Electron Paramagnetic Resonance Studies of KYb(MoO4)2
催化剂表征技术术语-中英文对照
催化剂表征技术术语一览表英文名称中文名称Sieving 筛分法Optical microscopy 光学显微镜法Scanning electron microscopy 扫描电镜法Transmission electron microscopy (TEM) 透射电镜法Scanning TEM (STEM) 扫描透射电镜法Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Gravitaional sedimentation 重力沉降法Resistive pulsed 电阻法Light obscuration 光透法Fraunhofer diffraction 夫琅和费衍射法Cetrifugal sedimentation 离心沉降法Photon correlation spectroscopy(PCS) 光子相关光谱分析法Hydrodynamic chromatography(HCD) 流动色层分析法Field flow fractionation(FFF) 场流分离法BET method BET法Small angle X-ray scatiering(XSAS) X-射线小角度散射法Chemisorption 化学吸附法Adsorption-Titration method 吸附-滴定法Mercury porosimetry 压汞法Incipient wetness 初湿含浸法Permeametry 渗透测粒法Counterdiffusion 反扩散法Small angle neutron scatiering(NSAS) 中子小角散射法Volumetric adsorption 体积吸附法Gravimetric adsorption 重量吸附法Dynamic adsorption 动态吸附法Calorimetry 量热法IR-spectroscopy 红外光谱法Raman spectroscopy 拉曼光谱法UV-Vis spectroscopy 紫外-可见光光谱法Mass spectrometry 质谱Atomic absorption spectroscopy(AAS)原子吸收光谱Auger electron spectroscopy (AES) 俄歇电子能谱Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱X-ray photoelectron spectroscopy(XPS)X射线电子能谱Uv-photoelectron spectroscopy(UPS)紫外光电子能谱Energy dispersive spectroscopy (EDS) 能量色散谱Wavelength dispersive spectroscopy (WDS) 波长分散谱Mossbauer spectroscopy 穆斯堡尔谱Electron spin resonance (ESR) 电子自旋共振Electron Paramagnetic Resonance(EPR) 电子顺磁共振Nuclear magnetic resonance (NMR) 核磁共振Thermal gravimetric analysis (TGA) 热重分析Differential thermal analysis (DTA) 差热分析Differential scanning calorimetry (DSC) 差示扫描量热计法Thermomechanical analysis (TMA) 热机械分析Temperature programmed desorption(TPD) 程序升温脱附Temperature programmed oxidation(TPO) 程序升温氧化Temperature programmed reduction(TPR) 程序升温还原Temperature programmed surface reaction(TPSR) 程序升温表面反应X-ray diffraction (XRD) X射线衍射Extended x-ray absorption fine structure (EXAFS) 扩展X射线吸收精细结构Near-edge x-ray adsorption fine structure (NEXAFS) 近边X射线吸收精细结构Surface extended x-ray adsorption fine structure (SEXAFS) 表面扩展X射线吸收精细结构Electron energy loss spectroscopy (EELS) 电子能量损失谱Low-energy electron diffraction (LEED) 低能电子衍射Reflection high-energy electron diffraction (RHEED) 反射高能电子衍射Magnetic force microscopy (MFM) 磁力显微镜Secondary ion mass spectroscopy (SIMS) 二次离子质谱Surface enhanced raman spectroscopy (SERS) 表面增强拉曼光谱Elemental Analysis 元素分析Electron probe microanalysis (EPMA) 电子探针微分析Flame photometry 火焰光度法X-ray fluorescence(XRF)X射线荧光Inductively Coupled Plasma-Mass Spectrometer (ICP-AES) 电感耦合等离子体发射光谱Electron diffraction 电子衍射Neutron diffraction 中子衍射Optical rotatory dispersion (ORD) 旋光色散Rutherford back scattering (RBS) 卢瑟福背散射。
电子顺磁共振EPR
它是直接检测和研究含有未成对电子顺磁 性物质的一种波谱学技术 。
It is also often called ESR, Electron Spin Resonance, ESR.
2010研究生课程— EPR
What Is the Electron Spin?
The electron spin is the electron’s electromagnetic field angular momentum.
340
345
350
325
330
335
340
345
350
Magnetic Fi mT
EPR—研究对象
Unstable Radicals
EPR—研究对象
对一些不稳定、寿命短的活性粒子, 对一些不稳定、寿命短的活性粒子,必须采用一些特 殊的处理才能观察到它们的EPR信号,主要方法有: 信号, 殊的处理才能观察到它们的 信号 主要方法有:
电子自旋即电子的电磁角动量
电子内禀运动或电子内禀运动量子数的简称。 电子内禀运动或电子内禀运动量子数的简称。 电子具有电荷, 电子具有电荷,同时电子像陀螺一样绕一个 固定轴旋转,形成有南北极的自旋磁矩。 固定轴旋转,形成有南北极的自旋磁矩。
EPR—研究对象
一、 电子顺磁共振的研究对象
Application Fields of ESR Spectroscopy
J. Ferreira Severino et al. Free Radical Biology & Medicine 46 (2009) 1076–1088
EPR—研究对象
EPR—研究对象
烟草:清除烟草烟气自由基—某些有害成分 某些有害成分。 烟草:清除烟草烟气自由基 某些有害成分。
结构化学专业英语
The Wave Behavior of Electrons 电子的波动性Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型Line Spectra 线光谱quantum numbers 量子数electron spin 电子自旋atomic orbital 原子轨道s (p/d/ f) Orbital s(p/d/f)轨道single-electron atom 单电子原子many-electron atom 多电子原子energy of orbital 轨道能量the Pauli exclusion principle 泡利不相容原理electron configuration 电子组态the periodic table 周期表row 行group 族periodic properties of the elements 元素周期律radius of atoms 原子半径ionization energy 电离能electronegativity 电负性effective nuclear charge 有效核电荷electron affinities 亲电性metals 金属nonmetals 非金属covalence bond 共价键orbital overlap 轨道重叠multiple bonds 重键量子力学quantum mechanics量子化学quantum chemistry粒子particle微观粒子microscopic particle实物粒子physical particles黑体辐射black-body radiation量子化quantization光子photon电子electron光电效应photoelectric effect波粒二象性wave-particle duality不确定关系uncertainty relation/uncertainty principle波函数wave functions算符operator动量算符momentum operator本征态eigenstate能量本征态energy eigenstate本征值eigenvalue薛定谔方程schroidinger equation态叠加原理 superposition principle of state泡利原理Pauli principle正交orthogonality归一normalizing单电子原子single-electron atom简并态degenerate state变数分离法 separation of variables量子数quantum number主量子数principal quantum number角量子数angular quantum number磁量子数magnetic quantum number自旋量子数spin quantum number自旋磁量子数spin magnetic quantum number电子云electron cloud径向分布radial distribution原子轨道atomic orbital多电子原子multi-electron atom/multiple electron atom 原子轨道能atomic orbital energy电子结合能electron binding energy基态ground state激发态excited state原子光谱atomic spectrum光谱项spectral term能态 energy state化学键chemical bond共价键covalent bond极性共价键polar covalent bond非极性共价键non-polar covalent bond分子轨道理论molecular orbital theory双原子分子diatomic molecule异核双原子分子heteronuclear diatomic molecules同核双原子分子homonuclear diatomic molecules价键理论valence bond theory分子光谱molecular spectrum拉曼光谱Raman spectrum电子能谱electron spectrum光电子能谱学photoelectron spectroscopy对称性symmetry对称操作symmetry operation对称元素symmetry elements主操作(全同操作)identity operation旋转操作rotation旋转轴rotation axis/symmetry axis反演操作inversion对称中心center of symmetry反映操作reflection镜面mirror plane/symmetry plane反轴rotoinversion axis映轴rotoreflection axis非真旋转improper rotation平移对称操作translation symmetry operator群group点群point group偶极矩dipole moment极化率polarizability手性chirality旋光性optical activity矩阵matrix特征标character多原子分子polyatomic moleculechiral molecule 手性分子enantiomorph 对映体dextro- 右旋levo- 左旋stereochemistry 立体化学stereo isomer 立体异构体covalent bond 共价键conjugated diene 共轭二烯烃conjugated system 共轭体系hybridization 杂化hybrid orbital 杂化轨道Huckel rule 休克尔规则aromatic character 芳香性infrared spectrum 红外光谱allyl cation 烯丙基正离子optical activity 旋光性carbocation 碳正离子carbanion 碳负离子hybrid orbital theory 杂化轨道理论valence shell electron pair repulsion theory 价层电子对互斥理论(VSEPR)molecular geometries 分子空间构型atomic orbital 原子轨道molecular orbital 分子轨道delocalized molecular orbital 离域分子轨道Huickel molecular orbital method 休克尔分子轨道法ethylene 乙烯butadiene 丁二烯conjugated diene 共轭二烯烃conjugated system 共轭体系allyl cation 烯丙基正离子hyperconjugation effect 超共轭效应highest occupied molecular orbital 最高占据轨道(HOMO)lowest unoccupied molecular orbital 最低空轨道(LOMO)frontier orbital theory 前线轨道理论principle of the conservation of molecular orbital symmetry 分子轨道对称守恒原理Borane 硼烷bond length 键长bond order 键级bond angle 键角bond energy 键能bond polarity 键矩dipole moment 偶极矩polarity molecule 极性分子electron configurations in octahedral complexes 八面体构型配合物的电子分布general characteristics 共性s(p/d/f)-block Elements s(p/d/f)区元素alkali metals 碱金属alkaline earth metals 碱土金属radioactivity 放射性coordination compound 配位化合物complex ion 配离子center ion 中心离子ligand 配位体coordination number 配位数coordination atom 配位原子cumulative stability constant 累积/逐级稳定常数overall stability constant 总稳定常数ethylenediamine tetraacetic