§3–5等直圆杆扭转时变形刚度条件

合集下载

材料力学笔记

材料力学笔记

材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。

相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比 可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变 在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ 纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ 上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI T dx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体 在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤ 等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl=ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长。

结构力学第三章-扭转

结构力学第三章-扭转
就可以推算出来。
(推导详见后面章节):
可见,在三个弹性常数中,只要知道任意两个,第三个量
§ 3–3
传动轴的外力偶矩 ·扭矩及扭矩图
一、传动轴的外力偶矩
传递轴的传递功率、转速与外力偶矩的关系:
P M 9.55 (KN m) n P M 7.024 (KN m) n
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm) 其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
45 max , 45 0
90 0 , 90 max
´
由此可见:圆轴扭转时,在横截 45° 面和纵截面上的切应力为最大值;在 方向角 = 45的斜截面上作用有最 大压应力和最大拉应力。根据这一结 论,就可解释前述的破坏现象。
1PS=735.5N· m/s ,
1kW=1.36PS
二、扭矩及扭矩图 1 2 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 截面法求扭矩
M
x
0
T M 0 T M
3 扭矩的符号规定:
M
M
M
T
x
“T”的转向与截面外法线方向满足右手螺旋规则为正,
反之为负。
4 扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。 目 的 ①扭矩变化规律; ②|T|max值及其截面位置 强度计算(危险截面)。
d G G dx
代入上式得:
d G dx
3. 静力学关系:
dA
T A dA d A G dA dx d 2 G A dA dx
2

O

I p A 2dA

材料力学(第五版)扭转刚度

材料力学(第五版)扭转刚度

d
于弹簧的中径D的情况,
max
8FD
d 3
在考虑簧丝的曲率和 1 分布不均匀时:
max

k
8FD
d 3
k—修正系数(曲度系数)
k 4c 1 0.615 4c 4 c
弹簧的强度条件:
c D d
max
(三)、弹簧的变形计算

弹簧的压缩(拉伸)变形
外力功:
2
由功能原理: V W
1 2
F

4F 2D3n Gd 4
弹簧的变形 8F D3 n Gd4

弹簧的变形


8FD3n Gd 4
令:
C Gd 4 8D3n
C 弹簧刚度
F
C

BC段:
TBC 1.2 kN m
A
mA
T (kN m)
Байду номын сангаас
B
C
mB
mC
Wt
BC

d13 16

503 109 16
24.54106 m3
1.2 3.0
(max )BC

TBC
Wt
BC

1200 24.54 106
48.8MPa
轴的强度符合要求
A
Tl
GIP
Me
l
Me
φ 相距 l 的两个截面之间的相对扭转角
φ
弧度
GIP
圆轴的抗扭刚度
对于阶梯轴,以及等直圆轴但扭矩为阶梯形变化的情况,
分段计算,求代数和



Tl GIP
二、圆轴扭转刚度的计算

扭转刚度(材料力学)

扭转刚度(材料力学)

最大切应力:
max
T Wt
扭转截面系数
单位长度扭转角:
j T
GIt 相当极惯性矩
短边中点的切应力: max
其中 Wt b3 It b4
、、 ——与 m h 相关的因数 b
对于B的扭转角jCB。
M2 Ⅰ
M1

M3
d
B
lAB
A
lAC
C
解: 1)求扭矩 BA段 AC段
T1 955N m T2 637N m
M2 Ⅰ
M1

M3
d
B
lAB
A
lAC
C
2)求扭转角
j AB
T1l AB GIp
955103 300 80103 π 704
1.52103 rad
32
jCA
变模量G=80GPa 。轴的横截面上最大扭矩为Tmax=
9.56 kN•m ,轴的许可单位长度扭转角[j' ]=0.3 /m 。
试选择轴的直径。
解:1、按强度条件确定外直径D
max
Tmax Wp
Tmax
πD3 1 4
[ ]
16
D 3
π
16Tmax
1 4 [
]
3
16 9.56 106 π 1 0.54 40
等直非圆杆自由扭转时的应力和变形
Ⅰ、等直非圆形截面杆扭转时的变形特点
横向线变 横截面发生翘曲
成曲线
不再保持为平面
平面假设不再 成立,可能产 生附加正应力
非圆杆两种类型的扭转
1、等直杆两端受外力偶作用,端面可自由翘曲时 ——自由扭转(纯扭转) 此时相邻两横截面的翘曲程度完全相同,无附加 正应力产生

