2018中考总复习一次函数专题教学提纲
一次函数的总复习的教学设计
人教版八年级数学下册第19章一次函数总复习的教学设计(第一课时)教学内容:本节课的教学内容是一次函数的总复习。
一次函数是初中数学的核心内容,也是重要的基础知识和数学思想。
在实际问题中应用极为广泛,是联系数学知识与实际问题的桥梁与纽带。
也是中考数学中重要的内容。
教学目标:1、知识与技能:(1)了解函数的概念。
(2)理解一次函数的概念及其图象和性质,并会用待定系数法求一次函数解析式。
2、过程与方法:通过讲练结合,帮助学生整理本章的主要知识点。
让学生在练习中经历探究思考,合作交流的过程,体会获取知识的方法,积累学习经验,感受数学生活化。
3、情感、态度与价值观:渗透数形结合的思想,使学生认识到数学与生活紧密相连,让他们在学习活动中获得成功的喜悦。
教学重难点:重点:一次函数与正比例函数的图象与性质,用待定系数法求函数的解析式。
难点:一次函数与正比例函数的图象与性质及应用。
教学过程:一、知识回顾:这节课我们一起来复习一下一次函数,大家先回顾一下本章中前两节的主要内容。
(一)函数1.函数定义:在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
(注:强调“唯一”二字。
并以小练习加以巩固)2.自变量的取值范围(1)分母不为0,(2)开偶次方的被开方数大于等于0,(3)使实际问题有意义。
巩固练习:求下列函数中自变量x 的取值范围。
(1)y= (2)y=(3)y= (二)一次函数的概念一次函数的概念:函数y=_______(k 、b 为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数。
(三)一次函数与正比例函数的图象与性质(四)、怎样画一次函数y=kx+b 的图象?843+x 12+-x 532-+x x1、两点法y=x+3列表:2、平移法注意:在实际问题中,画函数的图象要注意自变量的取值范围。
第15、16讲,2018中考数学专题复习课件:一次函数
一、知识要点:
1、一次函数的概念:函数y=_k_x__+__b_(k、b为常 数,k__≠_0___)叫做一次函数。当b__=__0_时,函数 y=_k_x__(k_≠_0__)叫做正比例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是__1_次, ⑵、比例系数_K_≠_0__。
2、正比例函数y=kx(k≠0)的图象是过点 (_0_,__0_),(__1_,__k_)的_一__条__直__线__。 _b__),(3、__一_bk_次,函0)的数_y一_=_k条_x_+直_b_线(_k_≠_0。)的图象是过点(0,
4、正比例函数y=kx(k≠0)的性质:
⑴当k>0时,图象过一__、__三__象限;y随x的增大而_增__大_。 ⑵当k<0时,图象过二__、__四__象限;y随x的增大而_减__小_。 5、一次函数y=kx+b(k ≠ 0)的性质:
⑴当k>0时,y随x的增大而_增__大______。
⑵当k<0时,y随x的增大而__减__小_____。
⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k、b的 符号:
ห้องสมุดไป่ตู้
k_>__0,b_>__0
k_>__0,b_<__0
k_<__0,b_>__0
6、两条直线平行,K值 ___相_同___
2018年中考复习
一次函数专题复习
2018年中考复习
2018年中考复习
一次函数专题复习
课标导航:
1、结合具体情境体会一次函数的意义,能根据 已知条件确定一次函数的表达式。 2、会利用待定系数法确定一次函数的表达式。 3、能画出一次函数的图象,根据一次函数的图 象和表达式y=kx+b(k≠0)探索并理解k>0和k <0时,图象的变化情况。 4、理解正比例函数。 5、体会一次函数与二元一次方程的关系。 6、能用一次函数解决简单实际问题
初三数学一次函数专题复习(第一轮)
初三年级一次函数专题复习整理知识回顾一、一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0 )的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如下表所示.(3)一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.①②③④直线经过第一、二、三象限(直线不经过第四象限);直线经过第一、三、四象限(直线不经过第二象限);直线经过第一、二、四象限(直线不经过第三象限);直线经过第二、三、四象限(直线不经过第一象限);二、一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。
附:一次函数的图象及性质正比例函数的图象及性质基础达标验收卷一、选择题:1.下列说法正确的是()A.正比例函数是一次函数 B.一次函数是正比例函数C.正比例函数不是一次函数 D.不是正比例函数就不是一次函数2.下列函数中,y是x的一次函数的是()A.y=-3x+5 B.y=-3x2 C.y=1 D.x3.已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)•的函数关系式是y=20-2x,则其自变量的取值范围是()A.0<x<10 B.5<x<10 C.x>0 D.一切实数4.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是(•)A.y=2x+1 B.y=-2x+1 C.y=2x-1 D.y=-2x-15、下列一次函数中,y随x值的增大而减小的()A.y=2x+1 B.y=3-4x C..y=(5-2)x6、已知一次函数y=mx+│m+1│的图象与y轴交于(0,3),且y随x•值的增大而增大,则m的值为()A.2 B.-4 C.-2或-4 D.2或-47、已知一次函数y=mx-(m-2)过原点,则m的值为()A.m>2 B.m<2 C.m=2 D.不能确定8、下列关系:①面积一定的长方形的长s与宽a;②圆的周长s与半径a;•③正方形的面积s与边长a;④速度一定时行驶的路程s与行驶时间a.其中s是a的正比例函数的有()A.1个 B.2个 C.3个 D.4个9、一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,•则此函数的解析式为()A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-510、已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为()A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤ D.