线性代数期末综合复习题
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线性代数期末复习题
《线性代数》综合复习题一、单项选择题:1、若三阶行列式D 的第三行的元素依次为1、2、3,它们的余子式分别为4、2、1,则D =( )(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶方阵A 的列向量组,且齐次线性方程组AX =O 仅有零解,则( )(A) 1α可由23,αα线性表示 (B) 2α可由13,αα线性表示 (C) 3α可由12,αα线性表示 (D) 以上说法都不对3、设A 为n(n ≥2)阶方阵,且A 的行列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于( )(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a , B =⎪⎪⎪⎭⎫ ⎝⎛+++133311311232232122131112a a a a a a a a a a a a ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则有( )(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是( ) (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的行向量组是正交单位向量组 6、设A 是n 阶方阵,且O E A A =+-232,则( )(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭,矩阵B 满足2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13; (B )19; (C )14; (D )13。
大学线代期末试题及答案
大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。
答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。
答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。
答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。
答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。
答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。
然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。
最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。
线性代数期末复习题
线性代数期末复习题《线性代数》综合复习题⼀、单项选择题:1、若三阶⾏列式D 的第三⾏的元素依次为1、2、3,它们的余⼦式分别为4、2、1,则D =()(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶⽅阵A 的列向量组,且齐次线性⽅程组AX =O 仅有零解,则()(A) 1α可由23,αα线性表⽰ (B) 2α可由13,αα线性表⽰ (C) 3α可由12,αα线性表⽰ (D) 以上说法都不对3、设A 为n(n ≥2)阶⽅阵,且A 的⾏列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于()(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =333231232221131211a a aa a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,????=1010100012P ,则有()(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是() (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的⾏向量组是正交单位向量组 6、设A 是n 阶⽅阵,且O E A A =+-232,则()(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ??=,矩阵B 满⾜2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13;(B )19;(C )14;(D )13。
线性代数期末复习题目
一.单项选择题1.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是【 】(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [五.特征值,特征向量]2. 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,A B 分别为A,B 的伴随矩阵,则【 】.(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (B) 交换*A 的第1列与第2列得*B -; (D) 交换*A 的第1行与第2行得*B -. [二.四.矩阵及其运算,行列式]3.设矩阵A =33)(⨯ij a 满足*T A A =,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为【 】.(A) 33. (B) 3. (C) 31. (D)3. [二.四.伴随矩阵,行列式]4.设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B =E +AB ,C =A +CA ,则B -C 为【 】(A) E . (B )-E . (C )A . (D) -A [二.矩阵及其运算]5 .设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是【 】(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关.[二.向量组的线性相关性]6.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则 【 】(A )1.-=C P AP (B )1.-=C PAP (C ).=T C P AP (D ).=TC PAP[二.矩阵及其运算,初等矩阵]7.设125,,......∂∂∂,均为n 维列向量 A 是m n ⨯矩阵,下列正确的是【 】(A) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性相关 (B) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性无关 (C) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性相关 (D) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性无关 [二.向量组的线性相关性]8.设向量组123,,ααα线性无关,则下列向量组线性相关的是【 】 (A) 122331,,;---αααααα (B) 122331,,;+++αααααα (C)1223312,2,2;---αααααα (D) 1223312,2,2+++αααααα. [二.向量组的线性相关性]9.设矩阵211100121,010112000--⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B ,则A 与B 【 】(A) 合同且相似; (B) 合同但不相似; (C) 不合同但相似; (D) 既不合同也不相似.[五.矩阵的相似与合同]10.设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则【 】 (A) -E A 不可逆,+E A 不可逆. (B) -E A 不可逆,+E A 可逆. (C) -E A 可逆,+E A 可逆. (D) -E A 可逆,+E A 不可逆.[二.矩阵及其运算,逆矩阵]11.设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】 (A) 0 ; (B) 1 ; (C) 2 ; (D) 3. [五.矩阵的特征值]12.设1221⎛⎫=⎪⎝⎭A 则在实数域上与A 合同的矩阵为【 】 (A) 2112-⎛⎫⎪-⎝⎭;(B) 2112-⎛⎫⎪-⎝⎭;(C) 2112⎛⎫⎪⎝⎭.;(D) 1221-⎛⎫⎪-⎝⎭.[五.矩阵的合同]13.设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基122331,,+++a a a a a a 的过渡矩阵为【 】.(A )101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )120023103⎛⎫ ⎪ ⎪ ⎪⎝⎭(C )111246111246111246⎛⎫- ⎪ ⎪ ⎪-⎪⎪ ⎪- ⎪⎝⎭(D )111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. [三. 