等直圆轴扭转时的变形及刚度条件

等直圆轴扭转时的变形及刚度条件
许用单位长度扭转角 0.5 ( ) m
切变模量 G 80 GPa 求传动轴所需的直径?
解:1、计算轴的扭矩
T 9549 60 kW 2292N m 250 r min
2、根据强度条件求所需直径
T 16T
Wp πd 3
d
3
16T
π
3
16 2292103 N mm π 40MPa
相对扭转角的正负号由扭矩的正负号确定, 即正扭矩产生正扭转角,负扭矩产生负扭转角。 若两横截面之间T有变化,或极惯性矩变化, 亦或材料不同(切变模量G变化), 则应通过积分或分段计算出各段的扭转角, 然后代数相加,即:
n
Ti li
i1 Gi I pi
对于受扭转圆轴的刚度通常用相对扭转角沿杆
长度的变化率用 表示,称为单位长度扭转角。即:
66.3 mm
3、根据圆轴扭转的刚度条件,求直径
T GIp
180 π
d
4
32T

4
80 103
32 2292 103 N mm MPa 0.5 ( ) 103mm
π
76 mm π
180
故应按刚度条件确定传动轴直径,取 d 76 mm
d T
dx GIp 二 、 圆轴扭转刚度条件
对于建筑工程、精密机械,刚度的刚度条件:
max
在工程中, 的单位习惯用(度/米)表示,
将上式中的弧度换算为度,得:
max
T GIp
max
180 π
对于等截面圆轴,即为:
max
Tmax GIp
180 π
许用扭转角的数值,根据轴的使用精密度、 生产要求和工作条件等因素确定。
l GIp

杆在扭转时的变形 · 刚度条件

杆在扭转时的变形 · 刚度条件
2
πd A实 1749 mm 2 4 2 2 π(76 71 ) A空 577mm 2 4
两轴材料、长度均相同, 故两轴重量比等于两轴的横截面积比,
A2 577 0.329 A1 1749
在最大切应力相等的情况下空心圆轴比实心圆轴轻, 即节省材料.
例题7 两端固定的圆截面杆AB, 在截面C 处受一个扭转力偶矩
Me 的作用, 如图所示.已知杆的抗扭刚度 GIp, 试求杆两端的支反 力偶矩. Me
A a
C
B b
l
解:去掉约束,代之以约束反力偶矩
Mx 0
M eA M eB M e 0
这是一次超静定问题,
Me
A
a
须建立一个补充方程
杆的变形相容条件是 C 截面相对于两固定端 A和B的相对扭转角相等.
'

Mt Ip
M tl GI p
max

• The strengh condition • The rigidity condition
Mt Wp
180
Mp GI p


o
例题5 图示等直杆, 已知直径d = 40mm, a = 400mm, 材料的剪切
弹性模量G = 80GPa,DB =1°. 试求:
(1) AD杆的最大切应力; (2)扭转角 CA 解:画扭矩图 Me D a C a 2Me B 2a 3Me Me +
3Me
A
Tmax= 3Me 计算外力偶矩Me
材料的许用切应力 [ ] = 100MPa, 切变模量为 G = 80GPa, 轴的许可扭角[′ ] = 2/m . 试校核轴的强度和刚度.