acid 乙二胺四乙酸(EDTA)chelate compound 螯合物lone pair electron 孤对电子bathochromic shift 红移valence bond theory 价键理论(VB)crystal field theory 晶体场理论crystal field splitting energy 晶体场分裂能(CFSE)crystal field stabilization energy 晶体场稳定化能(CFSE)electron pairing energy 电子成对能transition metal 过渡金属octahedral complex 八面体配合物tetrahedral complex 四面体配合物square-planar complex 平面四边形配合物high-spin complex 高自旋配合物low-spin complex 低自旋配合物Jahn-Teller effect 姜-泰勒效应distortion 畸变hydration energy 水化能(水合能)hydration energy of metallic ions 金属离子水化能lattice energy 点阵能(晶格能)molecular orbital theory 分子轨道理论ligand field theory 配位场理论ligand field stabilization energy 配位场稳定化能(LFSE)empirical rule 经验规则spectrochemical series 光谱化学序列enthalpy change 焓变entropy change 熵变entropy production/increase 熵增property 性质magnetism 磁性magnetic 磁的paramagnetic 顺磁的diamagnetic 反磁的ferromagnetic 铁磁的ferrimagnetic 亚铁磁的antiferromagnetic 反铁磁的magnetic moment 磁矩nuclear magnetic moment 核磁矩permanent magnetic moment 永久磁矩anomalous magnetic moment 异常磁矩magnetic susceptibility 磁化率molar susceptibility 摩尔磁化率paramagnetic susceptibility 顺磁磁化率diamagnetic susceptibility 抗磁磁化率paramagnetic resonance 顺磁共振electron paramagnetic resonance 电子顺磁共振(EPR)electron spin resonance 电子自旋共振(ESR)electronic 电子的electric 电的nuclear magnetic resonance spectra 核磁共振谱(NMR谱)chemical shift 化学位移shielding effect 屏蔽效应crystal 晶体non-crystal 非晶体crystal structure 晶体结构metallic crystals 金属晶体ionic crystals 离子晶体covalent-network crystals 原子晶体molecular crystals 分子晶体molecular forces 分子间力intermolecular forces 分子间作用力hydrogen bonding 氢键。
单晶硅低能电子束辐照效应
第29卷 第2期Vo l 29 No 2材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第130期Apr.2011文章编号:1673 2812(2011)02 0272 05单晶硅低能电子束辐照效应高 晖,王和义,张华明,黄利斌,何小波,周银行(中国工程物理研究院核物理与化学研究所,四川绵阳 621900)摘 要 利用M onter Carlo 方法,模拟低能一维平面电子束在本征、不同掺杂类型、掺杂浓度下的单晶Si 中能量沉积分布情况。
采用电子顺磁共振(EPR)技术测量了(111)晶向、两种掺杂类型下的掺杂浓度分别为1!1015cm -3、1!1017cm -3的单晶硅片在一定电子注量下辐照前后缺陷顺磁吸收谱,比较了样品辐照前后缺陷顺磁中心强度的变化,并用X 光电子能谱(XPS)对Si SiO 2系统原子化学态的变化进行分析。
结果表明,相比于P 型Si,N 型Si 、特别是高掺杂的N 型Si,在低能电子一定注量下,界面区内易引起辐射感生缺陷,主要来自于键合于磷的非桥联氧对空穴的诱捕作用,表现为POH C 中心明显的变化,P 2P 芯能级谱突变。
并根据理论和实验结果,对电子能量沉积、电离缺陷和辐照效应间的相互关系进行了分析。
关键词 低能电子束;单晶硅;能量沉积;辐照效应中图分类号:T N304.1+2 文献标识码:ARadiation Effects on Single crystal Silicon of Low Energy Electron BeamGAO Hui,WANG He yi,ZHANG Hua ming,HUANG Li bing,HE Xiao bo,ZHOU Yin hang(Institute of Nuclear Physics and Chemistry,C hina Academy of Engineering Physics,Mianyang 621900,China)Abstract T he energy deposition fo r electron beam w ith lo w energy on Si specim ens w as calculated by Mo nter Carlo metho d.M aking use of electron paramagnetic resonance (EPR)technique,the investigation of the effects of EPR sig nal variatio ns in do pant type and concentration w as carried out by using P type and N ty pe (111)silicon w afers w ith concentratio ns o f 1!1015cm -3and 1!1017cm -3,respectively,befor e and after the irradiation of electrons,and the intensities of defect paramag netic centers befo re and after irradiatio n o f electron w ere com pared.The chemical states of Si SiO 2system were determined by X ray photoelectron spectro scopy (XPS).The results clearly indicate that the effects of dopant v ar iations (ty pe and concentr ation)are of o bv io us pared w ith P type silicon,specially,N type silicon w ith a high dopant concentr ation tends to pro duce defects at interface under lo w ener gy electron irradiatio n w ith certain flux,w hich arise fro m the hole tr apped on a no n bridging o xy gen atom bonded to P.It is embodied in the for m of distinct chang es of POH C intensity and P 2P binding energ y.According to the theor y and ex perimental data,the relatio nship amo ng electr on energy deposition,io nizing damage and radiatio n effect w as analyzed and discussed.Key words lo w energ y electron beam;sing le cry stal silicon;energ y depositio n;r adiaton effect收稿日期:2008 05 05;修订日期:2010 08 04作者简介:高 晖(1972-),女,硕士研究生,E m ail:hgao2005@ 。
电子顺磁共振谱ESR
EPR应用
• 有机自由基的研究:不但能证明自由基的存在,而且能 得到分子结构,化学反应机理和反应动力学方面的重要 信息。
• 催化剂的研究:能获得催化剂表面的性质及反应机理。 • 生物、医学研究:证明了细胞的代谢过程、酶反应的机
理都离不开自由基。除此之外,许多病理的过程如衰老、 癌变过程也都离不开自由基。其中很重要的原因就是氧 自由基的作用。 • 物理方面:利用EPR对半导体掺杂的研究,可指导采用 不同的掺杂技术获取不同性质的半导体。
❖ 双基(Biradical)或多基(Polyradical):在一个分子 中含有两个或两个以上未成对电子的化合物,但它们的未 成对电子相距较远,相互作和较弱。
❖ 三重态分子(triplet molecule):这种化合物的分子轨 道中含有两个未成对电子,且相距很近,彼此之间有很强 的相互作用。如氧分子,它们可以是基态或激发态。
EPR/ESR
• EPR is the resonant absorption of microwave radiation by paramagnetic systems in the presence of an applied magnetic field
hn = gbB
n= (gb/h)B = 2.8024 x B MHz
I (1)
MS=±½
Ms
MI
+½
+1
-½
-1
+0
+1
a
B
“triplet”
E = gbBSz + (hA0)SzIz
E = gbBSz + (a)SzIz
(hA0 (Hz) -> a (G) via g-factor)
化学仪器设备名称(中英文对照)
原子发射光谱仪Atomic Emission Spectrometer AES电感偶合等离子体发射光谱仪Inductive Coupled Plasma Emission Spectrometer ICP 直流等离子体发射光谱仪Direct Current Plasma Emission Spectrometer DCP紫外-可见光分光光度计UV-Visible Spectrophotometer UV-Vis微波等离子体光谱仪Microwave Inductive Plasma Emission Spectrometer MIP原子吸收光谱仪Atomic Absorption Spectroscopy AAS原子荧光光谱仪Atomic Fluorescence Spectroscopy AFS傅里叶变换红外光谱仪FT-IR Spectrometer FTIR傅里叶变换拉曼光谱仪FT-Raman Spectrometer FTIR-Raman气相色谱仪Gas Chromatograph GC高压/效液相色谱仪High Pressure/Performance Liquid Chromatography HPLC离子色谱仪Ion Chromatograph凝胶渗透色谱仪Gel Permeation Chromatograph GPC体积排阻色谱Size Exclusion Chromatograph SECX 射线荧光光谱仪X-Ray Fluorescence Spectrometer XRFX 射线衍射仪X-Ray Diffractomer XRD同位素X 荧光光谱仪Isotope X-Ray Fluorescence Spectrometer电子能谱仪Electron Energy Disperse Spectroscopy能谱仪Energy Disperse Spectroscopy EDS质谱仪Mass Spectrometer MSICP-质谱联用仪ICP-MS ICP-MS气相色谱-质谱联用仪GC-MS GC-MS液相色谱-质谱联用仪LC-MS LC-MS核磁共振波谱仪Nuclear Magnetic Resonance Spectrometer NMR电子顺磁共振波谱仪Electron Paramagnetic Resonance Spectrometer ESR极谱仪Polarograph伏安仪V oltammerter自动滴定仪Automatic Titrator电导仪Conductivity MeterpH 计pH Meter水质分析仪Water Test Kits电泳仪Electrophoresis System表面科学Surface Science电子显微镜Electro Microscopy光学显微镜Optical Microscopy金相显微镜Metallurgical Microscopy扫描探针显微镜Scanning Probe Microscopy表面分析仪Surface Analyzer无损检测仪Instrument for Nondestructive Testing物性分析Physical Property Analysis热分析仪Thermal Analyzer粘度计Viscometer流变仪Rheometer粒度分析仪Particle Size Analyzer热物理性能测定仪Thermal Physical Property Tester电性能测定仪Electrical Property Tester光学性能测定仪Optical Property Tester机械性能测定仪Mechanical Property Tester燃烧性能测定仪Combustion Property Tester老化性能测定仪Aging Property Tester生物技术分析Biochemical analysisPCR 仪Instrument for Polymerase Chain Reaction PCRDNA 及蛋白质的测序和合成仪Sequencers and Synthesizers for DNA and Protein 传感器Sensors其他Other/Miscellaneous20 升不锈钢自动发酵罐20-litre stainless automatic fermentor300 升不锈钢自动发酵罐300-litre stainless automatic fermentor80 升不锈钢自动发酵罐80-litre stainless automatic fermentorDNA 测序仪DNA sequencerDV800 核酸/蛋白分析仪Nucleic acid protein analyzerPCR 操作台PCR chamberPX2 多用途PCR 仪Multi-purpose PCR equipmentRCCS-批量式旋转细胞培养系统Rotary cell culture system氨基酸分析仪Amino acid analyzer氨基酸自动分析仪Auto amino acid analyzer比浊仪Turbidity comparator不锈钢板式滤器Stainless steel filter超级潜水电泳仪submarine electrophoresis unit超滤器Ultra filter and 4 pieces of filtration垂直电泳系统vertical electrophoresis system超声波细胞破碎仪Ultrasonic Cell Disruption System成像检测系统Chemiluminescent detection