向量空间,基,过渡矩阵]14.设 A ,B 均为 2 阶矩阵,,**A B 分别为A ,B 的伴随矩阵,若|A |=2,|B |=3,则分块矩阵00⎛⎫⎪⎝⎭A B 的伴随矩阵为【 】. (A )32**⎛⎫ ⎪⎝⎭O B A O (B )23**⎛⎫ ⎪⎝⎭O B A O (C )32**⎛⎫ ⎪⎝⎭O A B O (D )23**⎛⎫ ⎪⎝⎭O A BO [二. 三..四.伴随矩阵,逆矩阵,分块矩阵,行列式]15.设A ,P 均为3阶矩阵,T P 为P 的转置矩阵,且TP A P=100010002 ⎛⎫⎪ ⎪ ⎪ ⎝⎭,若1231223(,,),(,,)==+P Q ααααααα,则T Q AQ 为【 】.(A)2101 ⎛⎫ ⎪ 1 0 ⎪ ⎪0 0 2⎝⎭ (B)11012000 ⎛⎫ ⎪ ⎪ ⎪ 2⎝⎭ (C)20001 ⎛⎫ ⎪ 0 ⎪ ⎪0 0 2⎝⎭ (D)100020002 ⎛⎫ ⎪ ⎪ ⎪ ⎝⎭[二. 四.伴随矩阵,分块矩阵的行列式与逆矩阵]16.设矩阵142242A ab a 2 1⎛⎫ ⎪=2 + ⎪ ⎪ + ⎝⎭的秩为2,则【 】.(A )a =0,b =0(B )a =0,b ≠0 (C )a ≠0,b =0 (D )a ≠0,b ≠0.[一. 矩阵的秩]17.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则|-2*A |=【 】.(A )52-; (B )32-; (C )32 ; (D )52.[四. 伴随矩阵,方阵的行列式]二.填空题1.设123,,ααα均为三维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .[四.方阵的行列式]2. 设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = . .[二.四.向量组的线性相关性,行列式] 3.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .[四.方阵的行列式]4.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .[二.矩阵及其运算]5. 已知12,a a 为2维列向量,矩阵1212(2,)=+-A a a a a ,12(,)=B a a .若行列式||6=A ,则||B = .[四.方阵的行列式] 6.设矩阵0100001000010000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为 . [二.矩阵及其运算,矩阵的秩]7.设A 为2阶矩阵,12,αα为线性无关的2维列向量,10,=A α,2122=+A ααα则A 的非零特征值为 .[五.矩阵的特征值]8.设3阶矩阵A 的特征值1,2,2,14--=A E .[五.矩阵的特征值,行列式]9.设3阶矩阵A 的特征值为2,3,λ. 若行列式248=-A ,则λ= . [五.矩阵的特征值,行列式]10.设3阶矩阵A 的特征值互不相同,若行列式0=A , 则A 的秩为 . [五.矩阵的特征值,行列式]11.若 3 维向量,a β满足2=Taβ,其中T a 为a 的转置,则矩阵T a β的非零特征值为______.[五.矩阵的特征值与特征向量]12.设,αβ为3维列向量,T β为β的转置,若T β相似于200000000 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,则T βα=___________[五. 相似矩阵,特征值]13.设(1,1,1),(1,0,)k ==αβ,若矩阵Tαβ相似于300000000 ⎛⎫ ⎪ ⎪ ⎪ ⎝⎭,则k =_______[五. 相似矩阵,特征值]14.设向量组(1,0,1),(2,1),TTk ==-αβ(1,1,4)=--Ty 线性相关,则k =______ [二.四. 向量组的线性相关性,行列式]三 .解答题1.已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换=x Qy ,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. [五. 二次型,矩阵的特征值, 特征向量,正交变换]2.已知三阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636⎛⎫⎪= ⎪ ⎪⎝⎭B k (k 为常数),且AB =O , 求线性方程组Ax =0的通解.[二.线性方程组,基础解系,矩阵]3.确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. [二.向量组的线性相关性]4.已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (ii)⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值. [一.线性方程组求解]5.设⎛⎫= ⎪⎝⎭TAC D CB 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算TP DP ,其中1-⎛⎫-= ⎪ ⎪⎝⎭mn E A C P OE ; (II )利用(I)的结果判断矩阵1--T B C A C 是否为正定矩阵,并证明你的结论. [五.分块矩阵,正定矩阵]6.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足 1123=++A αααα,2232=+A ααα,32323=+A ααα.(I) 求矩阵B , 使得123123(,,)(,,)=A B αααααα;(II )求矩阵A 的特征值;(III )求可逆矩阵P , 使得1-P AP 为对角矩阵. [五.矩阵的特征值,相似矩阵]7.已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A 的秩()2R A =; (Ⅱ)求,a b 的值及方程组的通解. [二.线性方程组求解]8.设3阶实对称矩阵A 的各行元素之和均为3,向量()11,2,1Tα=--,()20,1,1Tα=-是线性方程组0=Ax 的两个解, (Ⅰ)求A 的特征值与特征向量; (Ⅱ)求正交矩阵Q 和对角矩阵Λ使得=TQ AQ Λ;.(Ⅲ)求A 及63()2A E -,其中E 为3阶单位矩阵. [五.矩阵的特征值,相似矩阵]9.设4维向量组()11,1,1,1,Ta ∂=+()22,2,2,2,Ta ∂=+()33,3,3,3,Ta ∂=+()44,4,4,4Ta ∂=+.问a 为何值时1234,,,∂∂∂∂线性相关? 当1234,,,∂∂∂∂线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. [二.向量组的线性相关性]10.设线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值及所有公共解. [二.线性方程组求解]11.设3阶实对称矩阵A 的特征值2,2,1321-===λλλ,且T )1,1,1(1-=α是A 的属于1λ的一个特征向量。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。
7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。
8. 一个向量空间的一组基的向量数量至少是_________。
9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。
10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。
三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。
12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。
四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。
14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。
线性代数复习题
,
2 )T 3
,= α 2
(
2 3
,
1 3
,
−
2 )T 3
,α=3
( 2 , − 2 , 1)T 是 R3 的一组标准正 3 33
交基,则向量 β = (1,1,1)T 在这组基下的坐标为
.
28.设矩阵 A 的特征多项式 λE − A = (λ + 1)(λ + 5)(λ + 7) ,则 A−1 = __ _ .
A.
r
(α1
,
α
2
,
,
α
r)≥
r(β1,
β
2
,
,
βs )
B. r ≥ s
C. r(α1,α2 ,,αr)≤ r(β1, β2 ,, βs )
D. r ≤ s
14.设α1 , α2 是非齐次线性方程组 AX = b 的两个解,则下列仍为线性方程组 AX = b 的解的
(
).
A. α1 + α2 B. α1 − α2
3.
已知向量组 α1
=
−421,α
2
=
3 1 2
,α
3
=
−5 3 6
,
α
4
=
−2 2 0
,α
5
=
−8611,
.求向量组的秩
和一个极大线性无关组;将其余向量用所求的极大线性无关组线性表示.
x1 + x2 + x3 + x4 + x5 = a
4.