材料力学笔记(第三章)

材料力学笔记(第三章)

材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。

相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 3.1 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反3.2 扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 4.1 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=上式表示等直接圆杆横截面上任一点处的切应变随该点在横截面上的位置而变化的规律②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI Tdx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p4.2 斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理 该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料4.3 强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 5.1 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角 因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同 且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl =ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=5.2 刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 8.1 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等8.2 闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长如有侵权请联系告知删除,感谢你们的配合!。

《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

3
在不同扭矩作用下,杆的变形表现出非线性特征, 这表明我们需要考虑非线性效应对杆刚度的影响。
研究不足与展望
01
虽然我们得到了杆在扭矩作用下的变形公式,但该公式是在一定假设条件下得 到的,可能存在一定的误差。未来可以通过更精确的实验和数值模拟方法来验 证和修正该公式。
02
目前的研究主要集中在等直圆杆的扭转问题上,对于其他形状的杆或复杂结构 的研究尚不够充分。未来可以进一步拓展研究范围,探究不同形状和结构的杆 在扭矩作用下的变形和刚度问题。
刚度条件的数学表达
刚度条件的数学表
达式
根据材料力学和弹性力学的基本 理论,等直圆杆扭转时的刚度条 件可以用数学表达式表示。
刚度常数
在数学表达式中,涉及到一些与 杆件材料、截面尺寸等有关的常 数,这些常数称为刚度常数。
刚度常数的意义
刚度常数是衡量杆件刚度的具体 数值,可以通过试验和计算获得, 是杆件设计和选用的重要依据。
ERA
刚度条件的定义与意义
刚度条件定义
在等直圆杆扭转时,杆件抵抗扭转变 形的能力称为刚度条件。
刚度条件的物理意义
刚度条件的意义
在工程实际中,刚度条件是设计、制 造和选用杆件的重要依据,满足刚度 条件的杆件才能保证结构的稳定性和 安全性。
它反映了杆件在承受扭矩作用时,抵 抗扭转变形的能力,是衡量杆件扭转 变形能力的重要参数。
BIG DATA EMPOWERS TO CREATE A NEW ERA
3-5等直圆杆扭转时的变形
与刚度条件
• 等直圆杆扭转时的基本概念 • 等直圆杆扭转时的变形分析 • 等直圆杆扭转时的刚度条件 • 等直圆杆扭转时的工程应用 • 结论与展望
目录
CONTENTS

材料力学(I)第三章

材料力学(I)第三章
材料力学(Ⅰ)电子教案
扭转
1
第3章 扭 转
§3-1 概述
§3-2 薄壁圆筒的扭转
§3-3 传动轴的外力偶矩·扭矩及扭矩图
§3-4 等直圆杆扭转时的应力·强度条件
§3-5 等直圆杆扭转时的变形·刚度条件
§3-6 等直圆杆扭转时的应变能
§3-7 等直非圆杆自由扭转时的应力和变形
*§3-8 开口和闭口薄壁截面杆自由扭转 时的应力与变形
薄壁圆筒通常指 r0 的圆筒
10
当其两端面上作用有外力 偶时,任一横截面上的内 力偶矩——扭矩(torque)
T Me
材料力学(Ⅰ)电子教案
扭转
6
Ⅰ. 薄壁圆筒横截面上各点切应力的变化规律
表面变形情况:
(1) 周向线绕轴线转动,形状及尺寸不变
(2)周向线间的距离保持不变
(3) 纵向线仍为直线,但发生倾斜
x

k x2 2
T (x) 0 kxdx
k x2
2
材料力学(Ⅰ)电子教案
扭转
§3-4 等直圆杆扭转时的应力·强度条件
Ⅰ. 横截面上的应力
(1)变形几何关系
圆轴扭转前的横截面,变形后仍保持为平截面,其形
状和大小不变,半径仍保持为直线,横截面象刚性平
面一样绕轴线转动了一个角度.
dx
从受扭圆轴上同轴截出半径为 A ρ的微段dx,设微段左右端面相 对转角为dφ,其端面上承受的 Tρ 扭矩为Tρ,纵向线AB转角为γρ .
max
max
| T (x) | WP(x)
[
]—强度条件
和拉压强度条件一样,解决强度计算的三类问题.
强度校核
max
max
| T (x) | WP(x)