不能确定11、已知点(a,b)、(c,d)都在直线y=2x+1上,且a>c,则b与d的大小关系是(• )A.b>d B.b=d C.b<d D.b≥d12、已知自变量为x的一次函数y=a(x-b)的图象经过第二、三、四象限,则(• )A.a>0,b<0 B.a<0,b>0 C.a<0,b<0 D.a>0,b>013、如图所示的图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是()14、(杭州)一次函数y x1的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限15、(南宁)如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司的产品销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量()A. 小于3吨B. 大于3吨C. 小于4吨D. 大于4吨16、(哈尔滨)若正比例函数y(12m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1x2时,y1y2,则m的取值范围是()A. m0B. m0C.11 D. m 2217、(甘肃)结合正比例函数y4x的图象回答:当x1时,y的取值范围是()A. y 1B.1≤x<4C. y 4D. y 4 m18、(山西)若m1,则下列函数:①y m(x0);②y mx1;③y mx;④y(m1)x 中,yx随x的增大而增大的是()A. ①②B. ②③C. ①③D. ③④19、(河南)两条直线y1ax b与y2bx a在同一坐标系中的图象可能是下图中的()A. 2个B. 3个C. 4个D. 5个二、填空题:1. (广州)如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.2. (四川)在平面直角坐标系中,直线y kx b(k,b为常数k≠0,b>0)可以看成是将直线y kx沿y轴向上平行移动b个单位得到的,那么将直线y kx沿x轴向右平行移动m个单位(m>0)得到的直线方程是____________.3. (大连)大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连开往庄河,则汽车距庄河的路程(千米)s与行驶的速度(小时)t之间的函数关系式为_________________.4. (河南)若一次函数y(2m)x m的图象经过第一、二、四象限,则m的取值范围是________________.5.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.6.从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t之间的函数关系式是_________.7.已知A、B、C是一条铁路线(直线)上顺次三个站,A、B两站相距100•千米,现有一列火车从B站出发,以75千米/时的速度向C站驶去,设x(•时)表示火车行驶的时间,y(千米)表示火车与A站的距离,则y与x的关系式是_________.8、已知一次函数的图象经过点A(1,4)、B(4,2),•则这个一次函数的解析式为___________.9、如图1,该直线是某个一次函数的图象,•则此函数的解析式为_________.(1) (2)10、已知y-2与x成正比例,且x=2时,y=4,则y与x的函数关系式是_________;当y=3时,x=__________.11、若一次函数y=bx+2的图象经过点A(-1,1),则b=__________.12、如图2,线段AB的解析式为____________.13、一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y•轴的交点是_________.14、已知一次函数y=kx+b的图象经过点(0,-4),且x=2时y=0,则k=______,b=•_______.三、解答题:1. 某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.2. 已知y与x2成正比例,且x1时,y 6.(1)求y与x之间的函数关系式;(2)若点(a,2)在函数的图象上,求a的值.3. (南京)某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例. 当x=20时,y=1600;当x=30时,y=2000.(1)求y与x之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么没2名运动员需要支付多少元?4. (海南)在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A地到B 地,所经过的路程y(千米)与时间x(小时)的函数关系如图所示,试根据图象回答下列问题:(1)货车比轿车早出发__________小时,轿车追上货车时行驶了__________千米,A地到B地的距离为_________千米.(2)轿车追上货车需要多小时?(3)轿车比货车早到多少时间?5、已知点A(a+2,1-a)在函数y=2x-1的图象上,求a的值.6、已知直线m与直线y=2x+1的交点的横坐标为2,与直线y=-x+2•的交点的纵坐标为1,求直线m的函数关系式.7、已知一次函数的图象经过点A(-3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.8、在弹性限度内,弹簧的长度y(cm)是所挂物体的质量x(kg)的一次函数,•当所挂物体的质量为1kg时,弹簧长10cm;当所挂物体的质量为3kg时,弹簧长12cm.写出y与x之间的函数关系,并求出所挂物体的质量为6kg时弹簧的长度.9、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出当x≥3时该图象的函数关系式;②某人乘坐2.5km,应付多少钱?③某人乘坐13km,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?。
中考考点复习之一次函数专题
中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
2.会利用待定系数法确定一次函数的表达式。
3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。
4.理解正比例函数。
5.体会一次函数和二元一次方程的关系。
考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。
中考总复习一次函数教学设计