已知线性方程组
3x1
+2 x2
− 1
1
β1 = 1 , β 2 = 1 ,则 AX = b 的全部解可表示为
线性代数期末试题及参考答案
线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,< )不是初等矩阵。
<A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B>100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C> 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D> 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是< )。
<A )122331,,αααααα--- <B )1231,,αααα+ <C )1212,,23αααα- <D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。
则1(2)A E -+=< )(A> A E - (B> E A + (C> 1()3A E - (D> 1()3A E +4.设A 为n m ⨯矩阵,则有< )。
<A )若n m <,则b Ax =有无穷多解;<B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax =有唯一解; <D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似 <B )A B ≠,但|A-B|=0<C )A=B <D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。
每小题2分,共10分>1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
< )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
线性代数期末复习题
线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 假设一个行列式等于零,则它必有一行〔列〕元素全为零,或有两行〔列〕完全一样,或有两行〔列〕元素成比例. () 3. 假设行列式D 中每个元素都大于零,则D > 0. () 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. () 5. 假设矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. () 6. 假设矩阵A 与矩阵B 等价,则矩阵的秩R (A )=R (B ). () 7. 零向量一定可以表示成任意一组向量的线性组合. () 8. 假设向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. () 9. 向量组s ααα,...,,21中,假设1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. () 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. () 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. () 12. 齐次线性方程组一定有解. ()13. 假设λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. () 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. () 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. () 16. 假设矩阵A 与矩阵B 相似,则R R =A B ()(). () 二、单项选择题 1.设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ()2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )3.四阶行列式111111111111101-------x 中*的一次项系数为 ( )4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )5.n 阶行列式a b b a bab a D n 0000000000=的值为 ( )6. ,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则以下运算结果是m 阶方阵的是 ( ) 9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ( )10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( ) 11. 设A 是方阵,假设有矩阵关系式AC AB =,则必有 ( ) 12. 方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )13. 设A 、B 为n 阶对称阵且B 可逆,则以下矩阵中为对称阵的是 ( ) 14. 设A 、B 均为n 阶方阵,下面结论正确的选项是 ( )(A) 假设A 、B 均可逆,则A +B 可逆 (B) 假设A 、B 均可逆,则AB 可逆 (C) 假设A+B 均可逆,则A -B 可逆 (D) 假设A +B 可逆,则A 、B 均可逆15. 以下结论正确的选项是 ( )(A) 降秩矩阵经过假设干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过假设干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为017. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E , (2) BAC = E , (3) CAB = E , (4) CBA = E 中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )19. 矩阵⎪⎪⎪⎭⎫⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. A 为三阶方阵,R (A ) = 1,则 ( )21. 43⨯矩阵A 的行向量组线性无关,则矩阵A T的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得 (C) 存在不全为0的数s λλλ ..., , ,21使得(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( ) 25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示(C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 以下命题中正确的选项是 ( )(A) 任意n 个n +1维向量线性相关 (B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( ) 31. n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A 1)( )B (-=n R A 0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则以下结论错误的选项是 ( )(A) 21ηη+是0=Ax 的一个解 (B) )(2121ηη+是b Ax =的一个解(C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 假设4321 , , ,v v v v 是线性方程组0=Ax 的根底解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 根底解系(C) 通解(D) A 的行向量35. 假设η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)36. n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( ) 37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n 0 )B (≠A (C) A 的特征值都等于零(D)A 的特征值都不等于零38. A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则以下矩阵中是可逆矩阵的是 ( )39. 21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的积等于零40. A 是一个)3( ≥n 阶方阵,以下表达中正确的选项是 ( )(A) 假设存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 假设存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 假设321 , ,λλλ是A 的三个互不一样的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )42. 矩阵A 与B 相似,则以下说法不正确的选项是 ( )(A) R (A ) = R (B ) (B) A = BB A = )C ((D) A 与B 有一样的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D)A 的n 个列向量是一个正交向量组45. A 是正交矩阵,则以下结论错误的选项是 ( )1 )A (2=A A )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有一样的特征值(D) A 与B 合同三、填空题1. 44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++ 对应的三阶行列式为.3. 022150131=---x ,则* = . 