system程序降温仪Programmable controlled rate cell freezing system垂直电泳装置Clamping frame and electrode assembly for vertical electrophoresis 粗纤维测定仪Equipment for Raw Fiber determination单杯药物溶出仪Single cup diffusion meter蛋白纯化交换柱盒Protein purification sample set蛋白纯化系统Protein Purification System蛋白核酸分析仪Protein nucleic acid spectrophotometer蛋白快速纯化工作站Protein purification apparatus等电聚焦电泳仪Protein isoelectric system等电聚焦双向电泳系统Isoelectric focal bidirection electrophoresis电化学工作站Electrochemical workstation电击转化仪Pulse cell transfection system电激转化仪Electroporation instruments电洗脱电泳槽Electro-eluter电细胞融合仪Cell electro fusion device电泳槽Electrophoresis cells电泳系统Electrophoresis system电泳系统2-D electrophoresis apparatus电泳仪electrophoresis System电转膜系统Mini transfer tank for electrophoresis动物细胞培养反应器Animal cell bioreactor多肽合成仪Peptide synthesis apparatus多用蛋白电泳仪Horizontal vertical electrophoresis多用途PCR 仪Multifunctional PCR二维图象分析仪Spectral bio image system发酵罐Fermentation system防震台High performance lab table for microscope干胶仪Gle dryer核酸提取仪Nucleic Acid isolation machine基因扩增仪PCR基因枪Particle delivery system (PDS)近红外成分分析仪Near-infrared content analyzer拉制仪Glass Microelectrode puller连续黏度计continuous流式CELL 分析仪Flow cytometer脉冲电泳槽Pulse field electrophoresis cell脉冲电泳仪Pulse field electrophoresis spectrometer毛细管电色谱仪Capillary Electropharesis Spectramete毛细管电泳分析仪Capillary electrophoresis apparatus毛细管电泳系统Capillary electrophoresis system毛细管电泳仪Capillary electrophoresis.酶标仪Micro plate spectrophotometer酶标仪Automatic microplate reader酶标仪Micro plate reader膜片钳系统Patch clamp system凝胶成相系统Gel imaging system凝胶染色系统Gle stainer system凝胶渗透色谱仪Gel permeation chromatograph抛光仪Microforge切片转移装置Section transfer system全波长扫描酶标仪Pan-wavelength micro plate reade全湿电转移装置Tank transfer unit全自动DNA 测序仪(配套软件) DNA sequencer 全自动DNA 遗传分析仪Genetic analyzer全自动氨基酸分析仪Automatic Amino acid analyzer全自动多功能化学发光分析系统Automatic multifunction chemiluminescent analysis system全自动多功能酶标仪Automatic microplate reader全自动发酵罐Automatic fermenter全自动固相萃取系统Automatic solid phaseextract system全自动菌落计数仪Colony Counter全自动凝胶成像分析系统Gel image analyzing system染色体自动识别分析测试系统Genetic workstation三升六联自动发酵罐3-litre hexa-automatic fermentor实时荧光定量PCR 系统Real-time Fluorescence实验常用电泳仪electrophoresis System视频导电仪Electroencephalograph数码凝胶成像分析系统Digital gel image analysis system双相电泳槽Protein 2-D electrophoresis双向电泳系统Isoelectric Focusing system双向电泳仪Double-direction electrophoresis spectrometer水平程序控制电极拉制器Horizontal programmed puller索式抽提仪Soxhlet extractor梯度PCR 仪Gradient thermal cycler(PCR)通用酶标仪Universal microplate reader微电极操纵器Pulse motor microdrive微电脑酸度计Micro-computer acidometer微电泳仪Micro electrophoresis微机化多功能电化学分析仪Computerized electrochemical analyzer微生物快速自动鉴定系统Auto identification system for Microorganism洗板机plate cleaning instrument细胞融合仪Cell fusion System细胞遗传学工作站Cytogenetics workstation纤维提取器Cellulose extractor小动物行为活动记录分析系统Video camera and analysis system for animal observation 小型垂直电泳vertical electrophoresis unit小型双垂直电泳槽Mini double-sided vertical cell序列分析电泳系统nucleic acid sequencing system液氮罐Cryobiolgical inventory system遗传分析仪Genetic analyzer荧光定量PCR Fluorescence quantitatiye PCR原位灭菌实验室级发酵设备Laboratory Fermenter真空浓缩机Speed vacuum concentration apparatus转移电泳槽Trans-blot transfer紫外交联仪Cross linking machine(UV)自动堆码器及培养基制备系统Auto agar culture apparatus自动微量注射器Auto-micro injector最新荧光酶标仪Fluorescence microplate reader高速离心机High Speed Centrifuge荧光分光光度计Fluorescence SpectrophotometerKX-21 全自动血液分析装置KX-21 The full-automatic blood analyzes to equip KX-21SQUID 高精度磁学测量系统SQUID MagnetometerXRD 粉末衍射仪X-Ray Diffraction Meter一氧化碳分析仪Portable IR CO Analyzer三用紫外分析仪(暗箱式三用紫外分析仪) Tripurpose ultraviolet analyzer (Dark-box Triusage Ultraviolet Analysis Instrument)大流量TSP 采样器Grate flow TSP sampling instrument小型台式离心机Benchtop Centrifuge双向电泳2-D electrophoresis system双垂直电泳槽(两种电泳槽及配套电泳仪)Vertical Electrophoresis Tanks (Two Electrophoresis Tanks with an Electrophoresis Meter)双波长飞点扫描分析仪Dual-wavelength Flying Spot Scanner双波长飞点薄层扫描仪dual-wavelength flying spot TLC scanning instrumater双稳定时电泳仪及电泳槽Electrophoresis Meter with Electrophoresis Tanks心理CT Psychology Computer Test System心理测试软件系统Psychology Test Software气相色谱-质谱联用仪GC-MS气象色谱仪Gas Chromatography水质监测仪Water quality monitor水浴摇床Water Baths Shaker加热磁力搅拌器Magnetic Stirring Apparatus半自动生化分析仪Semiautomatic biochemistry analyzer半微量电子分析天平Analytical semi-micro-balance可见风光光度计VIS Spectrophotometer四通道血凝仪4 channels blood coagulometer生化培养箱Biochemical生化培养箱Biochemisty Incubators生物制品冷藏柜及真空干燥器(低温培养箱)ICP-incubator cooled with process controller 生物制品冷藏柜及真空干燥器(真空干燥箱2)Vacuum drying oven电子天平Electronic balance电化学工作站Work station for electric chemistry电化学分析系统(恒电位仪)Electrochemical Analysis System (potentiostat / galvanostat) 电动搅拌机Agitator电泳仪Electrophoresis电热恒温培养箱Electro- thermal incubator电热恒温鼓风干燥箱Electro- thermostatic blast oven电热鼓风干烘箱Lab Oven电感耦合等离子体发射光谱仪Simultaneous Inductively Coupled Plasma Atomic Emission Spectrometer(ICP—OES)石墨炉原子化器Graphite furnace atomizer光谱仪用灯Spectrum Instrument Lamp全功能型稳态瞬态荧光光谱仪Combined Time Resolved&Steady State Fluorescence Spectrometer全自动生化分析仪Automatic biochemical analyzer全自动免疫组化染色系统Autostainer Universal Staining System全自动界面张力仪Automatic tension apparatus全自动遗传分析系统(遗传分析系统)Automated Genetic Analysis System全自动酶标检测仪Auto ELISA detecter冰箱(无霜)Refrigerator (Frost Free)同步热分析仪Simultaneous Thermal Analysis扫描探针显微镜Scanning probe microscope红外干燥箱Infrared Oven红外分光光度计Infrares spectrophometer红外快速煤质分析仪Computer Ir Celerity coal Analysis Instrument自动双重纯水蒸馏器Automatical Double Pure Water Distillatory自动电位滴定仪Automatic Titrimeter自动血球计数仪automatic Blood Cell Counter血液生化分析仪blood biochemical analyzer行星式和膏机Material mixer低速大容量离心机Low Speed Large Capacity Centrifuge事件相关诱发电位仪Event related evoked potentials equipment事件相关诱发电位仪Event related evoked potentials equipment实验室用制冰机Ice Machine for Laboratory昆虫触角电位测量系统Insect tactile electromagnetic wave analyzer表面吸附仪Surface and aperture meter表面活性测定仪Exterior Live Determiner便携式脑电图机32ch Digital EEG System哈氏可磨性指数测定仪Milling Exponent Determiner差热热重同步分析仪TG/DTA meter恒温振荡培养器Thermostatic oscillation incubator荧光分光光度计Spectrofluorometer荧光分光光度计Fluorescence Spectrophotometer荧光光度计Fluorescence Photometer荧光酶标仪Microplate System原子吸收分光光度计Atomic Absorption Spectrometer火焰分光光度计Flame Emission Spectrophotometer核酸蛋白纯化系统Nucleic Acid Auto-purification System核酸提取仪6100 Nucleic Acid PrepStation真空干燥箱Vacuum Drying Apparatus机械真空泵Vacuum Pump真空磁悬浮熔炼炉Vacuum induction levitation melting furnace真空磁控溅射系统Vacuum evaporative sputtering machine胶质量指数测定仪Colloid Quality Exponent Determiner高效毛细管电泳仪High Efficiency Capillary Electrophoresis高速冷冻离心机high-speed refrigerated centrifuge(used for the laboratory)偏振赛曼原子吸收分光光度计Polarization Atomic Absorption Spectrophotometer超低有机物型超纯水机Ultrapure Water Machine二氧化碳培养箱CO2 INCUBATORS高速冷冻多功能离心机High speed refrigerated multifunction centrifuge吹扫气体发生器FT-IR Purge Gas Generator制冰机System ice model旋转蒸发器Rotary Evaporators傅立叶变换红外光谱仪FTIR spectrometer喷雾干燥机Spray Dryer循环水式多用真空泵Vacuum Pump with Circulated Water System智能灰熔点测试仪Intellectual Ash Melting Point Test Instrument智能液化硫测定仪Fludified Sulfur Determiner温冰箱Low temperature refrigerator焦炭反应性测定仪Coke