中考总复习一次函数知识梳理1. 正比例函数:定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做__________函数,其中k叫做__________正比例函数的图像是经过点(0,0),(1,k)的一条直线.2. 一次函数:定义:一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的__________.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的__________.一次函数的图像是经过点(0,b), 的一条直线4、图像的平移5、图像的位置与比例系数K的关系:6. 求一次函数的解析式:求一次函数的解析式的方法是____________,其基本步骤是:①__________;②____________________________________;③____________________;④__________.7. 一次函数与方程、不等式的关系:中考考点精练基础篇1. 当b<0时,一次函数y=x+b的图象大致是()2.已知一次函数y=kx+b的图象如图所示,则k,b的符号是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<03. 如图1-3-12-3,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是()A. x=2B. x=0C. x=-1D. x=-3【归纳总结】一次函数与一次方程一次函数y=kx+b(k≠0)的值为________时,相应自变量的值为方程kx+b=0的解一次函数与一元一次不等式一次函数y=kx+b(k≠0)的值大于(或小于)0,相应的自变量的值为不等式kx+b________0(或kx+b________0)的解一次函数与方程组两直线的交点是两个一次函数表达式y=k1x+b1和y=k2x+b2组成的方程组________________的解4. 同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图1-3-12-8所示,则满足y1≥y2的x的取值范围是()A. x≤-2B. x≥-2C. x<-2D. x>-25. (2016甘孜州)如图1-3-2-6,已知一次函数y=kx+3和 y=-x+b的图象交于点P (2,4),则关于x的方程kx+3=-x+b 的解是__________.6.已知点(-1,y1)、(2,y2)在直线y=-3x+8上,则y1,y2的大小关是。
一次函数复习课教案
中考第一轮复习课一次函数复习课 教案一、教学目标:1、一次函数的代数与几何意义。
一次函数的定义、图象和性质。
2、一次函数解析式的确定。
3、体会一次方程、一次不等式与一次函数的内在联系。
4、在具体问题中培养学生分析解决问题的能力。
二、重难点重点:一次函数的图象与性质;一次函数解析式的确定。
难点:一次函数与方程、不等式的联系;一次函数在实际问题中的应用。
三、教学方法:以题带概念进行重点知识复习,渗透待定系数法、数形结合、分类讨论等数学思想方法。
四、教学过程点明主题,分类复习。
本节课我们对一次函数的基础知识进行复习。
(一)一次函数的定义例1、已知y 是x 的一次函数,且满足,请求出k 的值。
312+=+-k k kxy 分析解决问题:由一次函数的定义可得,解得k =1。
0112≠=+-k k k 且通过例1回顾总结一次函数的定义:一般的,如果,)是常数,、(0≠+=k b k b kx y 那么y 叫做x 的一次函数,特别的,当b =0时,y 叫做x 的正比例函数。
(二)一次函数的图象和性质例2、请在给定的平面直角坐标系中作出一次函数与的图象,331-=x y 332+-=x y 并回答问题(1)一次函数的图象是一条______________。
(2)由图象可知,随x 的增大而___________,直线经过_________象限;1y 331-=x y 随x 的增大而______________,直线经过__________象限。
2y 332+-=x y (3)直线与y 轴的交点坐标为(__________),直线与y 轴交331-=x y 332+-=x y点坐标为(_________)。
(4)直线与x 轴的交点坐标为(__________),直线与x 轴交331-=x y 332+-=x y 点坐标为(_________)。
(5)直线与直线的交点坐标为(__________),根据图象回答,331-=x y 332+-=x y 当x_____________时,。
一次函数中考数学总复习教案
一次函数中考数学总复习教案一、知识点:1.一次函数意义(正比例函数意义);2.一次函数图象;3.一次函数性质;4.一次函数应用:待定系数法,两直线的位置关系.二、中考课标要求1.正比例函数与一次函数的关系正比例函数是当y=kx+b中b=0时特殊的一次函数.2.待定系数法确定正比例函数、一次函数的解析式通常已知一点便可用待定系数法确定出正比例函数的解析式, 已知两点便可确定一次函数解析式.3.一次函数的图象正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),(bk,0)两点的一条直线.4.直线y=kx+b(k≠0)的位置与k、b符号的关系当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴.5.直线L1与L2的位置关系由k、b来确定当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y 轴同一点时,k不同b相同.6.一次函数经常与一次方程、一次不等式相联系四、中考题型例析1.一次函数的图象例1 (2003·福州)如果直线y=ax+b经过第一、二、三象限,那么ab____0( 填“>”、“<”、“=”).例2 (2003·青州)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、 n是常数且mn≠0)图象是( )O x yAO xyBO xyCOxyD2.一次函数的性质例3 (2003·甘肃)一次函数的图象过点(1,2),且y随x的增大而增大, 则这个函数解析式是________.3. 一次函数的应用例4 (2003·哈尔滨)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象( 分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围;(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?基础达标验收卷一、选择题1.(2003·杭州)一次函数y=x-1的图象不经过( )A.第一象限B.第二象限;C.第三象限D.第四象限2.(2004·福州)已知正比例函数y=kx(k≠0)的图象过第二、四象限,则( )A.y随x的增大而减小;B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变3.