4. A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是阶矩阵,AB 是行 列矩阵.8. 矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是,阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,假设321 , ,ααα线性相关,则*,y 满足关系式.11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大.13. 设A 是43⨯矩阵,3)(=A R ,假设21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为.14. A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个根底解系中含有解的个数为.15. 方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a =.16. 假设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足.17. 矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则* =.18. 向量α、β的长度依次为2和3,则向量积[, ]+-=αβαβ. 19. 向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ,c =.20. ⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a =,b =. 21. 三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为.22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规形),,,,(54321z z z z z f 为.23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为.24. 二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足. 四、行列式计算1. A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010 (201) (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx c b ad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (32)12121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求*.3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵*满足关系式E B C X =-T )(,求*.5. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求*.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;假设是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x kx x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λA ,则 (1) 求对应的齐次线性方程组0=Ax 的一个根底解系; (2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,假设方阵A 与B 相似,求*、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值. 3. 三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵. 8. 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵. 九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型? 2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n A A .6. 向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个根底解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. A 为正交阵,k 为实数,证明:假设A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 假设A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性代数复习题含答案
(C )a +a ,a +a ,a +a (D )a −a ,a −a ,a −a
1 2 2 3 3 1 1 2 2 3 3 1
分析:(A )含有0 的向量组一定线性相关,0 +0a2 +0a3 0 ;
分析:∵A 的特征值是 1,2,−3 .
∴ A −E 0 , A −2E 0 , A +3E 0 .
∴ (A )A −E ,(D )A −2E ,(C )A +3E 不可逆.
二. 填空题
1. 已知a31a21a13a5k a44 是 5 阶行列式中的一项且带正号,则i 5 ,k 2 .
⎪ 21 1 22 2 2n n 2
⎨
⎪
n n−1 n−2 2 1 n n−1 n−2 2 1
共交换了n −2 次;……;r 与r 交换,共交换了 1 次.
2 1
( )
(A )D D (B )D =−D (C )D =−1 2 D (D )D =−1 D
(C )一定无解 (D )不能确定是否有解
分析:系数行列式D 0 =⇒R A <n ,方程组无解或无穷多解
( )
( ) ( )
) 1 ( ) 1
⎛a11 a12 a13 ⎞
2 1 2 1 2 ( ) 1 2 ( ) 1
分析:r 依次与r ,r ,,r ,r 交换,共交换了n −1次(r 移到第 1 行);r 依次与r ,,r ,r 交换,
1 2 3
----------------------- Page 2-----------------------
(A )0,a ,a (B )a ,2a ,a
大学线性代数期末考试练习题复习资料附答案
第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ). (A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若22351011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=0100111010100111.6.行列式=-000100002000010n n .7.行列式=--0001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cca b b a b c a c b a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D00103012112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.yxyx x y x y y x y x +++;2.解方程001111101110=x x xx ; 3. na a a a111111111111210(n j a j ,,1,0,1 =≠);4.21000120000021000121000125.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x b a -=++++++. 2.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.3.设c b a ,,两两不等,证明0111333=c b a c b a 的充要条件是0=++c b a .参考答案一.单项选择题A D A C C D A B C D B B 二.填空题1.n ;2.”“-; 3.43312214a a a a ; 4.0; 5.0; 6.!)1(1n n --; 7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-; 13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk kn ; 17.3,2-≠k ;18.7=k 三.计算题1.)(233y x +-; 2. 1,0,2-=x ; 3. )111()1(00∑∏==-+-nk knk k a a ; 4 1+n ; 5. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。
线性代数期末考试试题及答案
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
线性代数期末复习题目