第三章 材料力学-扭转

第三章            材料力学-扭转

上计算中对此并未考核。
例题3-2、3-4好好看一下(重要)
第三章 扭转
§3-5 等直圆杆扭转时的变形· 刚度条件
Ⅰ. 扭转时的变形
等直圆杆的扭转变形可用两个横截面的相对扭转角(相对角位移) 来度量。
Me
Me

A D B C

由前已得到的扭转角沿杆长的变化率(亦称单位长度扭 d T 转角)为 可知,杆的相距 l 的两横截面之间的 d x GI p 相对扭转角为 l T d dx l 0 GI p
!把重点放在前两条上面(红色字体)
第三章 扭转
受力特点: 杆件的两端作用两个大小相等、转向相反、且作用面垂直于杆件轴线
的力偶。
Me
Me
变形特点: Ⅰ. 相邻横截面绕杆的轴线相对转动; Ⅱ. 杆表面的纵向线变成螺旋线; Ⅲ. 实际构件在工作时除发生扭转变形外,
还伴随有弯曲或拉、压等变形。
第三章 扭转
D
解:轴的扭矩等于轴传递的转矩
T M 1.98KNm
轴的内,外径之比
M M t

d D 2t 0.934 D D
d
D
D 4 (1 4 ) IP 7.82105 mm4 32 IP Wt 2.06104 mm3 D 2
由强度条件 由刚度条件

max
第三章
扭转
扭转这一章节一般出一道大题,而且这一章题型比较独立,不牵涉其 他章节的知识点,这一章题分值大概15分,而且题型比较简单,把公式记 牢,概念好好理解,应该问题不大。
• 铁大考试大纲: 扭转(5-10%) (1)掌握圆轴扭转时横截面上的扭矩计算和切应力计算方 法,掌握握圆轴扭转的变形计算方法。 (2)熟练运用强度条件和刚度条件对圆轴进行设计。 (3)理解应变能的概念并能够进行杆件的应变能计算。 (4)了解矩形截面杆自由扭转时的应力和变形计算方法。

圆轴扭转时的变形和刚度计算

圆轴扭转时的变形和刚度计算
=6.44×10-4m4
轴的最大切应力为 τmax=Tma /Wp=2.86×103N·m/1.43×104m
=20×106Pa=20MPa<[τ]=60MPa 可见强度满足要求。
4) 刚度校核。轴的单位长度最大扭转角为 θmax=Tmax/GIp×180/π
=2.86×103N·m/8.0×1010Pa×6.44×106m4×180/3.14 =0.318°/m<[θ]=1.1°/m 可见刚度也满足要求。材Βιβλιοθήκη 力学圆轴扭转时的变形和刚度计算
1.1圆轴扭转时的变形 圆轴扭转时的变形通常是用两个横截面绕轴线转动的相对扭转角 φ来度量的。在上节中已得到式(3-5),即 dφ/dx=T/GIp
式中:dφ——相距为dx的两横截面间的扭转角。 上式也可写成 dφ=T/GIpdx
因此,相距为l的两横截面间的扭转角为 φ=∫ l dφ=∫(T l /GIp)dx (3-12 若该段轴为同一材料制成的等直圆轴,并且各横截面上扭矩T的 数值相同,则上式中的T、G、Ip均为常量,积分后得
得 D≥(16T/π[τ])1/3
=(16×39.6×103/π×88.2×106)1/3m
=0.131m=131mm
2) 按刚度条件设计轴的直径。由刚度条件式(3-16),即 θmax=Tmax/GIp×180/π
=32×180Tmax/Gπ2D4≤ [θ 得
D=(32×180T/Gπ2[θ])1/4 =(32×180×39.6×103/79×109×π2×0.5)1/4m =0.156m=156mm 故取D=160mm,显然轴能同时满足强度条件和刚度条件。
【例3-6】一钢制传动圆轴。材料的切变模量G=79×103MPa, 许用切应力[τ]=88.2MPa,单位长度许用扭转角[θ] =0.5°/m,承受的扭矩为T=39.6kN·m。试根据强度条件和 刚度条件设计圆轴的直径D。