(2003·哈尔滨)若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是( )A.m<0B.m>0C.m<4.(2003·甘肃)结合正比例函数y=4x的图象回答:当x>1时,y的取值范围是( )A.y=1B.1≤y<4C.y=4D.y>45.(2004·哈尔滨)直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个6.(2003·青海)拖拉机开始工作时,油箱中有油40L,如果每小时耗油5L, 那么工作时,油箱中的余油量Q(L)与工作时间t(h)的函数关系用图象可表示为( )408 O tQA408Ot QD二、填空题1.(2003·广州)如果正比例函数的图象经过点(2, 1) , 那么这个函数解析式是_________.2.(2002·潍坊)若一次函数的图象经过第一、第三、第四象限,则一次函数的解析式为________(填一个即可).3.(2004·四川)在平面直角坐标系中,直线y=kx+b(k、b为常数,k≠0,b>0) 可以看成是将直线y=kx沿y轴向上平行移动b个单位而得的,那么将直线y=kx沿x轴向右平行移动m个单位(m>0)得到的直线的方程是________.4.(2004·天津)已知正方形ABCD的边长是1,E为CD边的点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=13时,x的值等于________.三、解答题1.(2002.镇江)已知y与x+2成正比例,且x=1时y=-6.(1)求y与x 之间的函数关系式;(2)若点(a,2)在函数图象上,求a的值.2.(2004.吉林)如图,大拇指与小姆指尽量张开时, 两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数. 下表是测得的指距与身高的一组数据:指距d(cm) 20 21 22 23身高h(cm) 160 169 178 187(1)求出h与d之间的函数关系式(不要求写出自变量d的取值范围).(2)某人身高为196cm,一般情况下他的指距应是多少?3.(2003·陕西)为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套,说明理由.4.(2003.辽宁)某博物馆每周都吸引大量中外游客前来参观.如果游客过多, 对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存等费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数. 在该方法实施过程中发现:每周参观人数与票价之间存在着如图1-13-9 所示的一次函数关系.在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?O能力提高练习一、应用题1.(2003.恩施自治州)在某一段电路中,保持电压不变,则电流强度I 与电阻R 之间的函数关系的图象大致是( )R2.(2004.福州)如图,L 1、L 2 分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图象分别求出L 1、L 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明 2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).3.(2004.沈阳)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨, 该市的C县分别储存化肥100吨和50吨,全部调配给A 县和B 县.已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)如下表所示.RIOD(1)设C 县运到A 县的化肥为x 吨,求总费W(元)与x(吨)的函数关系式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案四、创新题5.(2001·河北)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置, 我们用数轴Ox 表示这条公路,原点O 为零千米路标(如图),并作如下约定:xO①速度v>0,表示汽车向数轴正方向行驶;速度c<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图.请解答下列问题:(1) .(2),请说明理由.甲车:s=-40t+190 (t ≥0)(t ≥0)乙车:s=50t-80t(h)s(km)O。
一次函数教学讲义(知识点框架、典型例题、中考真题)
一次函数讲义知识点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。
正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m x x +=-+-是一次函数;4、当m_____________时,()21445m y m x x +=-+-是一次函数;知识点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
(见前面函数解析式的确定) 第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
二. 平移型 两条直线1l:11y k x b =+;2l :22y k x b =+。
2018年中考数学总复习基础过关函数课时10一次函数课件20180412227
四、一次函数与方程 ( 组 ) 、不等式的关系 ( 考 点3)
与一元一 一次函数 y=kx+b 与 x 轴交点的横 次方程的 b 坐标- 是方程 kx+b=0 的解 k 关系
与二 一次函数 yபைடு நூலகம்kx+b 与 y=k1x+b1 图象的交 元一 次方 程组 的关 系
y=kx+b, 点坐标是方程组 y=k1x+b1 y=kx+b, 方程组 y=k1x+b1
图2
4 (2)若该一次函数 y= x-n 的图象与 y 轴交于 3 D 点, 且与直线 AB 交于 C 点, 求△COD 的面积.
解:(1)在 y=2x 中,令 x=1,解得 y=2,则 B 的坐标是(1,2).∵OA=3,∴A 的坐标是(0,3). 设直线 AB 的解析式是 y=kx+b,
b=3, 则 k+b=2,
(4)直线y=kx+b向下平移m(m>0)个单位长度 →直线y=kx+b-m. 三、待定系数法求一次函数的表达式的步骤 (考点2,命题点2) 1.设:设一次函数的解析式y=kx+b. 2.代:将已知点代入解析式中,得到含有待 定系数k,b的方程或方程组. 3.解:求出待定系数k,b的值,得到函数解 析式.