一.单项选择题1.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是【 】(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [五.特征值,特征向量]2. 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,A B分别为A,B 的伴随矩阵,则【 】.(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (B) 交换*A 的第1列与第2列得*B -; (D) 交换*A 的第1行与第2行得*B -. [二.四.矩阵及其运算,行列式]3.设矩阵A =33)(⨯ij a 满足*TA A=,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为【 】.(A) 33. (B) 3. (C)31. (D) 3. [二.四.伴随矩阵,行列式]4.设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B =E +AB ,C =A +CA ,则B -C 为【 】(A) E . (B )-E . (C )A . (D) -A [二.矩阵及其运算]5 .设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是【 】 (A )若12,,,,a a a 线性相关,则12,,,,A a A a A a 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,A a A a A a 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,A a A a A a 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,A a A a A a 线性无关.[二.向量组的线性相关性]6.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则 【 】 (A )1.-=C PA P (B )1.-=C P A P(C ).=TC PA P (D ).=TC P A P[二.矩阵及其运算,初等矩阵]7.设125,,......∂∂∂,均为n 维列向量 A 是m n ⨯矩阵,下列正确的是【 】(A) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性相关(B) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性无关(C) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性相关(D) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性无关[二.向量组的线性相关性]8.设向量组123,,ααα线性无关,则下列向量组线性相关的是【 】 (A)122331,,;---αααααα (B) 122331,,;+++αααααα(C)1223312,2,2;---αααααα (D)1223312,2,2+++αααααα.[二.向量组的线性相关性]9.设矩阵211100121,010112000--⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B ,则A 与B 【 】(A) 合同且相似; (B) 合同但不相似; (C) 不合同但相似; (D) 既不合同也不相似.[五.矩阵的相似与合同]10.设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则【 】 (A) -E A 不可逆,+E A 不可逆. (B) -E A 不可逆,+E A 可逆. (C) -E A 可逆,+E A 可逆. (D)-E A 可逆,+E A不可逆.[二.矩阵及其运算,逆矩阵]11.设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】 (A) 0 ; (B) 1 ; (C) 2 ; (D) 3. [五.矩阵的特征值]12.设1221⎛⎫=⎪⎝⎭A 则在实数域上与A 合同的矩阵为【 】 (A) 2112-⎛⎫⎪-⎝⎭;(B) 2112-⎛⎫⎪-⎝⎭;(C) 2112⎛⎫⎪⎝⎭.;(D) 1221-⎛⎫⎪-⎝⎭. [五.矩阵的合同]13.设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基122331,,+++a a a a a a 的过渡矩阵为【 】.(A )101220033⎛⎫⎪ ⎪ ⎪⎝⎭(B )120023103⎛⎫⎪ ⎪ ⎪⎝⎭(C )111246111246111246⎛⎫-⎪⎪⎪- ⎪⎪ ⎪- ⎪⎝⎭(D )111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. [三. 向量空间,基,过渡矩阵]14.设 A ,B 均为 2 阶矩阵,,**A B 分别为A ,B 的伴随矩阵,若|A |=2,|B |=3,则分块矩阵00⎛⎫⎪⎝⎭A B的伴随矩阵为【 】. (A )32**⎛⎫⎪⎝⎭OB A O (B )23**⎛⎫⎪⎝⎭O B A O (C )32**⎛⎫⎪⎝⎭OA B O (D )23**⎛⎫⎪⎝⎭OA B O [二. 三..四.伴随矩阵,逆矩阵,分块矩阵,行列式]15.设A ,P 均为3阶矩阵,TP 为P 的转置矩阵,且TPA P=100010002 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,若1231223(,,),(,,)==+P Q ααααααα,则TQA Q 为【 】.(A)2101 ⎛⎫⎪ 1 0⎪ ⎪0 0 2⎝⎭ (B)11012000 ⎛⎫⎪ ⎪ ⎪ 2⎝⎭ (C)20001 ⎛⎫⎪ 0 ⎪ ⎪0 0 2⎝⎭ (D)100020002 ⎛⎫⎪ ⎪ ⎪ ⎝⎭[二. 四.伴随矩阵,分块矩阵的行列式与逆矩阵]16.设矩阵142242A a b a 2 1⎛⎫ ⎪=2 + ⎪ ⎪ + ⎝⎭的秩为2,则【 】.(A )a =0,b =0(B )a =0,b ≠0 (C )a ≠0,b =0 (D )a ≠0,b ≠0.[一. 矩阵的秩]17.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则|-2*A |=【 】.(A )52-; (B )32-; (C )32 ;(D )52.[四. 伴随矩阵,方阵的行列式]二.填空题1.设123,,ααα均为三维列向量,记矩阵123(,,)=Aααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .[四.方阵的行列式]2. 设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = . .[二.四.向量组的线性相关性,行列式] 3.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+B A B E , 则B = .[四.方阵的行列式]4.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+B A B E ,则B = .[二.矩阵及其运算]5. 已知12,a a 为2维列向量,矩阵1212(2,)=+-A a a a a ,12(,)=B a a .若行列式||6=A ,则||B = .[四.方阵的行列式]6.设矩阵01000010000100⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为 .[二.矩阵及其运算,矩阵的秩]7.设A 为2阶矩阵,12,αα为线性无关的2维列向量,10,=A α,2122=+A ααα则A 的非零特征值为 .[五.矩阵的特征值]8.设3阶矩阵A 的特征值1,2,2,14--=A E . [五.矩阵的特征值,行列式]9.设3阶矩阵A 的特征值为2,3,λ. 若行列式248=-A ,则λ= .[五.矩阵的特征值,行列式]10.设3阶矩阵A 的特征值互不相同,若行列式0=A , 则A 的秩为 .[五.矩阵的特征值,行列式]11.若 3 维向量,a β满足2=Ta β,其中Ta 为a 的转置,则矩阵Ta β的非零特征值为______.[五.矩阵的特征值与特征向量]12.设,αβ为3维列向量,Tβ为β的转置,若Tβ相似于200000000 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,则Tβα=___________[五. 相似矩阵,特征值]13.设(1,1,1),(1,0,)k ==αβ,若矩阵Tαβ相似于300000000 ⎛⎫⎪⎪ ⎪ ⎝⎭,则k =_______ [五. 相似矩阵,特征值]14.设向量组(1,0,1),(2,1),TTk ==-αβ(1,1,4)=--Ty 线性相关,则k =______ [二.四. 向量组的线性相关性,行列式]三 .解答题1.已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值; (II ) 求正交变换=xQ y,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0的解. [五. 二次型,矩阵的特征值, 特征向量,正交变换] 2.已知三阶矩阵A的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636⎛⎫⎪= ⎪ ⎪⎝⎭B k (k 为常数),且AB =O , 求线性方程组Ax =0的通解.[二.线性方程组,基础解系,矩阵]3.确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2Ta =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. [二.向量组的线性相关性]4.已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (ii) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值. [一.线性方程组求解]5.设⎛⎫= ⎪⎝⎭TAC D CB 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算TPD P ,其中1-⎛⎫-=⎪ ⎪⎝⎭mn EAC P O E ;(II )利用(I)的结果判断矩阵1--TB C A C是否为正定矩阵,并证明你的结论. [五.分块矩阵,正定矩阵]6.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123=++A αααα,2232=+A ααα,32323=+A ααα.(I) 求矩阵B , 使得123123(,,)(,,)=A Bαααααα;(II )求矩阵A 的特征值;(III )求可逆矩阵P , 使得1-P A P 为对角矩阵. [五.矩阵的特征值,相似矩阵]7.已知非齐次线性方程组1234123412341435131x x x x x x x x a x x x b x +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2R A =; (Ⅱ)求,a b 的值及方程组的通解. [二.线性方程组求解]8.设3阶实对称矩阵A 的各行元素之和均为3,向量()11,2,1Tα=--,()20,1,1Tα=-是线性方程组0=A x 的两个解, (Ⅰ)求A 的特征值与特征向量; (Ⅱ)求正交矩阵Q 和对角矩阵Λ使得=TQ A Q Λ;.(Ⅲ)求A 及63()2A E -,其中E 为3阶单位矩阵.[五.矩阵的特征值,相似矩阵]9.设4维向量组()11,1,1,1,T a ∂=+()22,2,2,2,T a ∂=+()33,3,3,3,Ta ∂=+()44,4,4,4Ta ∂=+.问a 为何值时1234,,,∂∂∂∂线性相关? 当1234,,,∂∂∂∂线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. [二.向量组的线性相关性]10.设线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值及所有公共解. [二.线性方程组求解]11.设3阶实对称矩阵A 的特征值2,2,1321-===λλλ,且T )1,1,1(1-=α是A 的属于1λ的一个特征向量。