第三章扭转(三)

第三章扭转(三)

§3―6 等直圆杆扭转时的应变能
下图a所示的扭转实验表明:当杆轴在线弹 性范围内承受扭转时,截面B相对于截面A的 相对扭转角φ与外力偶矩Me在加载过程中成正 比例关系,如图b所示。
§3―6
等直圆杆扭转时的应变能
由功能原理:杆轴在扭转时的弹性变形过 程中,积蓄在弹性体内应变能Vε在数值上等于 外力所做的功W,即
§3―5 等直圆杆扭转时的变形•刚度条件
解:(1)由扭转图可知Tmax=9.56kN•m。 扭转截面系数和极惯性矩为
1 4 (1 − α ) = Wp = 1 − 16 16 2 Ip =
πD 3
πD 3
×
4
πD 3 15 × = 16 16
πD 4
§3―5 等直圆杆扭转时的变形•刚度条件 一、扭转角的计算
等直圆杆在受扭后,其变形程度用切应变γ 表示,而变形的大小则通过计算扭转角φ来度量 的。
dϕ dx = T GI p ,则扭转角由积分可得
T Tl ϕ = ∫ dϕ = ∫ dx = l 0 GI GI p p
l
在前节中知道扭转角φ沿杆长的变化率是
dϕ T = ϕ = dx GI p
'
§3―5 等直圆杆扭转时的变形•刚度条件 三、刚度条件
等直圆杆在受扭转时,除需要满足强度条件 外,有时还需满足刚度条件。有时扭转角过大, 将会影响其正常工作,如机器的传动轴的扭转 角过大会引起振动。故应用刚度条件加以限制。 刚度条件通常是限制其单位长度扭转角的最大 值不超过某一允许值[φ`],即

M el ϕ= GI p
§3―5 等直圆杆扭转时的变形•刚度条件 上式说明:扭转角φ与T和l成正比,与GIp 成反比。GIp称为扭转刚度。材料强度高(G 大)、直径大,则扭转刚度越好。

结构力学第三章-扭转.

结构力学第三章-扭转.

对于空心圆截面:
d
I p A 2 dA 2 d
2 D 2 d 2

d
O D
4 4 (D d ) 32 D4 4 (1 ) 32
d ( ) D
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
代入物理关系式
d T dx GI p
d 得: G dx
T Ip
T Ip
— 横截面上距圆心为 处任一点切应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
第三章
§3–1 概述
扭 转
§3–2 薄壁圆筒的扭转
§3–3 传动轴的外力偶矩 ·扭矩及扭矩图
§3–4 等直圆杆扭转时的应力 ·强度条件
§3–5 等直圆杆扭转时的变形 ·刚度条件
§3–6 等直圆杆扭转时的应变能
§3–7 非圆截面等直杆在自由扭转时的应力和变形
§ 3–1
概 述
轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、
石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线 垂直,杆发生的变形为扭转变形。 B
A
O
A