Reaction Determiner紫外/可见/近红外分光光度计UV-Visible-NIR Spectrophotometer紫外分光光度计UV Spectrophotometer紫外可见分光光度计UV/VIS spectrophotometer紫外光栅分光光度计VIS Spectrophotometer超级恒温水浴Super ThermostaticWater-bath超声波细胞粉碎机Ultrasonic Cell Crusher超纯水系统Ultra Purified Water System超纯水系统Hyperpure water system超滤装置(含超滤膜)Ultrafilaer Instrument微孔板液闪发光计数仪Gradient Thermal Cycler微机控压密闭消解系统Microvave Digestion System微颗粒测定仪Micro particulate monitor数字图象分析系统Micro-image analysis system数字显示旋转蒸发仪(垂直冷凝)Digital rotary evaporators (vertical condenser)瑞士梅特勒电位滴定仪(全自动多管电位滴定仪)Potential Titrator (Flexible Dual Driver General Autotitrator)熔点仪Melting Point Apparatus磁力恒温搅拌器Stirring hot plate精密电子天平Precision electronic balance精密型便携式电导仪Conductivity Meter膜片钳微操纵器Patch-Clamp Micromanipulators膜片钳灌流系统Patch Clamp Bath Perfusion System酶标仪Microplate Reader酸度计pH Meter膳食纤维测定仪Dietary Fiber Determination System薄层色谱扫描分析仪Thin-layer chromatogram流动分析与过程分析Flow Analytical and Process Analytical Chemistry 气体分析Gas Analysis基本物理量测定Basic Physics样品处理Sample Handling金属/材料元素分析仪Metal/material elemental analysis环境成分分析仪CHN Analysis发酵罐Fermenter生物反应器Bio-reactor摇床Shaker离心机Centrifuge超声破碎仪Ultrasonic Cell Disruptor超低温冰箱Ultra-low Temperature Freezer恒温循环泵Constant Temperature Circulator超滤器Ultrahigh Purity Filter冻干机Freeze Drying Equipment部分收集器Fraction Collector氨基酸测序仪Protein Sequencer氨基酸组成分析仪Amino Acid Analyzer多肽合成仪Peptide synthesizerDNA 测序仪DNA SequencersDNA 合成仪DNA synthesizer紫外观察灯Ultraviolet Lamp分子杂交仪Hybridization OvenPCR 仪PCR Amplifier化学发光仪Chemiluminescence Apparatus紫外检测仪Ultraviolet Detector电泳Electrophoresis酶标仪Microplate Reader 或(ELIASA)CO2 培养箱CO2 Incubators倒置显微镜Inverted Microscope超净工作台Bechtop流式细胞仪Flow Cytometer微生物自动分析系统Automatic Analyzer for Microbes生化分析仪Biochemical Analyzer血气分析仪Blood-gas Analyzer电解质分析仪Electrolytic Analyzer尿液分析仪Urine Analyzer临床药物浓度仪Analyzer for Clinic Medicine Concentration血球计数器Hematocyte Counter菌落计数仪Colony counters恒温·干燥器/恒温恒湿器Drying Ovens/Humidity Chambers送风定温恒温器Forced Convection Constant Temperature Ovens惰性气体恒温器Inert Gas Ovens精密恒温器Precision Constant Temperature Ovens洁净恒温器Clean Ovens送风定温干燥器Forced Convection Constant Temperature Drying Ovens 空气幕送风定温恒温器Forced Convection Ovens With Air Curtain定温干燥箱Constant Temperature Drying Ovens角形真空定温干燥器Vacuum Drying Ovens恒温恒湿器Constant Temperature and Humidity Chambers流水线设备In-Line System for Underfill Adhesive and Encapsulation恒温培养器Constant Temperature Incubators---可程式低温培养器Low Temperature Program Type Incubators低温培养器Low Temperature Incubators低温稳定性培养器Low Temperature Stability Incubators培养器IncubatorsCO2 培养器CO2 Incubators振荡培养器Shaking Incubators冻结干燥器Freeze Dryers---冻结干燥器Freeze Dryers离心形冻结干燥器Centrifugal Freeze Dryers灭菌器Sterilizers---干热灭菌器Drying Sterilizers高压灭菌器Autoclaves Sterilizers低温等离子灭菌器Low Temperature Plasma Sterilizers环形燃烧管灭菌器Loop Cinerator纯水制造装置Water Purifiers---纯水制造装置Water Stills超纯水制造装置Ultra-pure Water Purifiers简易纯水制造装置Water Purifiers超纯水制造装置系统Ultra-pure Water Purifier System大容量纯水制造装置Water Purifiers System洗净器Washers---实验室玻璃器皿清洗机Laboratory Glassware Washers超声波清洗机Ultrasonic Cleaners大型超声波清洗机Aqueous Ultrasonic Cleaning Systems超声波试管清洗机Ultrasonic Pipet Washers超声波清洗机Ultrasonic Cleaners恒温液槽Constant Temperature Baths---投入式恒温装置Constant Temperature Devices油槽Oil Baths振荡式低温水槽Low Constant Temperature Shaking Baths深槽形恒温水槽Constant Temperature Water Baths粘度测定槽Kinematic Viscosity Baths液压式恒温水槽Constant Temperature Water Baths精密低温恒温水槽Precision Low Constant Temperature Water Baths低温恒温水槽Low Constant Temperature Water Baths试验管加热板Heating Blocks冷却液体循环器Cooling Liquid Circulators冷却水循环器Cooling Water Circulators便携式冷却器Immersion Cooler寒流捕获器Cooling Trap冷却水外部循环器Cooling Water Circulators试验槽Thoughs高温炉High Temperature Furnaces Heating Apparatus---马弗炉Muffle Furnaces超高温电气炉Ultra-High Temperature Electric Furnaces高温电气炉High Temperature Electric Furnaces真空气体置换炉Gas Replacement Vacuum Furnaces造粒干燥装置Granulating and Drying Apparatus for Wet Powder Body and Liquid--- 喷雾干燥器Spray Dryer有机溶剂喷雾干燥器Spray Dryer生产线喷雾干燥器Spray Dryer for Product Line浓缩器Evaporators---旋转蒸发仪Rotary Evaporators溶媒回收装置Solvent Recovery Unit乳化·搅拌·振荡器Homogenizers, Stirrers, Shakers---磁力搅拌器Magnetic Stirrers加热板Hot Plates振荡器Shakers送液·减压·加压装置Aspirators, Pumps, Compressors搅拌器Stirrers实验室自动乳钵Laboratory Mill/Universal Ball Mill粉碎器Cutting Mills生命科学关连仪器Life-Science Related Instruments生物技术关连仪器·食品分析仪器Bio-Technology Related Instruments, Food Analysises Instruments—形态观察分析系统Mapping Analyzer生物分子间相互作用分析系统Biomioleculer Interaction Analysis System高速液相色谱仪LC-CE/CEC System血管壁细胞混合培养系统Dynamic Coculture System动植物破碎机基因检查仪器Genopattern AnalyzerATP 测定器ATP Measuring Instrument分光光度计Microplate Spectrophotometer细胞培养·发酵用自动分析系统Automated Chemistry Analyzer for Monitoring Cell Cultureand Fermentation Processes细胞生死判别系统Cell Vital Analyzer细胞计数分析装置Cell Scaler/Analyzer2 元电泳仪荧光Spot Cutter高速冷却离心机High Speed Refrigerated,Centrifuges微量高速离心机High Speed micro-Centrifuges液体中微生物简单测试仪Simple Germ Test Kit “simple Tester”试料混合器Blender防爆冷藏柜Explosion proof Freezer and Refrigerator杀菌水生成系统Sterilization Water Production Device膜式脱气装置Filter-type Air Extractor抗酸化机能水制造装置Acid-Resistant Water Purifier高性能净水器反渗透式高性能净水器分析仪器Analytical Instruments---分光光度计Spectrophotometer元素分析装置Atomic Absorption SpectrophotometerICP 发光分光分析ICP Atomic Emission SpectrophotometerX 线光分析计X-Ray Fluorescence Analysis气体分析计Gas Analyzers回折/散乱式粒度分布测定装置Analyzer,Particle Size Distribution Laser Diffraction Device低真空走查电子显微镜Scanning Probe Micro Scope高速液相色谱仪Liquid Chromatograph滴定装置Automatic Titration大塚电子制品电位计膜厚计散乱光光度计LCD 测定·评价装置热量计天平Balances物性试验·测定器Physical Properties Measuring Apparatus, Testing, and Measuring Apparatus---近红外分析装置Fourier Transform Near Infrared Spectrometer融点测定仪Melting Point Measuring Instrument热分析系统Thermo System自动反应装置Automatic Reactor水分计Moisture Analyzer引张压缩试验机Tester,Tension and Compression数字粘度计Digital Viscometer振动式粘度计Vibro Viscometer浸透压测定装置Osmotic Pressure Meters超临界水酸化系统Small SCWO Systems重金属排液处理装置Heavy Metal Eliminator简易水质检查试验纸Water Quality Tester StripsPH 计Phmeter导电率计Conductivity Meters湿度计Hygrothermometers过滤器Filter试验研究设备Laboratory Design and Engineering---通风柜Fume Hoods排风机Blowers实验台Laboratory Furniture保管柜Storage Cabinets实验台用附属器具Carts and Laboratory Table Attachments环境制御设施Research Facilities, Product Lines, Environment control Devices---生物安全柜Biohazard Safety Equipment废水处理系统Waste Water Treatment试验动物饲养室Bio Clean Room for Animal experiment环境实验设施Research Facilities, Product Lines, Environment Experiment Facilities--- 电磁波室隔音室恒温室/恒温恒湿室Constant Temperature and Humidity Facilities低温室Constant Low Temperature Facilities人工气候室Artificial Atmospheric Phenomena Simulator动物研究用高压蒸汽灭菌装置Sterilization Systems, for Animal Research。
电子顺磁共振波谱EPRESR概论
一、 电子顺磁共振的基本原理
1、概述
电子自旋的磁特性
Joseph John Thomson (英国)
The Nobel Prize in Physics 1906
• In 1891, the Irish physicist, George Stoney, believed that electricity should have a fundamental unit. He called this unit the electron.
• The electron was discovered by J.J. Thomson in 1897. • The electron was the first sub-atomic particle ever found. It
was also the first fundamental particle discovered. • The concept of electron spin was discovered by S.A.