线性代数期末复习
线性代数期末复习一、 填空题1. 设n 阶方阵A 满足A 2-A-2E=0,且︱A ︱=2,则︱A-E ︱=___2. 设A=⎪⎪⎪⎭⎫ ⎝⎛543022001,其伴随矩阵A *,则(A *)-1=___3. 矩阵A 经有限次初等行变换得到矩阵B ,则方程组AX=0与方程组BX=0的关系是___4. 设a 1a 2a 3线性无关,若是a 2-a 1,ka 2-a 3,a 1-a 3也线性无关,则k 应满足的条件为___5. 在秩为r 的矩阵中,是否有等于0的阶r-1子式___6. 设A=⎪⎪⎪⎭⎫ ⎝⎛300044003,E=⎪⎪⎪⎭⎫⎝⎛111,则(A-2E )-1=___ 7. 设A=(a 1,a 2,…,a n )B=(b 1,b 2,…,b n ),其中a 1不全为零,b 1不全为零,则A 的秩R (A )=___8. 设A 、B 都是n 阶菲零方阵,且R (A )=r ,若AB=0,则R (B )应满足的条件为___ 二、 选择题1、设A 为m 阶方阵,B 为n 阶方阵,C=⎪⎪⎭⎫⎝⎛00BA ,则C =___ A 、B A B 、-B AC 、(-1)nm B AD 、(-1)n (n-1)/2B A 2、设A 、B 为n 阶方阵,则必有___A 、B A B A +=+ B 、AB=BAC 、BA AB =D 、(A+B )-1=A -1+B -13、设A 为m*n 矩阵,齐次线性方程组Ax=0仅有零解的充分必要条件是___A、A的列向量组线性无关B、A的列向量组线性相关C、A的行向量组线性无关D、A的行向量组线性相关4、设a1a2…a n为n维向量,则下列结论正确的是___A、k1a1+k2a2+…+k n a n=0,则a1a2…a n线性相关B、对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n≠0,则a1a2…a n线性无关C、a1a2…a n线性相关,则对任何一组不全为零的数k1k2…k m都有k1a1+k2a2+…+k n a n=0成立D、若0a1+0a2+…+0a n=0,则a1a2…a n线性无关5、设η1与η2是非其次线性方程组Ax=β的两个不同的解,ξ1与ξ2时对应的其次线性方程组Ax=0的基础解系,k1与k2是任意实数,则Ax=β的通解为___A、221ηη-+k1ξ1+k2(ξ1+ξ2) B、221ηη++k1ξ1+k2(ξ1-ξ2)C、221ηη-+k1ξ1+k2(η1+η2) D、221ηη++k1ξ1+k2(η1-η2)6、设A为n阶可逆阵(n≥2),A*为A的伴随矩阵,则___A、(A*)*=A n-1AB、(A*)*=A n+1AC、(A*)*=A n-2AD、(A*)*=A n+2A7、设A、B、C是n阶方阵,E为n阶单位阵,若ABC=E,则必有__A、ACB=EB、CBA=EC、BAC=ED、BCA=E8、设n阶方阵A与B等价,则___A 、A =B B 、A ≠BC 、若A ≠0,则必有B ≠0D 、A =-B 三、计算1、计算下列行列式(1)n001030100211111⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)1111111111111111---+---+--x x x x(3)D=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0111110111110111110111110 2、已知A=⎪⎪⎪⎭⎫ ⎝⎛---433312120,B=⎪⎪⎭⎫⎝⎛-132321,求X 使得XA=B3、解方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 4、(1)设n 阶方阵满足A+B=AB ,证明:A-E 可逆,并求(A-E )-1 (2)证明:m 个n 维向量,当m 〉n 时,它们线性相关 5、设E+AB 可逆,证明E+BA 也可逆,且(E+BA )-1=E-B (E+BA )-1A6、设A=⎪⎪⎭⎫⎝⎛--82593122,求一个4*2矩阵B ,使得AB=0,且R (B )=27、求下列向量组的一个最大无关组,并以此最大无关组将其余向量线性表示出。
线性代数期末考试复习题
1.设A ,B ,C 为n 阶矩阵,且A 可逆,下列结论成立的是()(A).若AC AB =,则C B = (B).若CB AB =,则C A = (C).若O BC =,则O B = (D).若O AB =,则O A =或O B =2.若5734111113263278----=D ,则D 中第一行元素的代数余子式的和为() (A).-1 (B).-2 (C).-3 (D).03.设A ,B 为n 阶非零矩阵,且O AB =,则A ,B 的秩为()(A).必有一个等于零 (B).都小于n (C).一个小于n ,一个等于n (D).都等于n4.设向量组321,,ααα线性无关,则下列向量组线性相关的是()(A). 133221,,αααααα+++ (B). 321211,,αααααα+++ (C).133221,,αααααα--- (D). 1332213,2,αααααα+++5.要使TT )1,0,2(,)1,0,1(21-==ξξ都是线性方程组0=Ax 的解,只要系数矩阵A 为(). (A). ⎪⎪⎪⎭⎫ ⎝⎛112213321(B). ⎪⎪⎭⎫ ⎝⎛-211121 (C). ⎪⎪⎪⎭⎫ ⎝⎛123020010(D). ⎪⎪⎭⎫ ⎝⎛-020010 二、填空题(15分)1. 四阶行列式中包含4322a a 且带正号的项是_____.2. 齐次方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =_____.3. 设A 为5阶方阵,*A 为其伴随矩阵,且3=A ,则=*A .4. 设A 是n 阶矩阵,满足O E A A =++322,则1-A =_____.5. 设A 是n 阶矩阵,对于0=Ax ,若每个n 维向量都是解,则=)(A R . 三、(10分)求行列式1332141121524321=D . 四、(15分)设⎪⎪⎪⎭⎫ ⎝⎛--=145243121A ,⎪⎪⎪⎭⎫ ⎝⎛=223B 满足B AX =,求1-A 和X . 五、(15分)判断向量组T T T a a )3,2,2(,),2,0(,)3,1,(321===ααα的线性关系. 六、(15分)对矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7236311232201012A ,求A 的列向量组的秩、最大无关组、并表示其他向量. 七、(15分)求线性方程组⎩⎨⎧=-+--=-+12624321421x x x x x x x 的通解,并用基础解系表示.1.设A 为n 阶矩阵,k 为非零常数,则=kA ( ). (A) A k (B) A k (C) A k n (D) A k n2.设A 为n m ⨯阶矩阵,C 为n 阶可逆矩阵,矩阵A 的秩为1r ,矩阵AC B =的秩为r ,则()(A) 1r r > (B) 1r r < (C) 1r r = (D) 1r r ,的关系依C 而定3.设n 元齐次方程组0=Ax 的系数矩阵为r ,则0=Ax 有非零解的充分必要条件是()(A) n r = (B) n r < (C) n r ≥ (D) n r >4.n 维向量组)2(,,,≥s s 21ααα 线性相关的充要条件是()(A) s 21ααα,,, 中至少有一个零向量 (B) s 21ααα,,, 中至少有两个向量成比例(C) s 21ααα,,, 中任意两个向量不成比例 (D) s 21ααα,,, 中至少有一个向量可以被其余向量所表示5.设321ξξξ,,是0=Ax 的基础解系,则该方程组其余的基础解系还可以表示为()(A) 133221ξξξξξξ-++,, (B) 321ξξξ,,的一个等秩向量组 (C) 321211ξξξξξξ+++,, (D) 133221ξξξξξξ---,,二、填空题(15分)6. 261365415432a a a a a a 为六阶行列式的元素乘积,前面应冠以_______号.7. 6427811694143211111=D 中第三行元素的代数余子式的和∑=413j j A =__________. 8. =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛4131211135111111________. 9. 设A 是n 阶矩阵,满足E A A -=22,则1)2(--E A =_____.10. n 维零向量一定线性 (相关/无关).三、(10分)求行列式1232145121524321=D .四、(15分)设⎪⎪⎪⎭⎫ ⎝⎛--=130140121A ,⎪⎪⎪⎭⎫ ⎝⎛=123B 满足B AX =,求1-A 和X . 五、(15分)设向量组T T T k k )2,1,1(,)1,,1(,)1,1,(321===ααα,向量T k k ),,1(2=β,则k 取何值时(1)β不能由321,,ααα线性表示;(2)β可以由321,,ααα线性表示,且表示法唯一;(3)β可以由321,,ααα线性表示,且表示法不唯一六、(15分)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=5244423232201012A ,求A 的列向量组的秩、最大无关组、并表示其他向量. 七、(15分)求线性方程组⎩⎨⎧=-+--=-+12624321421x x x x x x x 的通解,并用基础解系表示.1.设A ,B ,C 为n 阶矩阵,且A 可逆,下列结论成立的是()(A).若AC AB =,则C B = (B).若CB AB =,则C A = (C).