M D 159.2( N m),
C A III D
B
I
II
I
II
III
第四章 扭转/二 外力偶矩、扭矩和扭矩图
mB
I
M n1 M B 63.7( N m)
I
M n1
II
mB
MC
III
II
M n2
M n 2 M B M C 159.2( N m)
Mn
m
A
A
解:(1)
P 390 Nm M n 9.55 10 n
3
l
M n (x)
单位长度阻力矩:
x
B
Mn 390 Nm m 9.75 Nm m 40m L
B
390 103 50 4 603 1 60 16
M n x Mx M n x (2): L Mn max 17.7 MPa WP
(3)受扭圆轴横截面上的剪 应力计算公式
Mn Mn G GI P IP
(3)受扭圆轴横截面上 的剪应力计算公式(与
所在半径成正比):
M n IP
max
M nr IP Mn WP
max
IP WP r
扭转(抗扭)截面系数
实心圆截面
已知钻探机杆的外径D=60mm,内径d=50mm,功率P=7.35kW,转速n=180r/min,钻 杆入土深度L=40m,G=80GPa,[τ ]=40MPa。设土壤对钻杆的阻力是沿长度均匀分 布的,试求:(1)单位长度上土壤对钻杆的阻力矩m;(2)作钻杆的扭矩图, 并进行强度校核;(3)求A、B两截面相对扭转角。
d dx
(2)物理方面,由虎克定律有: (G为切变模量或剪切弹性摸量)
G
d G dx
(3)静力学方面(横截面上所有的切应力对轴心取矩后等于内力矩):
dA M n
A
d G 2 dA M n dx A
Ip
d M n dx GI P
截面的极惯性矩
4
第四章 扭转/三 圆轴扭转时的强度计算
例题 已知:P1=14kW, n1= n2= 120r/min, z1=36, z3=12; d1=70mm, d 2 =50mm, d3=35mm. P2=p3=p1/2。 求: 各轴横截面上的最大切应力。
解: P1=14kW, P2= P3= P1/2=7 kW n1=n2= 120r/min n3= n1 z1 =12036 =360r/min 12 z3
将A、D轮的位置更换,则
B
I
C
II
D
III
A
I
II
III
63.7
(-)
最大内力矩 增大不利于 轴,因此将A、 D轮的 位置更换不 合理。
159.2
扭矩Mn-图
M n,max 318.3( N m) (AD段)
318.3
第四章 扭转/二 外力偶矩、扭矩和扭矩图
课堂练习 图示圆轴中,各轮上的转矩分别为mA=4kN·m, mB=10kN·m, mC=6kN · m,试求1-1截面和2-2截面上的 轮 扭矩,并画扭矩图。
d
d
2 3 d I P dA 2 d
2
2
d 2
A
A
0
IP
d 4
32
WP
d 3
16
空心圆截面
D
d
I P 2 d
3 d 2
D 2
D 32
4
4
d
4
D 3
16
d D
IP
D
4
32
1
WP
1
5 扭矩随圆轴横截面的位置变化的图线—扭矩图
1 2
mA
mC
1
M n1 M A
mB
2
(+)
扭矩图 (-)
M n 2 M C
第四章 扭转/二 外力偶矩、扭矩和扭矩图
例题 图示传动轴上,经由A轮输入功率10KW,经由B、C、D轮 输出功率分别为2、3、5KW。轴的转速n=300r/min,求作该轴
第四章 扭转
一 扭转的概念和实例 二 外力偶矩、扭矩和扭矩图
三 圆轴扭转时的强度计算
四 圆轴扭转时的变形计算
第四章 扭转
一、 扭转的概念和实例
第四章 扭转/一 扭转的概念和实例
承受扭转变形的构件
(在与螺帽接触处以及与 扳手连接处各 作用有一扭矩)
对称扳手拧紧镙帽
第四章 扭转/一 扭转的概念和实例
四 圆轴扭转时的刚度计算
第四章 扭转/四 圆轴扭转时的刚度计算
1 扭转角 与剪切角
m
m
第四章 扭转/四 圆轴扭转时的刚度计算
2 圆轴扭转时的变形计算
d M n dx GI P
Mn d dx GI P
若二截面间扭矩M n=const,轴为等直杆,则有:
Mn Mn = d= dx= GI P GI P l 0
d 39mm
(2)由变形公式:
21
13
M n 21L GI P M n13 L GI P
0.00734rad 0.00917rad
34
M n 34 L GI P
0.00275rad
24 21 13 34 0.00458rad
例题3
Ⅰ
Ⅰ
3、 受扭圆轴横截面上的内力—扭矩
I
Mn
I
第四章 扭转/二 外力偶矩、扭矩和扭矩图
4、扭矩的符号规定—右手螺旋法则
mI I
m
Mn
扭 矩 符 号 规 定 :
Mn
I mI
Mn
I I
m
Mn
Mn
I
Mn
右手定则:右手四指内屈,与扭矩转向相同,则拇指的 指向表示扭矩矢的方向,若扭矩矢方向与截面外法线相 同,规定扭矩为正,反之为负。
MA 1
1
1
MC
M n1
M n1
1
MB
扭矩(按矩矢方向)
M n1 M A M B M C
第四章 扭转/二 外力偶矩、扭矩和扭矩图
MA 1
1
2
MC
MB
2
2
截面2-2上的内力(下图内力方向有误):