的解; 反之,
的解一定是一次函数
y=kx+b 与 y=k1x+b1 图象的交点坐标
与一元 一次函数y=kx+b的函数值y>0时,自
一次不 变量x的取值范围是kx+b>0的解集 等式的 一次函数y=kx+b的函数值y<0时,自 关系 变量x的取值范围是kx+b<0的解集
五、一次函数的实际应用(考点4,命题点3) 1.一般步骤:(1)设定实际问题中的变量;(2) 列出一次函数解析式;(3)确定自变量的取值范 围;(4)利用函数性质解决问题;(5)作答. 2.常考类型 (1)根据实际问题列出一次函数解析式,再给 出自变量的值,进而求函数值;
初中数学《一次函数》章节复习课说课稿
建构体系把握本质——《一次函数》章节复习课尊敬的各位评委:大家好!今天我说课的题目是“建构体系把握本质”,副标题是《一次函数》章节复习课,所选用的教材为人教版义务教育教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析1、教材的地位和作用本章教材是初中数学八年级下册第十九章的内容,是初中数学的重要内容之一。
一次函数是初中数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习反比例函数和二次函数的基础。
一次函数在中考中占有重要的地位,已成为中考命题的焦点,题目设计新颖、贴近生活实际,主要考查学生构建一次函数模型解决实际问题的能力,而且一次函数还经常与方程、不等式联系起来综合命题。
2、学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3、教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重难点确定为:教学重点:一次函数的图象及性质的理解教学难点:一次函数的实际应用和数形结合思想在解题中的应用。
二、教学目标分析新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。
借此,我将三维目标进行整合,确定本节课的教学目标为:(一)知识与技能目标1.理解掌握正比例函数、一次函数的概念、图像、性质及解析式的确定。
2018中考数学复习学案(函数篇)第三节 一次函数
第一章 函数 第三节 一次函数一、知识点汇总2、一次函数与坐标轴的交点一次函数y=kx+b 与y 轴交点坐标是 ,与x 轴交点坐标是 。
3、待定系数法求一次函数的解析式已知一次函数图象过点A ()11,y x 和点B ()22,y x ,代入解析式可求k 、b 。
注意:快速求k 的方法: 4、直线的平移规律两条直线平行的条件是:将直线kx y =向上平移b 个单位得直线 ,若向下平移b 个单位得直线 ; 将直线kx y =向左平移a 个单位得直线 ,若向右平移a 个单位得直线 ; 平移规律为:上 ,下 ,左 ,右 。
5、两条直线互相垂直的条件两条直线互相垂直,则 二、例题解析知识点1:一次函数与正比例函数的概念 1、已知函数2)2(1+-=-m x m y 是关于x 的一次函数,则m=2、已知函数12)2(-++=k k x k y ,当k= 时是正比例函数。
3、(2015上海市,3,4分)下列y 关于x 的函数中,是正比例函数的为 (A )y =x 2 (B)y =2x (C)y =x2 (D)y =x +124、(2015四川省凉山州市,14,4分)已知函数y =2x 2a +3+a +2b 是正比例函数,则a =,b =.5、(2015眉山市,13,3分)在函数y=x+l 中,自变量x 的取值范围是__________知识点2:一次函数的图像性质6、(1)一次函数y=3x-4的图像不经过第 象限。
(2)一次函数y=(k+2)x-b-1的图像经过一、三、四象限,则k 、b 的取值范围分别是(3)一次函数y=(k+2)x-b-1的图像y 随x 的增大而减小,且与y 轴交于负半轴,则k 、b 的取值范围分别是7、(2015山东潍坊,8,3分)()01k -有意义,则一次函数()11y k x k =-+-图象可能是( )8、设正比例函数y =mx 的图象经过点A(m ,4),且y 的值随x 值的增大而减小,则m =( ) A . 2 B . -2 C . 4 D . -49、(2015广西桂林,11,3分)如图,直线y =kx +b 与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足-3≤a <0时,k 的取值范围是( )A.-1≤k <0B.1≤k ≤3C. k ≥1D. k ≥310、(2013•遵义)P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y =﹣x 图象上的两点,下列正确的是( )11、已知m 是整数,且一次函数2)4(+++=m x m y 的图像不过第二象限,则m= 知识点3:一次函数与一元一次方程和不等式12、(2015山东济南,11,3分)如图,一次函数y 1=x+b 与一次函数y 2=kx+4的图像交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是13、(2015湖南省永州市,13,3分)已知一次函数y =kx +b 的图象经过两点A (0,1),B (2,0),则当x ____时,y ≤0.14、(2015河北省,14,2分)如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限,则a 可能在( ) A .12a << B .20a -<< C .32a -≤≤- D .104a -<<-15、函数y=-2x+1与y=3x -9的图象交点坐标为 ,这对数是方程组 的解。
一次函数 复习提纲
一次函数复习提纲教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.一、一次函数概念及自变量取值范围定义:一般地,如果( ),那么y叫做x的;当时,y=kx(k是常数,k≠0),这时,y叫做x的。
1、已知y=(m-2)x是正比例函数,则m 。
2、已知函数22(1)1ky k x k=-+-,当k 时,它是一次函数;当k 时,它是正比例函数3、函数y=11x-的自变量取值范围为;函数的自变量取值范围为。
归纳:。
二、一次函数的性质直线y=kx+b(k是常数,k≠0),当k>0,b>0时,直线经过象限;当k>0,b<0时,直线经过象限;当k<0,b>0时,直线经过象限;当k<0,b<0时,直线经过象限。
1、函数y= -3x+6的图像不过象限。
2、请你写出一个一次函数,使它的图像过二、三、四象限。
3、已知点A (x 1,y 1)、B (x 2,y 2)在一次函数y=-3x+6图像上,则当x 1>x 2时,y 1 y 2解答此题,你用的方法是:① ,② 。
巩固:若一次函数y=ax+1-a 中,y 随着x 增大而增大,且它的图像与y 轴交于正半轴,则1a a -+=解题思路: 4、在同一坐标系中,对于函数①y=-x-1 ② y=x+1 ③ y=-x+1 ④ y=2x-1 的图像, 互相平行的是 。
2018中考总复习一次函数课件
2、函数y=5x-4 向上平移5个单位,则得的函数解 析式为 y=5x+1 。
3、若直线y=kx+b平行直线y=-3x+2,且与y轴交点 为(0,5),则k= -3 ,b= 5 。 4. 已知直线y=kx+b平行与直线y=-2x,且与y轴交 -2 于点(0,-2),则k=___ -2 ,b=___.