若O BC =,则O B = (D).若O AB =,则O A =或O B =2.若5734111113263278----=D ,则D 中第一行元素的代数余子式的和为() (A).-1 (B).-2 (C).-3 (D).03.设A ,B 为n 阶非零矩阵,且O AB =,则A ,B 的秩为()(A).必有一个等于零 (B).都小于n (C).一个小于n ,一个等于n (D).都等于n4.n 维向量组)2(,,,≥s s 21ααα 线性相关的充要条件是()(A) s 21ααα,,, 中至少有一个零向量 (B) s 21ααα,,, 中至少有两个向量成比例(C) s 21ααα,,, 中任意两个向量不成比例 (D) s 21ααα,,, 中至少有一个向量可以被其余向量所表示5.设321ξξξ,,是0=Ax 的基础解系,则该方程组其余的基础解系还可以表示为()(A) 133221ξξξξξξ-++,, (B) 321ξξξ,,的一个等秩向量组 (C) 321211ξξξξξξ+++,, (D) 133221ξξξξξξ---,,二、填空题(15分)11. 615243342516a a a a a a 为六阶行列式的元素乘积,前面应冠以_______号.12. =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛4131211143211111________. 13. 设A 是n 阶矩阵,满足A A 32=,则1)(-+E A =_____.14. 设A 是2阶矩阵,3=A ,*A 是A 的伴随矩阵,求*1A A +-=________.15. 向量组321,,ααα线性无关的充要条件是______.三、(10分)求行列式1332101121024321=D .四、(15分)设⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,⎪⎪⎪⎭⎫ ⎝⎛=212B 满足B AX =,求1-A 和X . 五、(15分)判断向量T )9,6,2,0(-=β是否可由向量组T T T )3,5,1,1(,)2,1,2,1(,)2,3,3,1(321-=---==ααα,如果可以,写出表达式. 六、(15分)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7236311232201012A ,求A 的列向量组的秩、最大无关组、并表示其他向量. 七、(15分)求线性方程组⎩⎨⎧=----=-+14624321421x x x x x x x 的通解及基础解系. 一、填空题1. 排列6137524的逆序数是 .2. 若齐次方程组⎪⎩⎪⎨⎧=+=+=+-0052023232321kx x x x x x x 有非零解,则k = .3. 设A 为3阶方阵,且3=A ,则=A 5 .4. 向量组4321,,,αααα线性无关的定义是 .5.向量组1234,,,αααα线性相关的定义是_____________.6. 53(1)无解的充要条件是 ___________________________________;(2)当____________时,方程组有无穷多解,这时通解含有 _____个自由未知量.7.行列式=301120111 .8.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++444342418765A A A A .9.设⎪⎪⎭⎫ ⎝⎛=1011A ,则=-1)3(A . 10.设T )2,1,1(1-=α,T )1,3,1(2-=α,则=-2124αα . 二、选择题1.设B A 、为n 阶方阵,则下列选项中恒成立的是( ). A. BA AB =B. ))((22B A B A B A +-=-C. AB A A B A -=-2)(D. T T T B A AB =)(2.设n 维向量组)3(,,,21n s s ≤≤ααα 线性无关,则下列结论正确的是( ).A. s ααα,,,21 中至少有一向量可由其余向量线性表示B. s ααα,,,21 中存在部分组线性相关C. s ααα,,,21 中没有零向量D. s ααα,,,21 中存在两个向量对应成比例3. 下列),,(z y x f 为二次型的是( ).A. yz xy x 422++B. z xyz x 4222++C. 142++yz xD. 2242yz xy x ++4. 对矩阵m n n m B A ⨯⨯,,下列运算有意义的是( ).A. T ABB. 2AC. A B TD. AB5. 设4321,,,αααα是三维实向量组,则( ).A .4321,,,αααα一定线性无关B .1α一定可由432,,ααα线性表出C .4321,,,αααα一定线性相关D .321,,ααα一定线性无关 6. 设321ξξξ,,是0=Ax 的基础解系,则该方程组的基础解系还可以表示为( ).A. 133221ξξξξξξ-++,,B. 321ξξξ,,的一个等秩向量组C. 133221ξξξξξξ+++,,D. 133221ξξξξξξ---,, 7.设A 为3阶方阵,行列式2=A ,*A 为A 的伴随矩阵,则=--*1)2(A A ( ). A.1627 B. 2716 C. 1627- D. 2716- 8.设A ,B ,C 为n 阶矩阵,且A 可逆,下列结论成立的是()(A).若AC AB =,则C B = (B).若CB AB =,则C A = (C).若O BC =,则O B = (D).若O AB =,则O A =或O B =9.设A ,B 为n 阶非零矩阵,且O AB =,则A ,B 的秩为() (A).必有一个等于零 (B).都小于n (C).一个小于n ,一个等于n (D).都等于n10.设A 为n 阶矩阵,k 为非零常数,则=kA ( ).(A) A k (B) A k (C) A k n (D) A k n11.设A 为n m ⨯阶矩阵,C 为n 阶可逆矩阵,矩阵A 的秩为1r ,矩阵AC B =的秩为r ,则()(A) 1r r > (B) 1r r < (C) 1r r = (D) 1r r ,的关系依C 而定12.设n 元齐次方程组0=Ax 的系数矩阵为r ,则0=Ax 有非零解的充分必要条件是()(A) n r = (B) n r < (C) n r ≥ (D) n r >13.设行列式1111304=zy x ,则行列式=1111034222zy x ( ) A .32 B .1 C .2 D .38 14. 设矩阵m n n s B A ⨯⨯,,则下列运算有意义的是 ( )A. T ABB.2A C.BA D. AB15.设n s j i a A ⨯=)(,s m j i b B ⨯=)(,则( ) A. BA 是m n ⨯矩阵; B. BA 是n m ⨯矩阵;C. BA 是s s ⨯矩阵;D. BA 未必有意义.16.设矩阵A 的秩为r ,则A 中( )(A )所有1r -阶子式都不为0;(B )所有1r -阶子式全为0;(C )至少有一个r 阶子式不为0; (D )所有r 阶子式都不为0。
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。
答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。
答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。
答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。
答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。
线性代数复习题
二、(10分) 计算 n 阶行列式 :
a1 +1 a2 L an-1
an
a1 a2 +2 L an-1
an
Dn = M
M
M
M
a1
a2 L an-1 +n-1 an
a1
a2 L
an- 1
an + n
2/6/2.2
2
三、(10分)
æ-4 2 0 0 ö
ç
÷
设A
=
ç ç
2 0
00 0 -7
0 3
÷÷ , 且BA
八、(5分) 已知A是实反对称矩阵(即满足 AT = - A), 试证
E - A2 为正定矩阵,其中E是单位矩阵.
6/6/2.2
复习题(二)参考答案
一、1. - 100;
æ1 6 0 0 ö
ç
÷
2. ç 1 3 1 3 0 ÷;
çè 1 2 1 2 1 2÷ø
3. k ¹ 0 且 k ¹ 3; 4. a = b = 0.
çè 3 1 2÷ø çè 3 1 2÷ø
五、(15分) l 取何实值时,线性方程组
ì l x1 - x2 = l
ïï l x2 - x3 = l
í ï
l
x3 -
x4
=
ቤተ መጻሕፍቲ ባይዱ
l
ïî- x1 + l x4 = l
有唯一解,无穷多解, 无解?在有无穷多解的
情况下求通解 .
4/6/2.1
六、1.(5分) 设A为正交矩阵且 det A = -1,证明 : - E - A不可逆.
的秩等于
.
2.设 A 为 n 阶方阵,且 det A = 2,则
2021-2022学年线性代数期末总复习(含答案)
线性代数总复习第二章1.设3阶方阵A 可逆,*A 是A 的伴随矩阵,将A 的第1行和第2行互换得B , 则( ). (A) *A 的第1行和第2行互换得*B ;(B) *A 的第1列和第2列互换得*B ; (C) *A 的第1行和第2行互换得*B -;(D) *A 的第1列和第2列互换得*B - 解:B B A A B A B A **11100001010100001010100001010=⎪⎪⎪⎭⎫ ⎝⎛⇒=⎪⎪⎪⎭⎫ ⎝⎛⇒=⎪⎪⎪⎭⎫ ⎝⎛--**100001010B A -=⎪⎪⎪⎭⎫⎝⎛⇒则(D)正确。
第三章1. 设21,αα和21,ββ都是线性无关的三维向量,证明:存在三维非零向量γ即可以由21,αα线性表示,也可以由21,ββ线性表示. 证明 由于4个3维向量必线性相关,所以存在不全为零的数4321,,,k k k k ,使得024132211=+++ββααk k k k (1)又21,αα和21,ββ都是线性无关的,所以21,k k 和43,k k 都不全为零, (或要证02211≠+ααk k ,采用反证法。
设02211=+ααk k , 则02413=+ββk k 。
由 21,αα和21,ββ都线性无关,得:04321====k k k k与(1)矛盾。
)只要取0--24132211≠=+=ββααγk k k k 即可. 第四章1. λ为何值时,线性方程组⎩⎨⎧=+++=+-+221243214321x x x x x x x x 和 ⎩⎨⎧=-+=+-+λ4214321122x x x x x x x 有公共解,并求出所有公共解。