电子的磁矩主要来自自旋磁矩(> 99%)的贡献。
若轨道中所有的电子都已成对,则它们 的自旋磁矩就完全抵消,导致分子无顺磁性;
若至少有一个电子未成对,其自旋就会产生 自旋磁矩。
因此,EPR研究的对象必须具有未偶电子。
H =0时,每个自旋磁矩的方向是随机的,并处于同一个平均能态。
H≠0时,自旋磁矩 就有规则 地排列起 来 (平行 外磁场 — 对 应能级的能量较低,或反平行于外磁场—对应能级 的能量较高)。
• 顺磁性 (B’>0,即B’与B0同向) • 铁磁性 (B’>0,即B’与B0同向, B’随B0增大而急
剧增加, 但当B0 消失而本身磁性并不消失) • 反磁性(B’<0,即B’与B0反向) (逆、抗)
电子顺磁共振(ESR)教程
3、浓度控制,浓度过大或过小都会对样品信号造成干
扰,导致精细结构看不到,因此选择适当的浓度会对
测试提供帮助。
2021/10/10
11
未除氧
除氧
2021/10/10
12
浓度的影响
2021/10/10
13
溶液运动的影响
2021/10/10
14
3、固体样品
固体样品制备过程中需要注意颗粒大小,粉末样品也 需要注意顺磁浓度,浓度太大的话会对信号造成干扰 ,固体样品如果浓度太大可以采用固体稀释方法,使 用干燥的硅胶或者碳酸钙等都能起到稀释的作用。
2021/10/10
10
液体样品的制备
在ESR测试中,常见的是液体样品的测试,如自由基 ,有机反应中间体,过渡金属等,液体样品制备过程 中需要注意以下几点:
1、溶剂。测量液体样品时,要注意溶剂的极性,对于 极性大的溶剂,需要将样品放在毛细管中进行测试, 以避免溶剂对微波的吸收。
2、除氧。液体样品中氧气对信号的干扰非常大,需要 对样品进行通氮或真空除氧,以保证测试过程中能看 到精细的机构信息。
2021/10/10
2
How does EPR work? DE = gb H
DE
hn
Energy
microwave source
2021/10/10
gbH0 = hn
H1
H0
H2
External magnetic field 3
电子顺磁共振
在垂直于B0的方向上施加频率为hn的电 磁波,当满足hn =g b B0 时,处于两能级 间的电子发生受激跃迁,导致部分处于 低能级中的电子吸收电磁波的能量跃迁 到高能级中,这就是顺磁共振现象。受 激跃迁产生的吸收信号经电子学系统处 理可得到EPR吸谱线。 (g 因子, g e =2.0023; b波尔磁子)
第二章电子自旋共振波谱ppt课件
– 物质的顺磁性是由分子的永久磁矩引起的。
高分子科学系周平
2
一、基本原理
• 1、电子自旋共振的产生
• 电子自旋共振(ESR)或电子磁共振(EMR)与 核磁共振(NMR)在量子力学原理上有许多相似 之处,都是由于粒子在静态磁场中角动量能级发 生分裂,从而造成低能态与高能态粒子的布居数 不同,之后,在另外一个电磁波的共振激发下吸 收能量,使布居数达到平均,因此而产生共振信 号。
• 3、应用举例 • 高分子材料的ESR谱
• ESR能够有效检测聚合物聚集态的 分子运动和微观结构。
• 将一种含稳定自由基的探针化合物 TOMPOL在聚氨酯(PU)及其与不同 含量的苄基淀粉(BS)反应时加入,由 此形成的材料PUL以及半互穿网络聚 合物UBS20L和UBS50L的ESR在低 温时呈宽谱,说明TOMPOL运动缓慢, 而随温度升高,峰型变窄,说明分子 运动加快。峰宽值Azz随温度变化曲 线如图所示,峰宽变化50%的温度分 别为67, 62和55C,与玻璃化转变温 度对应。说明随BS的加入,降低了 PU网络的交联密度,PU分子上的
hυ=gβH
则处于低能级的电子吸收此微波而发生受 激跃迁,并产生电子自旋共振波谱。
高分子科学系周平
7
一、基本原理
• 1、电子自旋共振的产生
高分子科学系周平
8
一、基本原理
• 1、电子自旋共振的产生
• 由于电子质量比核质量小得多(< 103倍),根据测不准原理,运 动速度越快的粒子,吸收线形越宽。因此,ESR 吸收信号的 线宽较 NMR 信号宽得多 (> 103倍!),一般ESR谱用磁场调 制系统使输出线型呈一次微分图,并用相敏检测,以提高分辨 率,滤除噪音信号。
First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlate
a rX iv:c ond-ma t/974231v1[c ond-m at.str-el]28A pr1997First-principles calculations of the electronic structure and spectra of strongly correlated systems:dynamical mean-field theory V.I.Anisimov,A.I.Poteryaev,M.A.Korotin,A.O.Anokhin Institute of Metal Physics,Ekaterinburg,GSP-170,Russia G.Kotliar Serin Physics Laboratory,Rutgers University,Piscataway,New Jersey 08854,USA Abstract A recently developed dynamical mean-field theory in the iterated per-turbation theory approximation was used as a basis for construction of the ”first principles”calculation scheme for investigating electronic struc-ture of strongly correlated electron systems.This scheme is based on Local Density Approximation (LDA)in the framework of the Linearized Muffin-Tin-Orbitals (LMTO)method.The classical example of the doped Mott-insulator La 1−x Sr x TiO 3was studied by the new method and the results showed qualitative improvement in agreement with experimental photoemission spectra.1Introduction The accurate calculation of the electronic structure of materials starting from first principles is a challenging problem in condensed matter science since un-fortunately,except for small molecules,it is impossible to solve many-electron problem without severe approximations.For materials where the kinetic energy of the electrons is more important than the Coulomb interactions,the most successful first principles method is the Density Functional theory (DFT)within the Local (Spin-)Density Ap-proximation (L(S)DA)[1],where the many-body problem is mapped into a non-interacting system with a one-electron exchange-correlation potential approxi-mated by that of the homogeneous electron gas.It is by now,generally accepted that the spin density functional theory in the local approximation is a reliable starting point for first principle calculations1of material properties of weakly correlated solids(For a review see[2]).The situation is very different when we consider more strongly correlated materials, (systems containing f and d electrons).In a very simplified view LDA can be regarded as a Hartree-Fock approximation with orbital-independent(averaged) one-electron potential.This approximation is very crude for strongly correlated systems,where the on-cite Coulomb interaction between d-(or f-)electrons of transition metal(or rare-earth metal)ions(Coulomb parameter U)is strong enough to overcome kinetic energy which is of the order of band width W.In the result LDA gives qualitatively wrong answer even for such simple systems as Mott insulators with integer number of electrons per cite(so-called”undoped Mott insulators”).For example insulators CoO and La2CuO4are predicted to be metallic by LDA.The search for a”first principle”computational scheme of physical proper-ties of strongly correlated electron systems which is as successful as the LDA in weakly correlated systems,is highly desirable given the considerable impor-tance of this class of materials and is a subject of intensive current research. Notable examples offirst principle schemes that have been applied to srongly correlated electron systems are the LDA+U method[3]which is akin to orbital-spin-unrestricted Hartree-Fock method using a basis of LDA wave functions,ab initio unrestricted Hartree Fock calculations[4]and the use of constrained LDA to derive model parameters of model hamiltonians which are then treated by exact diagonalization of small clusters or other approximations[5].Many interesting effects,such as orbital and charge ordering in transition metal compounds were successfully described by LDA+U method[6].However for strongly correlated metals Hartree-Fock approximation is too crude and more sophisticated approaches are needed.Recently the dynamical mean-field theory was developed[7]which is based on the mapping of lattice models onto quantum impurity models subject to a self-consistency condition.The resulting impurity model can be solved by var-ious approaches(Quantum Monte Carlo,exact diagonalization)but the most promising for the possible use in”realistic”calculation scheme is Iterated Per-turbation Theory(IPT)approximation,which was proved to give results in a good agreement with more rigorous methods.This paper is thefirst in a series where we plan to integrate recent devel-ompements of the dynamical meanfield approach with state of the art band structure calculation techniques to generate an”ab initio”scheme for the cal-culation of the electronic structure of correlated solids.For a review of the historical development of the dynamical meanfield approach in its various im-plementations see ref[7].In this paper we implement the dynamical mean-field theory in the iterated perturbation theory approximation,and carry out the band structure calculations using a LMTO basis.The calculational scheme is described in section2.We present results obtained applying this method to La1−x Sr x TiO3which is a classical example of strongly correlated metal.22The calculation schemeIn order to be able to implement the achievements of Hubbard model theory to LDA one needs the method which could be mapped on tight-binding model.The Linearized Muffin-Tin Orbitals(LMTO)method in orthogonal approximation[8]can be naturally presented as tight-binding calculation scheme (in real space representation):H LMT O= ilm,jl′m′,σ(δilm,jl′m′ǫil n ilmσ+t ilm,jl′m′ c†ilmσ c jl′m′σ)(1)(i-site index,lm-orbital indexes).As we have mentioned above,LDA one-electron potential is orbital-inde-pendent and Coulomb interaction between d-electrons is taken into account in this potential in an averaged way.In order to generalize this Hamiltonian by including Coulomb correlations,one must add interaction term:1H int=Un d(n d−1)(3)2(n d= mσn mσtotal number of d-electrons).3In LDA-Hamiltonianǫd has a meaning of the LDA-one-electron eigenvalue for d-orbitals.It is known that in LDA eigenvalue is the derivative of the total energy over the occupancy of the orbital:ǫd=ddn d (E LDA−E Coul)=ǫd−U(n d−12)(7)(q is an index of the atom in the elementary unit cell).In the dynamical mean-field theory the effect of Coulomb correlation is de-scribed by self-energy operator in local approximation.The Green function is:G qlm,q′l′m′(iω)=1The chemical potential of the effective medium µis varied to satisfy Luttinger theorem condition:1d(iωn)Σ(iωn)=0(11)In iterated perturbation theory approximation the anzatz for the self-energy is based on the second order perturbation theory term calculated with”bath”Green function G0:Σ0(iωs)=−(N−1)U21kT,Matsubara frequenciesωs=(2s+1)πβ;s,n integer numbers.The termΣ0is renormalized to insure correct atomic limit:Σ(iω)=Un(N−1)+AΣ0(iω)β iωn e iωn0+G(iωn)),B=U[1−(N−1)n]−µ+ µn0(1−n0)(15)n0=1iω+µ−∆(iω)+δµ+n(N−1)β iωn e iωn0+G CP A(iωn)(18) D[n]=n iωn e iωn0+1energy to time variables and back:G0(τ)=1V Bd k[z−H(k,z)]−1(24)After diagonalization,H(k,z)matrix can be expressed through diagonal matrix of its eigenvalues D(k,z)and eigenvectors matrix