(1,k)
一 次 函 数
y=kx+b (- ,0) (k≠0)
(0,b)
4.一次函数 y=kx+b(k≠0)中两个特征量 b、k 的几何意义 (1)b 是直线 y=kx+b 与 y 轴交点的纵坐标,反映直线与 y 轴交点的 位置.当 b>0 时,直线与 y 轴的正方向相交;当 b=0 时,直线过原 点;当 b<0 时,直线与 y 轴的负方向相交. (2)k 反映直线 y = kx + b 从左到右的升降趋势以及直线的倾斜程 度.当 k>0 时,直线从左到右上升;当 k<0 时,直线从左到右下降;
5、在下列四个函数中,y的值随x值的增大而减小的是( C ) A.y=2x B.y=-3/x (x<0) C.y=-2x+5 D.y=3x+7 6、P1(x1,y1),P2(x2,y2)是正比例函数y= -x图象上的两点,则下 列判断正确的是( C) A.y1>y2 B.y1<y2 C.当x1<x2时,y1>y2 D.当x1<x2时,y1<y2
≠1 3、已知函数y=(k-1)x+k2-1,当k________ 时,它 -1 是一次函数,当 k=_______• 时,它是正比例函 数.
1 y x ,下列说法中正确的是( 4、关于函数 5
C)
2018中考数学一轮复习 教学设计十四(一次函数) 鲁教版
④ 直线经过第象限(直线不经过第象限);
2.一次函数表达式求法
(1)待定系数法:先设出解析式,再根据 条件列方程或方程组求出未知系数,从而写出这个解析式方法,叫做待定系数法,其中未知系数也称为待定系数.
(2)用待定系数法求出函数解析式一般步骤:①;② 得到关于待定系数方程或方程组;③从而写出函数表达式.
(1)分别求出 ≤2和 ≥2时 与 之间函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时,
在治疗疾病时是有效,那么这个有效时间是多长?
解析:(1)设 ≤2时, ,把坐标(2,6)代入得: ;
设 ≥2时, ,把坐标(2,6),(10,3)代入得: .
(2)把 代入 与 中得: , ,则 (小时),因此这个有效时间为6小时.
5.如图,直线相交于点A,与x轴交点坐标为(-1,0),
与y轴交点坐标为(0,-2),结合图象解答下列问题:
⑴求出直线表示一次函数表达式;
⑵当x为何值时,表示两个一次函数函数值都大于0?
三:【课后训练】
1.在下列函数中,满足x是 自变量,y是因变量,b是不等于0常数,且是一次函数是()
2.直线y=2x+6与x轴交点坐标是()
①填下表:
②设每天从报社买进该种晚报x份(120≤x≤200 )时,月利润 为y元,试求出y与x之间函数表达式,并求月利润最大值、
4.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用后,那么服药后2小时血液中含药量最高,达每毫升6微克,(1微克=10 -3毫克),接着逐步衰减,10小时时血液中含量为每毫升3微克,每毫升血液中含药量 (微克)随时间 (小时)变化如图所示.当成人按规定剂量服用后:
一次函数复习提纲
一次函数复习提纲1、一次函数的一般形式:2、y=kx+b (k ≠0)b=0时为正比例函数, 已知函数()12--=k xk y 是比例函数,则k= 。
2、一次函数的图像是一条直线,正比例函数的图像一定过原点,非正比例的一次函数一定不过原点。
3、一次函数的性质当k >0时,函数值随自变量的增大而增加;当k <0时,函数值随自变量的增加而减小。
4、一次函数的平移一次函数()0k b kx y ≠+=的图像可以看成将直线()0k kx y ≠=沿y 轴平移b 个单位后得到的像,它与y 轴的交点坐标是(0,b ) 5、一次函数的作图步骤列表、描点、连线,如果一个坐标系内画多个图像,则应在图像的适当位置标上解析式。
6、同一平面直角坐标系中两直线的位置关系 设;b x k y 11+= b x k y 22+= 若21k k =,则两直线平行; 若1k k 21-=∙,则两直线互相垂直。
7、一次函数的图像与象限8、图像法将二元一次方程组先化为两个一次函数的解析式,再在同一平面直角坐标系中画出它们的图像,其交点坐标就是它们的近似解。
一般步骤:化、列、画、结⎩⎨⎧=-=+12853y x x x9、建立一次函数模型的途径①根据问题所具有的逻辑关系直接列式。
一般写提示语:“根据题意得” ②待定系数法条件给出若干组对应值,且呈均匀变化 一般步骤:设、列、解、结。
非正比例一次函数需要两个点坐标,正比例函数需要一 点的坐标。
10自变量取值范围① 使代数式有意义;2-=x x y②使实际问题有意义。
一根蜡烛长20cm ,点燃后每小时燃烧5cm ,则燃烧是剩下的高度h (cm )与燃烧时间之间的函数关系是 ,自变量的取值范围是 。
汽车加满40升汽油,且每分钟耗油0.2,写出存油y 与行驶时间x 的函数关系式,自变量取值范围是 。
11、典型问题①摄氏温度与华氏温度916095-=F C 3259+=C F②同时不同地不同速问题(见52面) 会列式,会看图 ③出租车问题注意根据取值范围不同而分别列解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018总复习一次函数专题10.(2016·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【考点】一次函数与一元一次方程.9.(2016·广西百色·3分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0【考点】一次函数与一元一次不等式.8. (2016·陕西·3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.6.(2016·内蒙古包头·3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D 分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)5.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.3.