O B
m
m
工 程 实 例
§ 3–2
薄壁圆筒的扭转


扭转角():任意两截面绕轴线转动而发生的角位移。
切应变():直角的改变量。
剪切胡克定律: T=m


剪切胡克定律: 当剪应力不超过材料的剪切比例极限时(τ ≤τp), 剪应力与剪应变成正比关系。

材料力学 第 三 章 扭转

材料力学 第 三 章 扭转
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ

dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。

材料力学扭转变形

材料力学扭转变形

非圆截面杆扭转的研究方法:弹性力学的方法研究
非圆截面杆扭转的分类: 1、自由扭转(纯扭转), 2、约束扭转。
自由扭转:各横截面翘曲程度不受任何约束(可自由凹凸), 任意两相邻截面翘曲程度相同。
约束扭转:由于约束条件或受力限制,造成杆各横截面翘 曲程度不同。
矩形截面杆自由扭转时应力分布特点
1 2 0
§3-5 扭转变形和刚度计算
1、扭转变形:(相对扭转角)
d T 扭转变形与内力计算式
dx GI P
d T dx
GI P
T dx
L GI P
扭矩不变的等直轴
Tl
GI p
各段扭矩为不同值的阶梯轴
Tili
扭转角单位:弧度(rad)
d T
dx GI P
d
dx
2

T2 GIp
因 T1 T2

max
d
dx max
1
T1 GIp
max

180 N m
180
(80 109 Pa)(3.0 105 10-12 m4 ) π
0.43 () / m [ ]
轴的刚度足够
例2 传动轴的转速为n=500r/min,主动轮A 输入功率P1=400kW, 从动轮B,C 分别输出功率P2=160kW,P3=240kW。已知 [τ]=70MPa, [ ]=1º/m ,G=80GPa。
试求:两者的最大扭转切应力与扭转变形,并进行比较。
解:1)圆截面 circular
d
a
c max

16T
d 3
,
c

32Tl

扭转刚度

扭转刚度
ቤተ መጻሕፍቲ ባይዱ
T
D
D 2
FD 扭矩: 扭矩: T = 2
簧丝横截面上的应力: 簧丝横截面上的应力:
FS
1、剪力 F 引起的 τ1 近似 、 S 认为是均匀分布 2、扭矩 T 引起的 τ 2 按照 、 圆轴扭转计算
τ1
τ 2max
簧丝横截面上的应力: 簧丝横截面上的应力:
τ1 =
π
F d2
4F = πd 2
τ1
A d
簧丝横截面上的应力: 簧丝横截面上的应力:
τ max
8FD d = +1 A 3 πd 2D
τ1
τ 2max
A
对于簧丝的直径 d 远小 于弹簧的中径D的情况 的情况, 于弹簧的中径 的情况,
d
τ max
8FD ≅ πd 3
在考虑簧丝的曲率和
τ1 分布不均匀时: 分布不均匀时:
二、圆轴扭转刚度的计算 ϕ ′= ϕ 单位长度扭转角
l
T 显然 ϕ′ = GIP
圆轴扭转刚度条件为: 圆轴扭转刚度条件为:
ϕ′ ≤ [ϕ′]
单位长度扭转角的许可值
[ϕ′] ( ) m
0
圆轴扭转刚度条件为: 圆轴扭转刚度条件为:
T 180 GI × π ≤ [ϕ′] P m ax
Tmax =155 N ⋅ m
轴的强度条件为: 轴的强度条件为:
Tmax 16Tmax = = ≤ [τ ] 3 πD W t
16Tmax
MⅡ
T(N ⋅ m)
MⅢ
MⅣ
τ max
D≥3
π [τ ]
=3
16×155 π × 40×106
39.3