U(k,z):H(k,z)=U(k,z)D(k,z)U−1(k,z)(25) and Green function:G(z)=1V Bd k U in(k,z)U−1nj(k,z)V Bvd kU in(k,z)U−1nj(k,z)V B(28)6v is tetrahedron volumer n i=(z−D n(k i,z))2k(=j)(D n(k k,z)−D n(k j,z))ln[(z−D n(k j,z))/(z−D n(k i,z)]1+a2(z−z2)1(30)where the coefficients a i are to be determined so that:C M(z i)=u i,i=1,...,M(31) The coefficients a i are then given by the recursion:a i=g i(z i),g1(z i)=u i,i=1,...,M(32)g p(z)=g p−1(z p−1)−g p−1(z)3ResultsWe have applied the above described calculation scheme to the doped Mott insulator La1−x Sr x TiO3is a Pauli-paramagnetic metal at room tem-perature and below T N=125K antiferromagnetic insulator with a very small gap value(0.2eV).Doping by a very small value of Sr(few percent)leads to the transition to paramagnetic metal with a large effective mass.As photoemission spectra of this system also show strong deviation from the noninteracting elec-trons picture,La1−x Sr x TiO3is regarded as an example of strongly correlated metal.The crystal structure of LaTiO3is slightly distorted cubic perovskite.The Ti ions have octahedral coordination of oxygen ions and t2g-e g crystalfield splitting of d-shell is strong enough to survive in solid.On Fig.1the total and partial DOS of paramagnetic LaTiO3are presented as obtained in LDA calculations (LMTO method).On3eV above O2p-band there is Ti-3d-band splitted on t2g and e g subbands which are well separated from each other.Ti4+-ions have d1 configuration and t2g band is1/6filled.As only t2g band is partiallyfilled and e g band is completely empty,it is reasonable to consider Coulomb correlations between t2g−electrons only and degeneracy factor N in Eq.(12)is equal6.The value of Coulomb parameter U was calculated by the supercell procedure[9]regarding only t2g−electrons as localized ones and allowing e g−electrons participate in the screening.This cal-culation resulted in a value3eV.As the localization must lead to the energy gap between electrons with the same spin,the effective Coulomb interaction will be reduced by the value of exchange parameter J=1eV.So we have used effective Coulomb parameter U eff=2eV.The results of the calculation for x=0.06(dop-ing by Sr was immitated by the decreasing on x the total number of electrons) are presented in the form of the t2g-DOS on Fig.2.Its general form is the same as for model calculations:strong quasiparticle peak on the Fermi energy and incoherent subbands below and above it corresponding to the lower and upper Hubbard bands.The appearance of the incoherent lower Hubbard band in our DOS leads to qualitatively better agreement with photoemission spectra.On Fig.3the exper-imental XPS for La1−x Sr x TiO3(x=0.06)[12]is presented with non-interacting (LDA)and interacting(IPT)occupied DOS broadened to imitate experimental resolution.The main correlation effect:simultaneous presence of coherent and incoherent band in XPS is successfully reproduced in IPT calculation.However, as one can see,IPT overestimates the strength of the coherent subband.4ConclusionsIn this publication we described how one can interface methods for realistic band structure calculations with the recently developed dynamical meanfield8technique to obtain a fully”ab initio”method for calculating the electronic spectra of solids.With respect to earlier calculations,this work introduces several method-ological advances:the dynamical meanfield equations are incorporated into a realistic electronic structure calculation scheme,with parameters obtained from afirst principle calculation and with the realistic orbital degeneracy of the compound.To check our method we applied to doped titanates for which a large body of model calculation studies using dynamical meanfield theory exists.There results are very encouraging considering the experimental uncertainties of the analysis of the photoemission spectra of these compounds.We have used two relative accurate(but still approximate)methods for the solution of the band structure aspect and the correlation aspects of this problem:the LMTO in the ASA approximation and the IPT approximation. In principle,one can use other techniques for handling these two aspects of the problem and further application to more complicated materials are necessary to determine the degree of quantitative accuracy of the method.9References[1]Hohenberg P.and Kohn W.,Phys.Rev.B136,864(1964);Kohn W.andSham L.J.,ibid.140,A1133(1965)[2]R.O.Jones,O.Gunnarsson,Reviews of Modern Physics,v61,689(1989)[3]Anisimov V.I.,Zaanen J.and Andersen O.K.,Phys.Rev.B44,943(1991)[4]S.Massida,M.Posternak, A.Baldareschi,Phys.Rev.B46,11705(1992);M.D.Towler,N.L.Allan,N.M.Harrison,V.R.Sunders,W.C.Mackrodt,E.Apra,Phys.Rev.B50,5041(1994);[5]M.S.Hybertsen,M.Schlueter,N.Christensen,Phys.Rev.B39,9028(1989);[6]Anisimov V.I.,Aryasetiawan F.and Lichtenstein A.I.,J.Phys.:Condens.Matter9,767(1997)[7]Georges A.,Kotliar G.,Krauth W.and Rozenberg M.J.,Reviews of ModernPhysics,v68,n.1,13(1996)[8]O.K.Andersen,Phys.Rev.B12,3060(1975);Gunnarsson O.,Jepsen O.andAndersen O.K.,Phys.Rev.B27,7144(1983)[9]Anisimov V.I.and Gunnarsson O.,Phys.Rev.B43,7570(1991)[10]Lambin Ph.and Vigneron J.P.,Phys.Rev.B29,3430(1984)[11]Vidberg H.J.and Serene J.W.,Journal of Low Temperature Physics,v29,179(1977)[12]A.Fujimori,I.Hase,H.Namatame,Y.Fujishima,Y.Tokura,H.Eisaki,S.Uchida,K.Takegahara,F.M.F de Groot,Phys.Rev.Lett.69,1796(1992).(Actually in this article the chemical formula of the sample was LaTiO3.03, but the excess of oxygen produce6%holes which is equivalent to doping of 6%Sr).105Figure captionsFig.1.Noninteracting(U=0)total and partial density of states(DOS)for LaTiO3.Fig.2.Partial(t2g)DOS obtained in IPT calculations in comparison with noninteracting DOS.Fig.3.Experimental and theoretical photoemission spectra of La1−x Sr x TiO3 (x=0.06).11)LJ 7L G H J '26 V W D W H H 9 D W R P (QHUJ\ H97L G W J7RWDO /D7L2 '26 V W D W H H 9 F H O O3HUWXUEDWHG)LJ'26 V W D W H V H 9 (QHUJ\ H98QSHUWXUEDWHG,Q W H Q V L W \ H 9(QHUJ\ H9。
顺磁共振电子顺磁共振(ElectronParamagneticResonance简称EPR)或
顺磁共振电子顺磁共振(Electron Paramagnetic Resonance 简称EPR )或称电子自旋共振(Electron Spin Resonance 简称ESR )是探测物质中未耦电子以及它们与周围原子相互作用的非常重要的现代分析方法,它具有很高的灵敏度和分辨率,并且具有在测量过程中不破坏样品结构的优点。
自从1944年物理学家扎伏伊斯基(Zavoisky )发现电子顺磁共振现象至今已有五十多年的历史,在半个多世纪中,EPR 理论、实验技术、仪器结构性能等方面都有了很大的发展,尤其是电子计算机技术和固体器件的使用,使EPR 谱仪的灵敏度、分辨率均有了数量级的提高,从而进一步拓展了EPR 的研究和应用范围。
这一现代分析方法在物理学、化学、生物学、医学、生命科学、材料学、地矿学和年代学等领域内获得了越来越广泛的应用。
本实验的目的是在了解电子自旋共振原理的基础上,学习用射频或微波频段检测电子自旋共振信号的检测方法,并测定DPPH 中电子的g 因子和共振线宽。
一 实验原理原子的磁性来源于原子磁矩。
由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中个电子的轨道磁矩和自旋磁矩所决定。
在本单元的基础知识中已经谈到,原子的总磁矩μJ 与P J 总角动量之间满足如下关系:J J BJ P P g γμμ=-= (1-6-1) 式中μB 为波尔磁子,ћ为约化普朗克常量。
由上式可知,回磁比Bg μγ-= (1-6-2) 按照量子理论,电子的L -S 耦合结果,朗得因子)1(2)1()1()1(1++-++++=J J L L S S J J g (1-6-3) 由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L =0,J =S ),则g =2。
反之,若磁矩完全由电子的轨道磁矩所贡献(S=0,J=1),则g =1。
若自旋和轨道磁矩两者都有贡献,则g 的值介乎1与2之间。
因此,精确测定g 的值便可判断电子运动的影响,从而有助于了解原子的结构。
电工英语词汇汉英互译(字母E)
electrohydraulic control,电液伺服阀
electrolysis humidity transducer[sensor],电解式湿度传感器
electrolytic cell,电解池
electrolytic hygrometer,电解湿度计
electrochemical analysis,电化学分析(法)
electrochemical analyzer,电化学式分析器
electrochemical transducer[sensor],电化学式传感器
electrode,电极
electrode potential,电极电位
electrode signal,电极信号
electromohic transducer[sensor],肌电图(EMG)传感器
electron beam exposure apparatus,电子束曝光机
electron beam processing machine,电子束加工机
electo-hydraulic servocontrolled fatigue testing machine,电液伺服疲劳试验机electro-optical
distance meter,光电测距仪
electroacoustic transducer,电声换能器
electroacoustical reciprocity theorem,电声互易定理
electric actuator,电动执行机构
electric contact liquid-in-glass thermometer,电接点玻璃温度计
电子顺磁共振谱
谱的解释
强度: 理论上在吸收曲线下的积分面积 和样品中的不成对电子数成正比,强度 近似于吸收曲线的峰值高度,或者近似 于在特定条件下测到的一次导数曲线的 峰—峰幅度。 g值:自由基g值偏离很少超过±0.5%,非 有机自由基,g值可以在很大范围内变化。
生光分解反应的ESR谱如下:
上图表明,在该光分解反应中,有· CH2OH自由
基产生,CH2的两个等价质子使未配对电子裂分为
三条谱线(相对强度为1:2:1, 裂距为17.4 Gs);
OH 中的一个质子又使每一条谱线裂分为两条谱线
(相对强度为1:1, 裂距为1.15 Gs)。ESR谱证明
了· CH2OH自由基的存在,该自由基产生的机理:
How does EPR work? DE = gb H
Energy
DE
hn
g b H 0 = hn
H1 H0 H2
External magnetic field
microwave source
电子顺磁共振
在垂直于B0的方向上施加频率为hn的电 磁波,当满足hn =g b B0 时,处于两能级 间的电子发生受激跃迁,导致部分处于 低能级中的电子吸收电磁波的能量跃迁 到高能级中,这就是顺磁共振现象。受 激跃迁产生的吸收信号经电子学系统处 理可得到EPR吸谱线。 (g 因子, g e =2.0023; b波尔磁子)
过硫酸铵(NH4)2S2O8和脂肪环叔胺 N-甲基吗啡啉/脂肪环仲胺吗啡啉
应用举例3:聚合物链结构
9条谱线
6条谱线
EPR/ESR
EPR is the resonant absorption of microwave radiation by paramagnetic systems in the presence of an applied magnetic field
电子顺磁共振技术应用及进展
第32卷第5期2013年5月实验室研究与探索RESEARCH AND EXPLORATION IN LABORATORYVol.32No.5May 2013·实验技术·电子顺磁共振技术应用及进展王翠平,叶柳,谢安建,李广,李爱侠,张子云,张惠(安徽大学物理与材料科学学院,安徽省信息材料与器件重点实验室,安徽合肥230039)摘要:电子顺磁共振(EPR )波谱技术是一种新的检测方法,用于检测顺磁性离子、自由基及顺磁性配合物分子的结构。
近几年又发展成为一种操控自旋电子材料内部原子核外单电子自旋状态手段,用于单电子自旋相干态的制备,实现量子运算和信息传输。
目前文献中报道EPR 在化学、物理、生物和医药领域的应用很多。
针对当前EPR 在不同领域的应用,综述了EPR 技术的应用原理和进展,为更好地将EPR 技术应用在量子物理、配合物化学、自由基生物学、医学、药学等领域提供参考和借鉴。