解 因为公共解就是联合方程组的解,由于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛λ1011111222112112111---⎪⎪⎪⎪⎪⎭⎫⎝⎛λ0001310011210121~----11⎪⎪⎪⎪⎪⎭⎫⎝⎛λ00001310035010360~----01所以,λ=0时,两个方程组有公共解,R k k x ∈⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=,135601332.设3阶非零矩阵A 满足0=AB ,其中⎪⎪⎪⎭⎫ ⎝⎛--=413112121B ,求齐次线性方程组0=Ax 的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数第一、二章复习一、填空题1、 设311174736-=A ,则A 中元素12a 的代数余子式等于-11; 121241(1)13A +=- 2、设A 是3阶方阵,且13A =,则*A =2113n A-⎛⎫= ⎪⎝⎭; 3、 设3阶方阵101012103A ⎛⎫ ⎪= ⎪ ⎪⎝⎭0≠,130210101B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,,则231412433AB ⎛⎫⎪= ⎪ ⎪⎝⎭;4.设A =⎪⎪⎪⎭⎫⎝⎛333222111c b a c b a c b a ,⎪⎪⎪⎭⎫ ⎝⎛=333222111d b a d b a d b a B ,且A =4,B =1, 则 B A 2+= 54B A 2+ =23333222211113233233233=+++d c b a d c b a d c b a 333322221111222d c b a d c b a d c b a +++3332221119c b a c b a c b a =1112223332929[421]542a b d a b d a b d +=+⨯=;5、设A ,B ,C 都是行列式值等于3的3阶方阵,则行列式101()23B D A C--=-=?解91111301(1)()13()233(3)27BD B A A C D B A B A-----==----∴=-=-=- 由于 ;6 已知A 为三阶方阵,且4=A ,82=+E A , 则1-+A A =_____2____; 解21111888482A E AA AA A A A A A A A ----+=⇒+=⇒+=⇒+=∴+= 7设1121011130111111-=A ,则第4行各元素的代数余子式之和为___0________;8、设A 为n 阶可逆矩阵, ,则11A A A-*=9.设A 为6阶方阵,且A =-4,则行列式6-4A A =10.如果1112132122233132333a a a D a a a a a a ==,则111213*********3233535353a a a D a a a a a a -=--= -4511.如果111221222a a a a =,线性方程组 ⎩⎨⎧=+=+22221211212111b x a x a bx a x a 的解必是 12.已知行列式1340564x x 中元素(1, 2)的代数余子式120854x A =-=,元素(2,1)的代数余子式21A 的值= 26 。
13.已知5为A 阶方阵,且行列式a A =||,则|2|A =5|2|2A a =二、选择题1、如果1333231232221131211==a a a a a a a a a D ,则3332313123222121131211111324324324a a a a a a a a a a a a D ---== ( D ))(A 8 )(B 12- )(C 24 )(D 24-2.设A 为4阶方阵,已知3=A ,且,则1-*A A =__D__;)(A 8 )(B 12- )(C 6 )(D 93、设A ,B ,C 是n 阶方阵,且E ABC =,则下列各式中必成立的是 ( A ) )(A E BCA = )(B E ACB = )(C E BAC = )(D E CBA =4、当bc ad ≠时,1-⎪⎪⎭⎫⎝⎛d c b a = ( C ))(A ⎪⎪⎭⎫ ⎝⎛---a b c d bc ad 1 )(B ⎪⎪⎭⎫⎝⎛---a b c d bc ad 1 )(C ⎪⎪⎭⎫ ⎝⎛---a c b d ad bc 1 )(D ⎪⎪⎭⎫⎝⎛---a c b d bc ad 15、设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4433221100000000a b a b b a b a A ,则A =( C ))(A 43214321b b b b a a a a - )(B 43214321b b b b a a a a + )(C ))((41413232b b a a b b a a -- )(D ))((43432121b b a a b b a a --6、设n 阶方阵A 满足E A 22=,其中E 是n 阶单位阵,则必有( C ))(A 12-=A A )(B E A 2-= )(C A A 211=- )(D 1=A 7.设n 阶矩阵A 满足02=+E A ,其中E 为n 阶单位矩阵,则必有 ( C ) (A) A E = (B) A E -= (C) 1--=A A (D) 1=A8.设⎪⎪⎪⎭⎫ ⎝⎛=004030200A ,且a ,b ,c 均不为零,则1-A = ( C ))(A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛004103102100 )(B ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛004102103100 )(C ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛002103104100 )(D ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛410003100021 9. 设A 为n 阶方阵,k 为任意常数,则A λ-= ( D )。
(A) A λ ; (B) -A λ;(C) -nA λ; (D) ()nA λ-10. 若A,B 为n 阶方阵,AB=0, 则(D )成立。
(A) 必有B=0 ; (B) A 与B 之一必为零 (C) 必有A=0; (D) 0A =或B 。
11设A ,B 是n 阶矩阵,则(D )一定成立。
(A )()T T T AB A B = (B )T T BA AB )()(=; (C ) 111)(---=B A AB (D )111)(---=A B AB . 12 设1031A ⎛⎫=⎪⎝⎭,则 2006A =( C ) (A )20061031⎛⎫ ⎪⎝⎭ (B) 1020061⎛⎫ ⎪⎝⎭(C) 10320061⎛⎫ ⎪⨯⎝⎭ (D) 13200601⨯⎛⎫⎪⎝⎭三、 计算题1、 已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=102324171231102B A 求TAB )(。
解:法一:⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=1013173140102324171231102AB ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=10313141701013173140TT AB 法二()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1031314170213012131027241131027241213012T T TT T A B AB B A2、 求行列式;(1),3554243313221211--(2)xyyyyy x y y yy y x y y y y y x y y y y y x (3)121212n nn x a x x x x a x x x x a+++(4)n111211113、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=110111101A ,则1-A =⎪⎪⎪⎭⎫ ⎝⎛---11121111231解:12113332111123,112333111111333A A A *--⎛⎫⎪-⎛⎫ ⎪- ⎪⎪==-∴= ⎪⎪ ⎪- ⎪⎝⎭- ⎪ ⎪⎝⎭4.设A ,B 为5阶方阵,|A|=-1,|B|=-2,求12T A B - 解 15122--=B A B A T T =)21)(1(25--=16 5.已知1101A ⎡⎤=⎢⎥⎣⎦,求19A 解 由于 ⎪⎪⎭⎫ ⎝⎛=101n A n ,因此⎪⎪⎭⎫ ⎝⎛=1019119A 类似地,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=111,1101n B B n ;⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=101,101na C a C n四.证明题 1.设方阵A满足40A =,试证明E A -可逆,且123)E A E A A A --=+++(2323234)E A E A A A E A A A A A A A E A E-++++++-+++= 4(()=()=-2.设A 为可逆矩阵,E A A ||2=,证明:*=A A证明:由于A 为可逆矩阵,且E A A E A AA ==*2,||又由已知 故*=AA A 2两边左乘1-A 得*=A A3、设n 阶方阵A ,B 满足 AB B A =+, 求证(1)E A -可逆;(2)AB=BA4、设n 阶方阵A 满足022=--E A A ,证明:矩阵A 可逆 证明 由于022=--E A A ,有E E A A E A A =-⇒=-)2(22 故矩阵A 可逆,且E A A 21-=-。
5、若A 为方阵,证明,,T T T A A AA A A +是对称阵。
证明 T T T T T T A A A A A A +=+=+)()(,T A A +是对称阵。
T T T T T T AA A A AA ==)()(,T AA 是对称阵 A A A A A A T T T T T T ==)()(,A A T 是对称阵。