材料力学-圆杆扭转时的变形及刚度条件

材料力学-圆杆扭转时的变形及刚度条件

扭转剪应力公式是圆轴在弹性范围内导出的,其适用条件是:
1. 必须是圆轴,否则横截面将不再保持平面,变形协调公式
将不再成立。
d
dx
2. 材料必须满足胡克定律,而且必须在弹性范围内加载,只有
这样,剪应力和剪应变的正比关系才成立:
G
d
dx
二者结合才会得到剪应力沿半径方向线性分布的结
何斌
Page 28
材料力学
第4章 圆轴扭转
连接件强度计算的工程意义
两个或多个构件相连 —— 1. 用 钉子、铆钉等联结 2. 焊接 3. 其它
联接件体系(联接件、被联接构件)的受力特点: 力在一条轴线上传递中有所偏离(与拉压情况不同)
问题:1. 力传递的偏离引起什么新的力学现象? 2. 如何计算联接件、被联接构件的强度?
何斌
Page 12
材料力学
例 题1
第4章 圆轴扭转
θ M x θ =1.5 =1.5 π rad / m
GIp
2m 2 180
I
=π D4 p 32
1-α 4
,α= d D
轴所能承受的最大扭矩为
M x
θ
GI
=1.5 p2
π 180
rad/m G
π D4 32
1-α 4
1.5π
受扭圆轴的相对扭转角
圆杆受扭矩作用时,dx微段的两截面绕轴线相对转动 的角度称为相对扭转角
d M x dx
GIP沿轴线方向积分,得到源自d M x dxl
l GIp
何斌
Page 6
材料力学
第4章 圆轴扭转
圆杆扭转时的变形及刚度条件
受扭圆轴的相对扭转角
对于两端承受集中扭矩的等截面圆轴,两端面的相

轴向拉伸与压缩、圆轴扭转变形

轴向拉伸与压缩、圆轴扭转变形

2Fl [s ]sin 2q
欲使VBD最小, sin 2q = 1 q = 45o
§3-5 拉伸与压缩
讨论题:杆钢段AB ,[]钢=200MPa, 铜段BC和CD, []铜=70MPa;AC段截
面积 A1=100mm2 , CD段截面积 A2=50mm2 ;试校核其强度。
解(1)画轴力图
(2)求各段应力
s AB
=
9´ 103 100
MPa =
90MPa
6´ 103
s BC = -
MPa = - 60MPa 100
4´ 103
s CD =
MPa = 80MPa 50
(3)强度校核
s AB = 90MPa<[s ]钢 强度足够;
9kN
A
9kN
15kN
10kN 4kN
B
C
D
FN图 4kN
6kN
s BC = 60MPa<[s ]钢 强度足够;
式中: s 为横截面上的正应力; FN为横截面上的轴
力; A为横截面面积。
正应力 s 的正负号规定为:拉应力为正,压应力为负。
公式的使用条件:轴向拉压杆。
§3-5 直杆轴向拉伸与压缩
例3-1 如图所示圆截面杆,直径 d 40,m拉m力
试求杆横截面上的最大正应力。
F 60kN
解(1)作轴力图
FN F 60 kN
零件抵抗破坏的能力,称为强度。 零件抵抗变形的能力,称为刚度。 学习基本变形、应力、强度是为了保证材料 具有足够的使用寿命。
§3-5 直杆轴向拉伸与压缩
一、轴向拉伸与压缩时的变形特点
实验:
F
ac
a
c
F

材料力学第5版(孙训方编)第三章

材料力学第5版(孙训方编)第三章

A t dA T

G dj 2dA T dx A
其中 2 d A A
称为横截面的极惯性矩Ip,
单位 m4。它是横截面几何性质。
以Ip
2 d A 代入上式得:
A
dj T
d x GI p
从而得等直圆杆在线弹性范围内扭转时,横截面上任一点
处切应力计算公式


3. 作扭矩图
第三章 扭转
由扭矩图可见,传动轴的最大扭矩Tmax在CA段内,其 值为9.56 kN·m。
第三章 扭转
思考:如果将从动轮D与C的位置对调,试作该传动轴的扭 矩图。这样的布置是否合理?
第三章 扭转
4.78
6.37
15.9
4.78
第三章 扭转
§3-4 等直圆杆扭转时的应力·强度条件

{M
e }Nm



{n} r m in 60
103
因此,在已知传动轴的转速n(亦即传动轴上每个轮的
转速)和主动轮或从动轮所传递的功率P之后,即可由下式
计算作用于每一轮上的外力偶矩:
{M e}Nm