关键词:电子顺磁共振;电子自旋相干态;自由基捕捉;自选标记中图分类号:O 4-33文献标志码:A 文章编号:1006-7167(2013)05-0005-03Progress and Applications of Electron ParamagneticResonance SpectroscopyWANG Cui-ping ,YE Liu ,XIE An-jian ,LI Guang ,LI Ai-xia ,ZHANG Zi-yun ,ZHANG Hui(School of Physics and Materials Science ,Anhui University ,Hefei 230039,China )Abstract :In this paper ,in view of the technical application of electron paramagnetic resonance (EPR ),the application principle and development of EPR technology were summarized to provide reference for its applications in quantum physics ,chemistry ,free radicals-biology ,medicine ,and archaeological and materials science fields.Key words :electron paramagnetic resonance ;electron spin coherence ;free radical trap ;spin label收稿日期:2012-10-09基金项目:国家自然科学基金资助项目(50973001,2117300);安徽大学2012校级教学研究项目资助(JYXM201238,JYXM201231)作者简介:王翠平(1971-),女,安徽蒙城人,博士,高级实验师,主要研究方向为有机/无机复合材料制备和磁共振波谱研究。
electron paramagnetic resonance analysis
electron paramagnetic resonance analysisElectron paramagnetic resonance (EPR) analysis, also known as electron spin resonance (ESR), is a spectroscopic technique used to study the properties of unpaired electrons in various systems. This technique allows scientists to investigate the electronic structure and dynamics of paramagnetic species, including free radicals, transition metal ions, and other species with unpaired electrons.EPR analysis involves the application of a magnetic field to the sample, which causes the unpaired electrons to align their spins with the field, resulting in a split energy level system. By manipulating the magnetic field strength and frequency, the absorption and emission of electromagnetic radiation by the unpaired electrons can be measured. This absorption spectrum provides information about the electronic transitions and magnetic properties of the sample.The main applications of EPR analysis include:1. Determination of chemical structure: EPR spectroscopy can provide valuable information about the coordination environment of transition metal ions in complex molecules or materials. By studying the splitting patterns and g-values of EPR signals, scientists can gain insights into the coordination geometry, electronic structure, and bonding properties of paramagnetic compounds.2. Study of free radicals and reactive intermediates: EPR analysis is widely used to investigate the formation, stability, and reactivity of free radicals in chemical reactions, biological systems, andmaterials science. By measuring the intensity and shape of EPR signals, researchers can determine the concentration, spin density, and spin relaxation properties of free radicals, which are crucial for understanding their role in various processes.3. Investigation of magnetic materials: EPR spectroscopy can be used to characterize magnetic materials, such as metal oxides, nanoparticles, and magnetic clusters. By examining the magnetic properties and interactions of unpaired electrons in these materials, scientists can study phenomena such as superparamagnetism, spin crossover, and magnetic ordering.4. Biomedical applications: EPR analysis has important applications in biomedical research and diagnostics. For example, it can be used to measure the concentration of oxygen and other paramagnetic species in biological tissues, monitor oxidative stress, and study the redox properties of biomolecules. EPR imaging techniques, such as electron spin resonance imaging (ESRI), are also being developed for non-invasive imaging of tissues and organs.In summary, electron paramagnetic resonance analysis is a powerful technique for investigating the electronic structure, magnetic properties, and dynamics of paramagnetic species. Its applications range from fundamental research in chemistry and physics to practical applications in materials science, biology, and medicine.。
电子自旋共振 经典讲座
Weil, Bolton, and Wertz, 1994, “Electron Paramagnetic Resonance”
The EPR spectrum
• A 1st derivative spectrum is obtained from the unpaired electron
– The nuclear spin of the interacting nucleus
• # of lines = 2n(I + ½) so I = ½ gives 2 lines, etc.
– The nuclear gyromagnetic ratio – The magnitude of the interaction between the
• Put sample into experimental magnetic field (B)
• Irradiate (microwave frequencies)
• Measure absorbance of radiation as f(B)
Weil, Bolton, and Wertz, 1994, “Electron Paramagnetic Resonance”
• Enzymatic radical formation • Flow experiment
• Radical characterized by hyperfine analysis
– Quantum mechanics: unpaired electrons have spin and charge and hence magnetic moment
– Electronic spin can be in either of two directions (formally up or down)
地理专业词汇英语翻译(34)
地理专业词汇英语翻译(34)electrolyte 电解质electrolytic dissociation 电离酌electromagnetic field 电磁场electromagnetic radiation 电磁辐射electromagnetic spectrum 电磁波谱electromagnetic wave 电磁波electromagnetic wave distance measuring instrument 电磁波测距仪electron 电子electron absorption 电子吸收electron affinity 电子亲合势electron beam 电子束electron beam recorder 电子束记录器electron cloud 电子云electron collision 电子碰撞electron configuration 电子排列electron density 电子密度electron detachment 电子脱离electron diffraction camera 电子衍射照相机electron interchange 电子交换electron microprobe analysis 电子探针微量分析electron microscope 电子显微镜electron migration 电子移动electron multiplier 电子倍增器electron orbit 电子轨道electron pair 电子对electron pair bond 电子对键electron paramagnetic resonance 电子自旋共振electron paramagnetic resonance dating 电子顺磁共振年代测定electron paramagnetic resonance spectroscopy 电子顺磁共振谱学electron probe microanalyser 电子探针显微分析仪electron probe microanalysis 电子探针微量分析electron probe microanalyzer 微量分析器electron spin resonance 电子自旋共振electron structure 电子结构electron transfer 电子转移electron transfer system 电子传递体系electron x ray microanalyser 电子探针显微分析仪electronegative atom 阴电性原子electronegative element 阴电性元素electronegative gas 负电性气体electronegativity 电负性electroneutrality 电中性electronic correlation 电子相关electronic correlator 电子相关器electronic digitizer 电子数字化器electronic image analyzer 电子影像分析器electronic ionization 电子电离electronic paramagnetic resonance 电子顺磁共振electronic planimeter 电子求积化electronic printer 电子印像机electronic shell 电子壳electrophilic reactivity 亲电子反应性electrophoresis 电泳electrophoresis apparatus 电泳器electrophysiology 电生理学electropositive atom 阳电性原子electropositive element 阳电性元素electrostatic charge 静电荷electrostatic printer 静电印刷机electrostatic printing 静电复印electrotype 电铸版electrovalence 电价electrovalent bond 电价键electrum 银金矿element 元素element of association 相伴元素element ratios 元素比值elemental analysis 元素分析elementary charge 元电荷elementary microstructure 单元微结构elementary particle 元粒子elementary soil processes 单元成土过程elementary species 基本种elementary surfaces of land forms 单元地形面elements of centering 归心元素elements of iron group 铁族元素elements of platine group 铂族元素eleolite syenite 指光正长岩elevated beach 上升海滩elevated coast 上升海岸elevated coral reef 上升珊焊elevated coral reefs 升礁elevated limestone 升高灰岩elevated peneplain 上升准平原elevation 高度elevation crater 隆起火山口elevation direction 垂直方向elevation point 高程点elfin forest 矮林elfin wood 矮曲林elfin wood belt 高山矮曲林带elimination 消去elimination of pivotal element 知素消去法ellipse 椭圆ellipse of distortion 变形椭圆ellipse of revolution 旋转椭圆ellipsoid 椭球ellipsoid of deformation 变形椭球ellipsoid of revolution 旋转椭球ellipsoidal structure 椭圆形结构elm 榆树榆木elm forest 榆手;榆林elongation 延长elutriation 淘洗elutriation method 淘洗法eluvial deposit 淋溶沉积eluvial diluvial formation 淋溶洪积形成物eluvial horizon 淋溶残积层eluvial hydromorphic soil 淋溶水成土eluvial landscape 残积景观eluvial ore deposit 残积矿床eluvial placer 残积矿床eluvial placer deposit 残积砂矿床eluvial soil 淋溶土eluviation 淋溶eluvium 残积层emanation 射气emanation survey 射气测量embankment 堤坝embayed coast 湾形海岸embayment 河湾embouchure 河口embryogenesis 胚胎发生embryonal structure 原始结构embryonic soil 原始土壤emendation 订正emergence 上升emergence angle 出射角emigration 迁出emission spectrophotometry 发射分光光度测定法emission spectrum 发射光谱emissivity of sea water 海水发射率emittance 发射度emotion 情感emphysematous gangrene 气性坏疽empty position of a crystal lattice 晶格的空位emulsion 照相乳胶enargite 硫砷铜矿encephalite japonaise b 列性乙型脑炎encephalitis 脑炎encrinite limestone 海百合灰岩end moraine 终碛end peneplain 终期准平原endangered species 遭受危险的种endemia 地方病endemic cretinism 地方性悬侏病endemic dental fluorosis 慢性地方性氟中毒endemic enteritis 地方肠炎endemic fluorosis 地方性氟中毒endemic goiter 地方性甲状腺肿endemic species 特有种endemics species 地方品种endemiology 地方病学endemism 特有分布。
电子顺磁共振课(05)
a1
a2
c 实际ESR谱
d 实测结果: a 1 = 17.4G a 2 = 1.15G
例2。 萘自由基的ESR谱
a β
β a
a β
β a
a 谱线条数: (2n I+ 1)n = 5 x 5 = 25 萘自由基a1 = 4.93G, a2 = 1.89G
= (9.274 x 10-21尔/高斯)(3487.5高斯)
=2.0036 无量纲
例2. 计算 ROO·的g 因子
hυ
g11=
βH11
微波频率
hυ
g ┴=
βH ┴
H
g┴ g11
例3.计算 CuCl2 ESR谱的 g 因子
hυ
g 1= βH 1 hυ
g 2= βH 2
hυ g 3=
βH 3
g 1 = 2.450
4.能级差ΔE
• ΔE= Eα- Eβ • = 1/2 g β H + 1/2 g β H = g β H • ΔE = g β H
5. ESR现象
6. 电子自旋共振条件
hυ = g βH
吸收信号
1次微分信号 (ESR谱)
三.波谱参数: g因子
• 1.g因子的定义
• μ = - g βS
• (1) 自由电子 g = ge = 2.0023 • (2) 自由 基 g ge = 2.0 • (3) 顺磁分子体系 : g 的分布范围广
O
4
121
3
13 31
4
14641 5
g = 2.0045
A = 2.37G
O
