第4章扭转变形
材料力学 第四章 扭转
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m
或
P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:
由
Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103
第四章 扭转(张新占主编 材料力学)
2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到
切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用
第四章:扭转
T Ip
——切应力公式
扭转
4、圆轴扭转时横截面上的最大切应力
max 发生在横截面周边上各点处
max
T max TR T Ip Ip Ip R
max
取 I p /R = Wt —抗扭截面系数 最大切应力: max
max
O
T
T Wt
注意: 以上公式只适合于扭转圆轴, 且材料服从胡克定律。
R γ l
剪切胡克定律:
当切应力不超过材料的剪切比例极 限,切应力与切应变成正比,即:
Gγ
G ——剪变模量
对各向同性材料,E, , G 之间关系: G
E 2(1 )
扭转
四、圆轴扭转时的应力 1、实验现象:
圆周线——形状、大小、
间距不变,各圆周线绕轴 线相对转动了一个角度。
横截面上的最大切应力
max
T 1000 6 Pa 41.7 10 Pa 41.7 MPa 6 Wt 24 10
扭转
例4-4 如图所示,圆轴 AB的 AC 段为空心,CB段为实 心。已知 D 3cm、 d 2cm ;圆轴传递的功率 P 7.5kW,转速 n 360 r/ min。试求 AC及CB段的 Me Me 最大与最小切应力。 解:(1)计算扭矩
许用切应力
u
n
max
u s u b
T
max
塑性材料 脆性材料
对等截面圆轴
Wt
圆轴强度计算可解决工程中的三类问题:
(1)强度校核;(2)截面设计;(3)确定许用载荷。
扭转
例4-5 如图阶梯轴, d1 80mm、d 2 50mm;外力偶矩 M 2 3.2 kN m 、M 3 1.8kN m; M 1 5 kN m 、 材料的许用切应力[ ] 60 MPa 。试校核该轴强度。
材料力学第四章 扭转
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
材料力学 第4章_扭转
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学第4章扭转变形
1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
材料力学 第4章扭转变形
1、T为横截面上的扭矩
max
2、Ip为截面参数,取决于截面形状 与尺寸 3、ρ为所求点距圆心距离。
d 2
max
最大切应力
r
max
d
T Tr T I p I p / r Wp
Wp Ip r
称为抗扭截 面系数
最大扭转切应力 发生在圆轴表面
同样适用于空心圆截面杆受扭的情形
T3
3 3
MD D x
(2)2-2截面上的应力计算
由扭矩图得知T2=-9.56kNm T IP 9560 40 10 3 26.6MPa 4 12 π 110 10 / 32 (2) 强度计算 危险横截面在AC段,Tmax=9.56kNm
τ max Tmax 9560 36.6MPa 3 9 WP π 110 10 / 16
T1 2M
M
A
C
T
M
x
2M
§4-3 圆轴扭转横截面上的应力
问题分析与研究思路
M
1
2
T M
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。 连续体的静不定问题 。 分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件 几何方面:实观观测 合理假设
连续体的变形协调条件(数学公式)
D3
IP
D4
32
, WP
D3
16
4-4 圆轴扭转强度条件与合理设计
一、扭转失效 低碳钢扭转破坏
塑性材料扭转失效时,先发生屈服,最终沿横截面 断裂。
铸铁扭转破坏
脆性材料扭转失效时,变形很小,最终沿与轴线成 45°螺旋面断裂。
材料力学-第4章 扭转 ppt课件
dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
理论力学第四章扭转
内力T称为截面n-n上的扭矩。
Me
Me
x T
Me
扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为 负值。
+
T
-
扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
4
32 7640180 80109 π 2 1
86.4 103 m 86.4mm
d1 86.4mm
4.直径d2的选取
按强度条件
A M e1 d1
B d2 C
M e2
M e3
3 16T 3 16 4580
②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