{P}kw 103 2π{n} r
60

9.55 103
{P}kw {n} r
m in
本章研究杆件发生除扭转变形外,其它变形可忽略的
情况,并且以圆截面(实心圆截面或空心圆截面)杆为主要
研究对象。此外,所研究的问题限于杆在线弹性范围内工
作的情况。
水轮发电机
第三章 扭转
§3-2 薄壁圆筒的扭转
薄壁圆筒——通常指 r0 的圆筒
10
Me
m
Me
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:①图示状态下,扭矩如
图,由强度条件得:
T (kNm)
-9.55 -5.73
x
2018/9/21
P m 9.55 (kN m) n
7
T d1 3 16T 3 16 9550 88.5mm 6 Wt 3.14 70 10 16 [ ]
0.033 (弧度)
2 0
T
40Nm
x
2018/9/21
6
[例2] 某传动轴设计要求转速n = 500 r / min,输入功率P1 = 500kw, 输出功率分别 P2 = 200KW及 P3 = 300KW,已知:
G=80GPa ,[ ]=70M Pa,[ ]=1º /m ,试确定:
①AB 段直径 d1和 BC 段直径 d2 ? ②若全轴选同一直径,应为多少? ③主动轮与从动轮如何安排合理? A 500 B 400 C P1 P2 P3
Tmax Wt [ ]
D3 Wt ( 1 4)
16
16Tmax D 4 1 ) [ ] (
2018/9/21
1 3
4
16Tmax D 4 1 ) [ ] (
代入数值得: D 0.0226m。 40Nm
1 3
T
§ 3 –5
由公式
等直圆杆扭转时的变形 刚度条件
一、扭转时的变形
d T dx GI p
知:长为 l一段杆两截面间相对扭转角 为
T d dx GI p
l 0

2018/9/21
Tl (若T 值不变) GI p
1
二、单位扭转角 ': 或
d T ' (rad/m) dx GI p d T 180 ' (/m) dx GI p
GIp反映了截面抵抗扭转变形的能力,称为截面的抗扭刚度。
三、刚度条件
'max
'max
T ' GI p
(rad/m)
(/m)

T 180 ' GI p
[ ']称为许用单位扭转角。
2018/9/21
2
刚度计算的三方面: ① 校核刚度: ② 设计截面尺寸:
d13
d2
3

1
16T

3
16 5730 74.7mm 6 3.14 70 10
N2 B N3 C 400 x
N 由刚度条件得: A 500 T (kNm) –9. 55
d T Ip 32 G [ ]
4
2018/9/21
–5.73
8
32 T 32 9550 180 4 d1 4 91.3mm 2 9 G [ ] 3.14 80 10 1
② 由扭转刚度条件校核刚度
max
'
Tmax 180 GI P
x
2018/9/21
5
Tmax 180 32 40180 'max 1 . 89 ' 9 2 4 4 GI P 8010 D (1 )
③右端面转角为:
0L T dx 02 40 20x dx 10 ( 4x x2 ) GIP GIP GIP
为 75mm。
T (kNm)
3.82
x
– 5.73

2018/9/21
10
32 T 32 5730 180 4 4 d2 80.4mm 2 9 G [ ] 3.14 80 10 1
综上:
d1 91.3m m d 2 80.4m m
②全轴选同一直径时
d d1 91.3mm
9
2018/9/21
③ 轴上的绝对值最大的扭矩越小越合理,所以,1轮和2轮应 该换位。换位后,轴的扭矩如图所示,此时,轴的最大直径才
'max '
Ip
max
T
G[ ' ]
max
③ 计算许可载荷: T
GI p [ ' ]
有时,还可依据此条件进行选材。
2018/9/21
3
[例1]长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,如图,
若杆的内外径之比为 =0.8 ,G=80GPa ,许用剪应力 []=30MPa,试设计杆的外径;若[]=2º /m ,试校核此杆的 刚度,并求右端面转角。 解:①设计杆的外径
相关文档
最新文档