(2) 未成对电子与多组I = 1/2等性核的h f相互作用
例如: ·CH2 OH 自由基 a 谱线条数 (2n I+ 1)n 条 (2 x 2 x ½ + 1) (2 x 1 x ½ +1) =3 x 2 = 6
碱溶液中DMPO-OH加合物EPR信号形成研究
2.中国环境科学研究院ꎬ 环境基准与风险评估国家重点实验室ꎬ 北京 100012
3.西南科技大学ꎬ 固体废物处理与资源化教育部重点实验室ꎬ 四川 绵阳 621010
摘要: 为考察碱溶液中 DMPO ̄OH 加合 物 的 形 成 情 况 及 其 影 响 因 素ꎬ 以 NaOH 溶 液 为 对 象ꎬ 利 用 EPR ( electron paramagnetic
N ̄oxide ( DMPO) was used as the spin trapping compound. The results showed that: (1) The typical quadruple peak of the DMPO ̄OH
(1 ∶2 ∶2 ∶1) could be detected by EPR after adding DMPO to the alkali solutionꎬ indicating the formation of DMPO ̄OH adduct would take
第 32 卷 第 3 期
环 境 科 学 研 究
2019 年 3 月
Research of Environmental Sciences
Vol.32ꎬNo.3
Mar.ꎬ2019
碱溶液中 DMPO ̄OH 加合物 EPR 信号形成研究
曾 丹1ꎬ3 ꎬ 王 彬1ꎬ3∗ ꎬ 白英臣2 ꎬ 谌 书1ꎬ3 ꎬ 董发勤1ꎬ3 ꎬ 朱静平1 ꎬ 黄 胜1
种长 寿 命 的 稳 定 加 合 物 DMPO ̄OHꎬ 使 用 EPR 对
DMPO ̄OH 加合物进行测定即可得到体系中OH 的
量. DMPO 与OH 的具体反应过程:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 )2A representative of this family the single crystal of KYb(MoO4)2 was investigate by EPR method in 50-120 GHz frequency range at helium temperature. The layered potassium–ytterbium double molybdat have a rhombic symmetry of the crystal structure (space group D2h14 – Pbcn) and contain four formulae units per elementary cell. The cell parameters are a= 5,06 Å; b= 7,85 Å; c= 18,32 Å [1]. The Yb3+ ions are surrounded by 8 oxygen’s forming a distorted antiprism polyhedra (as the EPR indicate). The shortest distance between Yb3+ - Yb3 in chain situated along c-axis is 3.975 Å. The crystal structure fragment is shown in Fig.1. All crystals of the double molybdat family have a layered structure and split42structure48Kinvestigation was obtained by spontaneous crystallizing method from solution in melt. A crystallization process takes place in massive platinum crucible at 1000o C. The temperature was stabilized. The qualitative single crystals were crystallized on the surface of a solution and after cooling can be easily separate from the solvent.The ground state of f-electrons of Yb3+ ion in KYb(MoO4)2 is - 2F7/2. It is spitted up to single Kramers doublets. So the lowest state can be described by spin-Hamiltonian for effective spin S=½ with anisotropic g-factor without a fine structure ofspectrum. From optical data Yb 3+ ion have a simple structure of energy levels. The energy gap ∆E between ground state and first exited state of 2F 7/2 multiplet is big enough and at temperature 4.2 K averages amount in order of ∆E = 150 – 200 cm -1. Thus at low temperature EPR spectrum is formed mainly by the lowest Kramers doublet. Along with this the basic term 2F 7/2 of Yb 3 ion have nonzero orbital and spin momentum, thus all peculiarities of EPR spectrum connected with anisotropic spin-spin interaction are retained, but mechanisms caused by mixing of exited levels will be very weaken. Previously [2] EPR spectrum in KYb(MoO 4)2 have been investigated at low frequency (f=10 GHz). Because at this frequency the resolution is low enough one can see only a distorted line they could only estimate g-factors in ac-plane.For this reason we study EPR spectra of KYb(MoO 4)2 at high frequency in 50-120 GHz range at temperature 4.2 K in the strong field condition. Angular and frequency-field dependences of EPR spectrum was studied in perpendicular polarization H ⊥h. Two geometrically nonequivalent Yb 3+ ion centres in KYb(MoO 4)2 lattice was found from studies of angular dependences EPR line position in ac-plane. Fig 2 demonstrates a typical absorptionH,kOeA b s o r p t i o n ,a .u .09.6530.59=77.48GhzFIG.2 Typical EPR spectrum of KYb(MoO 4)2spectrum. The line width of EPR line is ∆H ≈ 650 Oe at magnetic field orientation along local c’-axis. Fig. 3 presents the angular dependences of EPR line position in ac -plane. The local axes a’ and c’ of centers a rotated in relation to crystalline axes a and cto the angle ϕ = ± (34±0,2о). An existence of two geometrically nonequivalent centers is in accordance with crystalline structure of the double molybdate KYb(MoO 4)2. Measured main values of g-tensor for both centers are the same, suggesting that centers are equivalent. The values of g-tensor components are g a’ =1,8 ± 0,05;g c’ = 6,34 ±0,05.FIG.3. The angular dependence of the EPR spectrum of KYb(MoO 4)2 in ac-plane (T=4.2 K)In addition, the strong dependence of the line intensity on magnetic field direction was observed. The intensity is at a minimum when magnetic field is directed along H||с’ and it is at a maximum when H||a’. This intensity anisotropy can be explained as follows. We use in experiment perpendicular orientation of persistent magnetic field H and ultra high frequency(UHF) magnetic field h (H ⊥h). In this case at H||с’ orientation the UHF field h directed along axis with minimal magnetic susceptibility, so the EPR line absorption is minimal. In case H||a’ h coincide with maximum susceptibility direction, so absorption is maximal.Only one symmetric absorption line with g-factor g = 1.48 ± 0.05 was observed for H||b at frequency 56.85 GHz as axes of both centers coincide in this case. The line width was ∆H b ≈ 3.5 kOe. The frequency-field dependence of EPR spectrum was investigated at 4.2 K for more precisely defining of g-factor value. This dependence shows that the lowest ground state is Kramers doublet. But as the frequency increases an essentially change in EPR spectrum takeplace. A smooth splitting of resonant line into two components with equal intensity was observed at severe orientation H||b. The following frequency increasing leads to stronger splitting of resonant line. This behavior can not be explained by monoclinic component in Hamiltonian and up to now we have not rigorous theoretical explanation for observed spectrum transformation. It is known from literature that the next exited level in this compound is situated at distance ∆E ≈ 150 cm-1 so dispushing of the ground state and the first exited one can not be occur. It remains to suppose that probably we see a dynamic interaction between electron branch and low frequency phonon branch. But such an assumption needs additionally studying.In the case when the Zeemann splitting energy is not too high in relation to the distance to the first exited doublet (this is the Yb3+ in KYb(MoO4)2 case) and the nonlinear in H effects can be neglected the next spin Hamiltonian can be used for each center:H c’ = gβHSWhere S is effective spin S=1/2; g – Lande factor; β- Bohr magneton.The sample temperature under spectra measurements was over spin-spin interaction energy, so no peculiarities, connected with spin polarization (i.e. magnetization of the crystal) was not observed.It is known [3,4] that in double alkali-rare-earth molybdates structural 1-st kind type phase transitions induced by magnetic field was observed. The attempts of theoretical description these transitions [5,6] are based on a model of the strong spin-phonon coupling end existence of quasi-degenerated ground state. In KYb(MoO4)2, where exited state is separated by 150-200 cm-1 from ground one and spin-phonon coupling is depressed, we do not observe any anomalies pointed to existence of such transitions. This is an indirect argument infavour of chosen theoretical models.In summary we can formulate theexperimental results.FIG.4. The frequency dependence of absorption line shapein H||b direction.1.For magnetically concentrated crystal ofKYb(MoO4)2 the main value of g-factors alongprincipal local axes was determinate.The line form is a Lorenz type. An anisotropicpart of spin-spin interactions is mainly determined by magnetic dipole-dipole interaction, which forms resonant line. The energy of this interaction is considerably less than in other alkali-rare earth molybdates, as KDy(MoO4)2, KEr(MoO4)2 in connection with the lesser value of Yb3+ ion magnetic moment. The value of dipole-dipole interaction under our estimation is Еdd∼0,1 cm-1. It is possible that direct relaxation processes are of considerable importance. They are characterized by spin-phonon binding enhancement when external magnetic field rises. This may result in moderate splitting of a resonant line as the frequency increases.2.The two nonequivalent Yb3+ centers were found in ac-plane.3.It is shown that local symmetry of Yb3+ ion in ac-plane is not higher than rhombic.4.Some peculiarities in the frequency-field dependence of an absorption line was found in H|| b orientation.1. M.V. Mokhosoev, F.P. Alexeev, V.L. Butukhanov, ”Double molybdates and tungstates”, Novosibirsk, 19812. A.M. Pshisukha, Thesis, Kharkov, 1975.3. V.I Kutko, M.I. Kobets, V.A. Pashchenko, E.N. Khatsko, FNT, v.21, №4, p.441, 1995.4. E.N. Khatsko, Yu. V Pereverzev, M.I. Kobets, V.A. Pashchenko, V.I Kutko, FNT, v.21, N 10, 1061-1067, 1955.5. E.N. Khatsko, M.I. Kobets and Ju.V. Pereversev, Ferroelectrics, 221, N1-2, (1999).6. B.G. Vekhter, Fiz.Тverd.Тela, 29, p.2492, (1987).。