(2016·黑龙江齐齐哈尔·3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【考点】一次函数的图象.1. (2016·四川宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度 【考点】函数的图象.1. (2016·湖北武汉·3分)将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为_________. 【考点】一次函数图形与几何变换 【答案】-4≤b ≤-2【解析】根据题意:列出不等式b032=0=22=3=2+6+2x y x b b x y x b b ⎧⎪⎪≥⎨⎪≥⎪⎩<-<代入--满足:-代入满足: ,解得-4≤b ≤-24.(2016·湖北荆州·3分)若点M (k ﹣1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k ﹣1)x +k 的图象不经过第 一 象限.5.(2016·山东潍坊·3分)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).6. (2016·四川眉山·3分)若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第二、四象限7.(2016·山东省东营市·4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式9. (2016·重庆市A卷·4分)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×150=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.10. (2016·重庆市B卷·4分)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第120秒.【考点】一次函数的应用.【分析】分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【解答】解:设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x,设BC的解析式为y1=k1x+b,由题意,得,解得:,∴BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120.则她们第一次相遇的时间是起跑后的第120秒.故答案为120.【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.2. (2016·吉林·8分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是60km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220km.【考点】一次函数的应用.【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,乘以甲的速度即可得到结果.【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,则y乙=90x﹣90;(3)令y乙=240,得到x=,则甲与A地相距60×=220km,故答案为:(1)60;(3)2203. (2016·江西·6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A(2,0),AB=∴BO===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C (0,﹣1)设l 2的解析式为y =kx +b ,则,解得∴l 2的解析式为y =x ﹣18.(2016·孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最少,并求出最少的费用. 解:(1)设A 种、B 种树木每棵分别为a 元、b 元,则⎩⎪⎨⎪⎧2a +5b =600,3a +b =380.解得⎩⎪⎨⎪⎧a =100,b =80. 答:A 种、B 种树木每棵分别为100元、80元.(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x)棵, 则x ≥3(100-x),解得x ≥75. 设实际付款总金额为y 元,则y =0.9[100x +80(100-x)]=18x +7 200. ∵18>0,∴y 随x 的增大而增大. ∴x =75时,y 最小.即x =75,y 最小=18×75+7 200=8 550.∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.7.(2016·泰安)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9 000元;购买10副横拍球拍比购买5副直拍球拍多花费1 600元. (1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设直拍球拍每副x 元,横拍球拍每副y 元,由题意,得⎩⎪⎨⎪⎧20(x +10×2)+15(y +10×2)=9 000,5(x +10×2)+1 600=10(y +10×2).解得⎩⎪⎨⎪⎧x =220,y =260.答:直拍球拍每副220元,横拍球拍每副260元.(2)设购买直拍球拍m 副,则购买横拍球拍(40-m)副,由题意,得 m ≤3(40-m).解得m ≤30.设买40副球拍所需的费用为w 元,则w =(220+2×10)m +(260+2×10)(40-m) =-40m +11 200.∵-40<0,∴w 随m 的增大而减小.∴当m =30时,w 取最小值,w 最小=-40×30+11 200=10 000(元).答:购买直拍球拍30副,购买横拍球拍10副时,费用最少,最少为10 000元.1.(2016·德州)下列函数中,满足y 的值随x 的值增大而增大的是( B ) A .y =-2x B .y =3x -1 C .y =1xD .y =x 22.(2015·眉山)关于一次函数y =2x -1的图象,下列说法正确的是( B ) A .图象经过第一、二、三象限 B .图象经过第一、三、四象限 C .图象经过第一、二、四象限 D .图象经过第二、三、四象限 3.