结论:
0, 0
横截面上
0 0
根据对称性可知切应力沿圆周均匀分布;
t D, 可认为切应力沿壁厚均匀分布, 且方向垂直于其半径方向。
t
D
微小矩形单元体如图所示:
①无正应力
②横截面上各点处,只产生垂 直于半径的均匀分布的剪应力
强度计算三方面:
① ②
校核强度:
max
Tm a x WP
设计截面尺寸:
WP
Tmax
[ ]
[ ]
Wt
实:D3 16 空:1D6(3 1 4)
③ 计算许可载荷: Tmax WP[ ]
例4.2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。 材料的许用切应力[t ] = 80MPa ,试校核该轴 的强度。
《材料力学》第四章 扭转
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学:第四章 扭转
回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题
第四章 扭转 §4.5 圆杆在扭转时的变形、刚度计算
(
d ) D
4
Wp I p R D (1 ) 16
3
应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
应力公式
1)横截面上任意点:
T T:横截面上的扭矩 I p :点到截面形心的距离
Tr T 2)横截面边缘点: max I p Wt
P─ kW n─ rpm m─ N m
P m 7024 Nm n
1PS=735.5N· m/s , 1HP=745.7N· m/s , 1kW=1.36PS
N ─ PS n─ rpm m─ N m
二、扭矩 图
m (a)
扭矩
Ⅰ n m
m
Ⅰ A
m n
2 d
2 D 2 0
D
4
d
32
3
O
D
Wp I p R D 16
对于空心圆截面:
d
I p A dA
2
d O D
2 d
2
D 2 d 2
32 4 D 4 (1 ) 32
(D4 d 4 )
机器的传动轴、水 轮发电机的主轴、石 油钻机中的钻杆、桥 梁及厂房等空间结构 中的某些构件等,扭 转是其主要变形之一。
二、扭转受力计算简图
m B j B'
m A'
g
A
扭转的受力特征 :在杆件的两端作用两个大小相等、 转向相反、且作用平面垂直于杆件轴线的力偶。 扭转的变形特征:杆件的任意横截面都发生绕杆件轴线
材料力学课件 第四章扭转
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
材料力学-第4章 扭转
材料力学-第4章 扭转
圆轴扭转横截面上的应力
变 形
O
dx
ρ
R A
d
O’
( ) G G
d
dx
应变特征
B B´
A
B B´
应力分布
C
C
D D´
D D´
应力公式
BB Rd G G G AB dx
19
材料力学-第4章 扭转
圆轴扭转横截面上的应力
材料力学
第四章 扭 转
1
材料力学-第4章 扭转
内容提纲:
• • • • • • • • 概述及示例 外力偶矩、扭矩和扭矩图 圆轴扭转横截面上的应力 圆轴扭转破坏与强度条件 圆轴扭转变形与刚度条件 扭转静不定问题 非圆截面轴扭转 薄壁杆扭转
2
材料力学-第4章 扭转
概述及示例
3
材料力学-第4章 扭转
9
材料力学-第4章 扭转
扭力偶矩计算与扭矩
• 在工程中,功率常用千瓦 Pkw (kW) 或马力 P 给出,角 速度用转速 n(r/min (转/分钟)) 给出,则外力偶矩的计算 公式为
PkW M e 9549 nr /min M e 7024 P 马力 nr /min
1 Pkw (千瓦) 1000 N m /s 1 P (马力) 735.5 N m /s
45o
32
材料力学-第4章 扭转
圆轴扭转破坏与强度条件
从破坏类型可见,对于脆性材料(如铸 铁),其破坏机理是斜截面上的最大拉应力 因此,本质上讲,应对斜截面上的正应力 进行强度计算。然而,由于斜截面上的正应力和 横截面上的剪应力间有固定的关系,所以,习惯 上仍按最大剪应力进行强度计算
材料力学课件 第四章 扭 转
3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a
b
dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转
T ( 2 A 0t)
( L ) R
剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4
材料力学课件(路桥)第4章扭转
强度条件的工程意义
满足强度条件是保证路桥工程安全性和 稳定性的基础。
通过满足强度条件,可以防止桥梁结构 在承受外力矩和扭矩时发生破坏或过度
变形。
在路桥工程的设计、施工和运营过程中 ,需要定期进行检测和维护,以确保结
扭矩的量纲
扭矩的量纲是力和长度(L)的乘积,表示为ML^2。
量纲是描述物理量本质属性的方式,通过量纲可以判断物理量的性质和相互关系 。
03
扭转的应力分析
切应力与剪切应变的关系
切应力与剪切应变的关系是线 性的,即剪切应变与切应力成 正比。
在剪切弹性范围内,切应力与 剪切应变之间的关系可以用剪 切弹性模量来描述。