(2015·宁德)已知点A(-2,y 1)和点B(1,y 2)是如图所示的一次函数y =2x +b 图象上的两点,则y 1与y 2的大小关系是( A )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1≥y 24.(2016·陕西)设点A(a ,b)是正比例函数y =-32x 的图象上任意一点,则下列等式一定成立的是( D )A .2b +3b =0B .2a -3b =0C .3a -2b =0D .3a +2b =0 5.(2016·河北)若k ≠0,b<0,则y =kx +b 的图象可能是( B )6.(2016·呼和浩特)已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( A )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0 7.(2016·宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( C )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度 8.(2016·钦州)已知正比例函数y =kx 的图象经过点(1,2),则k =2.9.将正比例函数y =2x 的图象向上平移3个单位,所得直线的解析式为y =2x +3. 10.(2014·毕节)如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x ≥ax +4的解集为x ≥32.11.(2016·荆州)若点M(k -1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k -1)x +k 的图象不经过第一象限. 12.(2016·长春)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限.若点B 在直线y =kx +3上,则k 的值为-2.13.(2016·宜昌)如图,直线y =3x +3与两坐标轴分别交于A ,B 两点. (1)求∠ABO 的度数;(2)过点A 的直线l 交x 轴正半轴于C ,AB =AC ,求直线l 的函数解析式.解:(1)对于y =3x +3,令x =0,则y = 3. ∴A 点的坐标为(0,3), ∴OA = 3.令y =0,则x =-1,∴OB =1. 在Rt △AOB 中,tan ∠ABO =OAOB= 3.∴∠ABO =60°.(2)在△ABC 中,AB =AC ,又AO ⊥BC , ∴BO =CO ,∴C 点的坐标为(1,0).设直线l 的函数解析式为y =kx +b(k ,b 为常数),依题意,有⎩⎨⎧3=b ,0=k +b.解得⎩⎨⎧k =-3,b = 3.∴直线l 的函数解析式为y =-3x + 3.14.(2013·河池)华联超市欲购进A ,B 两种品牌的书包共400个.已知两种书包的进价和售价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.品牌进价(元/个) 售价(元/个) A47 65 B 37 50(1)求w 关于x 的函数关系式;(2)如果购进两种书包的总费用不超过18 000元,那么该商场如何进货才能获利最大?并求出最大利润.(提示:利润=售价-进价)解:(1)由题意,得w =(65-47)x +(50-37)(400-x)=5x +5 200.∴w 关于x 的函数关系式为w =5x +5 200.(2)由题意,得47x +37(400-x)≤18 000,解得x ≤320.∵w =5x +5 200,∴k =5>0,∴w 随x 的增大而增大.∴当x =320时,w 最大=6 800.∴进货方案是A 种书包购买320个,B 种书包购买80个,才能获得最大利润,最大利润为6 800元.15.(2016·新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB 对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?解:(1)从小刚家到该景区乘车一共用了4 h.(2)设AB 段图象的函数解析式为y =kx +b.∵A(1,80),B(3,320)在AB 上,∴⎩⎪⎨⎪⎧k +b =80,3k +b =320.解得⎩⎪⎨⎪⎧k =120,b =-40. ∴y =120x -40(1≤x ≤3).(3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5小时时离目的地120 km.16.(2016·枣庄)如图,点A 的坐标为(-4,0),直线y =3x +n 与坐标轴交于点B ,C ,连接AC.若∠ACD =90°,则n 的值为-433.17.(2016·重庆A 卷)甲,乙两人在直线道路上同起点,同终点,同方向,分别以不同的速度匀速跑步1 500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是175米.18.如图,已知A ,B 分别是x 轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA 交y 轴于点C(0,2),直线PB 交y 轴于点D ,S △AOP =6.(1)求△COP 的面积;(2)求点A 的坐标和p 的值;(3)若S △BOP =S △DOP ,求直线BD 的解析式.解:(1)作PE ⊥y 轴于点E ,∵P 点的横坐标是2,则PE =2.∴S △COP =12OC·PE =12×2×2=2. (2)∵S △AOC =S △AOP -S △COP =6-2=4,又S △AOC =12OA·OC , ∴12×OA ×2=4.∴OA =4. ∴点A 的坐标是(-4,0).设直线AP 的解析式是y =kx +b ,则⎩⎪⎨⎪⎧-4k +b =0,b =2.解得⎩⎪⎨⎪⎧k =12,b =2.则直线AP 的解析式是y =12x +2. 当x =2时,y =3,即p =3.(3)设直线BD 的解析式为y =ax +c(a ≠0),∴D(0,c),B(-c a,0). ∵S △BOP =S △DOP ,∴12OD·2=12OB·3,即c =-3c 2a. ∵P(2,3),∴2a +c =3.∴⎩⎪⎨⎪⎧2a +c =3,c =-3c 2a .解得⎩⎪⎨⎪⎧a =-32,c =6. ∴直线BD 的解析式是y =-32x +6.。