扭转过程中,杆件上各点的角位移和 剪切变形程度不同,导致杆件横截面 绕其自身轴线发生转动。
扭转的物理现象
01
杆件在扭转时,横截面上的正应 力分布不均匀,呈现出剪切变形 的特点。
02
杆件上各点的剪切变形程度与该 点到轴线的距离成正比,导致横 截面上的切向力分布不均匀。
扭转的分类
根据杆件上所受外力矩的方向, 扭转可分为左旋和右旋两种类型
构的强度和稳定性。
05
扭转的刚度条件
刚度条件的定义
刚度条件是指在材料力学中,杆件在受到扭矩作用时,其横 截面上的剪切应力和剪切变形之间的关系。
刚度条件是材料力学中一个重要的基本概念,它描述了杆件 在扭矩作用下抵抗变形的能力。
刚度条件的计算方法
根据材料力学的基本理论,刚度条件可以通过杆件的剪切 弹性模量和剪切应变来计算。
材料力学课件(路桥)第4章 扭转
目录 CONTENTS
第四章:扭转
2 2
64.22
45.02
0.611
A1
d12
58.62
小 结 在最大切应力相同的情况下,空心轴所用的材料是实心轴的
61.1%,自重也减轻了 38.9%。其原因是:圆轴扭转时,横截面上应力
呈线性分布,越接近截面中心,应力越小,此处的材料就没有充分发挥 作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到 了充分利用,而且也减轻了构件的自重。但空心轴的制造要困难些,故 应综合考虑。
解:1)用截面法求各段扭矩 AB 段:
1
2
T1 MA 900 N m
BC 段:
T
T2 M c 600 N m
600Nm
画出扭矩图如图所示
900Nm
第五节:圆轴扭转时的变形
AB 截面 极惯性矩
I P1
πd14 32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
πd
4 2
32
第一节:扭转的概念
扭转:是杆的又一种基本变形形式。其受力特点是:构件两 端受到两个作用面与杆的轴线垂直的、大小相等的、转向相 反的力偶矩作用,使杆件的横截面绕轴线发生相对转动。
扭转角:任意两横截面间的相对角位移。如图所示的 φ 角。
轴:工程中以扭转为主要变形的构件。如钻探机的钻杆,电 动机的主轴及机器的传动轴等。
叠加原理
CA CB BA
AB 段:
BA =
T1l1 GI P1
×
1800
=-0.8110
BC 段:
CB =
T2l2 GI P2
×
1800
=0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 已知: 传动轴为无缝钢 管,D=90mm,t = 2.5 mm,Tmax= 1.5kN· m, [t]=60MPa。 求:校核轴的强度。 解: 计算Wt d D 2t 0.944
D D 3 3 D 90 4 4 3 Wt (1 ) (1 0.944 ) 29400 mm 16 16 1500 T 51 MPa [t ] 切应力 t max 9
Tmax τ max 60.8MPa [τ ] Wt
∴强度不符合要求。
讨论:扭矩合理分配 一定使轴上的Tmax最小 MA MB Ⅰ M Ⅱ
C
A
22
B
C
MB A 36
Ⅰ
MA B
14 Ⅱ
MC
C
14
例4(同例2)若BD轴改用内外径之比为9:10的空心轴,在 保证同样强度条件下,试确定空心轴的内外径d与D;并计算 空心与实心轴的材料消耗之比。
华北电力大学力学教研室
§ 4-1 扭转的概念 一、扭转实例:
华北电力大学力学教研室
齿轮传动示意图
受力特点: 圆截面直杆受到一对大小相等、转向相反、作用面 垂直于杆的轴线的外力偶作用(矢量与轴线一致) Me Me
变形特点: 圆杆各横截面绕杆的轴线作相对转动 工程中主要承受扭转的构件称为“轴”,实际构 件工作时除发生扭转变形外,还常伴随有弯曲、 拉压等其他变形形式。
(2) 强度计算 危险横截面在AC段, Tmax=9.56kN.m
Tmax 9560 τ max 36.6MPa <[τ] 3 9 Wt π 110 10 / 16
轴的强度满足
例3(同例2)若AD轮互换位置,试校核轴的强度。 解:互调AD轮位置 后,扭矩图如图所 示: Tmax=15.9 kN.m
T Me
Me B T图 x
T
1
Me
+
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解:
首先必须计算作用在各轮上的外力偶矩 M2
1 1
M3 B
对于一般的传动轴 [ ] 0.5 2 / m 等直圆杆在扭转时的刚度条件:
Tmax 180 max [ ] GIp π
例5(同例2)d=110mm,若各轮之间距离均为 l=2m, G=80GPa,[ ]=0.5°/m,(1) 计算相邻两轮之间的 扭转角和轴两端截面之间的相对扭转角。 (2)试校核 轴的刚度;
Ip r
d
称为扭转 截面系数
即
t max
T Wp
发生在横截面周边上各点处。
同样适用于空心圆截面杆受扭的情形
tmax
O d
t tmax
T
T t Ip
t max
D
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
D d
O
O
d
4 π d I p 2 d A A 32 Ip πd 3 Wp d / 2 16
对于塑性材料: [t ] (0.5 0.577)[ ] 对于脆性材料:
[t ] (0.8 1.0)[ ]
tu
n
二、强度条件
t max [t ]
等直圆轴
三、圆轴合理截面
tmax t
T O
材料的许用切应力
Tmax [t ] Wp
tmax
T
tmax
O d
t
tmax
T
A
O
§4. 5 圆轴扭转时的变形
扭转变形 扭转角 两个横截面绕轴线的相对转角。 微段的扭转角
a
b
T O2 dj b
d T d x GIp
T d dx GI p A
T O1
g
a
整体的扭转角
D D' dx
T dx 0 GI p
l
整体的扭转角
T dx 0 GI p
3
2 2
M1 C
3 3
M4 D
A
500 M 1 (9.55 10 ) N m 15.9kN m 300 3 150 M 2 M 3 (9.55 10 ) N m 4.78kN m 100 200 3 M 4 (9.55 10 ) N m 6.37kN m 300
g
A B
D C
j
A1 A B1
D1 g D D1' D'
表面正方格子倾斜的角度— 直角的改变量g 切应变
B
C C'
C1 C1'
横截面上没有正应力产生,只有切应力,方向 与圆周相切,即与半径垂直。
单元体· 切应力互等定理
单元体—— 此处为以横截面、径截面以及与表面平 行的面从受扭的等直圆杆表面处截取一 微小的正六面体 M
d
D
例2 实心等截面直轴,d=110mm,
(1) 试求截面Ⅱ上距轴线40mm处的点的剪应力。
(2) 若已知[τ]=40MPa,试校核轴的强度。
解: (1)应力计算
由扭矩图得知T2=9.56kN.m
T2 ρ τρ Ip
9560 40103 26.6MPa 4 12 π 110 10 / 32
BD=BC+CA+ AD= 0.805
(2) 刚度计算
Tmax=9560N.m
Tmax 180 max 0.48 [ ] GI P
所以刚度符合要求。
例 如图传动轴,n=500r/min,N1=500马力, N2=300马 力, N3=200马力,已知[τ ] = 40MPa ,许可单位长度扭 转角[ ]=1 /m ,G=80GPa。求:确定AB和BC段直径。 解: 1)计算外力偶矩
6.37
4.78 9.56 Tmax = 9.56 kN· m
T 图(kN· m) 在CA段内
§4-3 圆轴扭转时的应力· 强度条件
一、扭转试验与假设: 表面变形特点:
1、相邻圆周线绕杆的轴线相对转动,但圆周的大小 、形状、间距都未变; 2、纵向线倾斜了同一个角度g ,表面上所有矩形均 变成平行四边形。 平面假设:圆轴受扭转时其横截面如同刚性平面 一样绕杆的轴线转动。
§4-2 传动轴的外力偶矩 ·扭矩及扭矩图
Ⅰ、传动轴的外力偶矩 Me A B
已知: Me
传动轴的转速 n ;所传递的 功率P (kW)
求: 作用在该轮上的外力偶矩Me。 传动轮的转速n 、功率P 及其上的外力偶矩Me之 间的关系: P(kW ) M e 9549 n(r / min) P Me 7024 ( N m) (P —马力) n
l
等直圆轴且扭矩不变时
Ti li 台阶轴或扭矩分段变化 i 1 GI p i
Tl GI p
GIp 圆轴的抗扭刚度。
n
二、刚度条件
d dx
称为单位长度扭转角。 常用单位:/m
max [ ]
对于精密机器的轴
[ ] 0.15 ~ 0.30 / m
4 π D 4 Ip 2 d A 1 A 32
πD Wp 1 4 D/2 16
Ip
3
4-4 圆轴扭转强度条件与合理设计
一、扭转失效 塑性材料扭转失效时,先发生屈服,最终沿 横截面断裂。 脆性材料扭转失效时,变形很小,最终沿与 轴线成45°螺旋面断裂。
[t ]
e
Me
y
t'
a
dy b
t t
d
t
O t'
t
c
x
z
dx
纯剪切应力状态: 单元体在其两对互相垂 直的平面上只有切应力而 无正应力的状态称为纯剪 切应力状态。
二、横截面上的应力公式 几何关系 物理方面 静力学方面 A、几何关系
Me Me
a
b
O1
O2
a
dx b
Me
Me
a
b T dx
T
E A O1
d
解: t max 36.6MPa
Tmax 9.56kN m
Wt
D3
16
(1 4 )
由
Tmax 16Tmax t max 3 D 157m m 得 4 Wt (1 ) t max
d=0.9D=141mm V空 A空 ( D2 d 2 ) / 4 0.235 2 V实 A实 d1 / 4
O2
G'
dx
dj g dx
dj dx
g
相对扭转角沿杆长的变化率,对于给 定的横截面为常量
B、物理方面
dj g dx
剪切胡克定律:(在弹性范围内,切应力与 切应变成正比。 ? 横截面上各点的 t Gg t G d j 剪应力与点到截 t dx 面中心的间距成 正扭矩图 利用截面法来确定. 圆轴受扭时其横截面上的内力偶矩称为扭矩,用 符号T表示。
1 1
T Me
扭矩的符号规定
按右手螺旋法则确定:
扭矩矢量离开截面为正,指向截面为负。
仿照轴力图的做法,可作扭矩图,表明沿杆 轴线各横截面上扭矩的变化情况。
Me
A
1
1 1
Me
B T
x
Me
A T
1 1
g
D D' dx
G G'
O2 dj b A
E
O1