第十六章 光的干涉 作业及参考答案 2014
光的干涉试题及答案
光的干涉试题及答案一、选择题1. 光的干涉现象是指:A. 光波的叠加B. 光波的衍射C. 光波的反射D. 光波的折射答案:A2. 以下哪个条件是产生光的干涉的必要条件?A. 光波的频率相同B. 光波的振幅相同C. 光波的传播方向相同D. 光波的相位差恒定答案:D3. 杨氏双缝干涉实验中,干涉条纹的间距与以下哪个因素无关?A. 双缝间的距离B. 光的波长C. 屏幕与双缝的距离D. 观察者与屏幕的距离答案:D二、填空题1. 在光的干涉中,当两列波的相位差为0时,光强增强,这种现象称为________。
答案:相长干涉2. 光的干涉条纹的间距可以通过公式________计算得出。
答案:Δx = (λL) / d三、简答题1. 请简述光的干涉现象是如何产生的?答案:光的干涉现象是由两列或多列光波在空间某点相遇时,由于光波的相位差,导致光强在某些区域增强,在另一些区域减弱,从而形成明暗相间的干涉条纹。
2. 光的干涉实验中,如何改变干涉条纹的间距?答案:可以通过改变光源的波长、改变双缝间的距离或者改变屏幕与双缝之间的距离来改变干涉条纹的间距。
四、计算题1. 已知杨氏双缝干涉实验中,双缝间的距离d=0.5mm,屏幕与双缝之间的距离L=1.5m,光的波长λ=600nm,求干涉条纹的间距。
答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (0.5×10^-3 m) = 1.8×10^-4 m2. 如果在上述实验中,将双缝间的距离增加到1.0mm,求新的干涉条纹间距。
答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (1.0×10^-3 m) = 9.0×10^-4 m。
大学物理光的干涉习题答案
2.光程 . 的介质中通过几何路程L (1)光在折射率为 n 的介质中通过几何路程 ) 所引起的相位变化, 所引起的相位变化,相当于光在真空中 通过nL的路程所引起的相位变化。 通过 的路程所引起的相位变化。 的路程所引起的相位变化
δ (2)光程差引起的相位变化为 ∆ϕ = 2π ) λ 为光程差, 其中 δ 为光程差, λ 为真空中光的波长
4π
e
λ
n2e
上下面的反射皆无半波损失
n3
练习39 填空题 练习
n1
1. 上表面反射有半波损失
n
e
δ = 2ne + λ / 2 = 3e + λ / 2
2.
n1 < n2 < n3
上下面的反射皆有半波损失 δ = 2n2e = 2.6e
n1
n3
n2
e
3. 上表面反射有半波损失 反射增强 透射增强 即反射减弱
λ1
2
2 在这两波长之间无其它极大极小, 在这两波长之间无其它极大极小, 所以 k1 = k2 = k
得:
λ 2 : δ = 2 n′e = 2 k 2 ( λ 2 ) 对 λ1
2 2 k + 1 2λ 2 7 = = k λ1 3 k λ1 3 × 700 e= = = 78.6(nm) 2n′ 2 × 1.34
λ 5500 4n2 = = (A) 2k 2k k
λ
显然在白光范围内不可能产生反射加强。 显然在白光范围内不可能产生反射加强。 不可能产生反射加强
练习40 选择题 练习 1. D 相邻条纹的高差
2n 两滚柱的直径不变,即总高差不变, 两滚柱的直径不变,即总高差不变, 则条纹数不变。 则条纹数不变。 λ 2. C 比较劈尖条纹间距 l = 2n sin θ 或牛顿环暗环半径差 ∆r = rk +1 − rk
光的干涉(答案)
光的干涉(参考答案)一、选择题1. 【答案】AB【解析】A .肥皂膜因为自重会上面薄而下面厚,因表面张力的原因其截面应是一个圆滑的曲面而不是梯形,A 正确;B .薄膜干涉是等厚干涉,其原因为肥皂膜上的条纹是前后表面反射光形成的干涉条纹,B 正确;C .形成条纹的原因是前后表面的反射光叠加出现了振动加强点和振动减弱点,形成到破裂的过程上面越来越薄,下面越来越厚,因此出现加强点和减弱点的位置发生了变化,条纹宽度和间距发生变化,C 错误;D .将肥皂膜外金属环左侧的把柄向上转动90︒,由于重力,表面张力和粘滞力等的作用,肥皂膜的形状和厚度会重新分布,因此并不会跟着旋转90°;D 错误。
2. 【答案】D【解析】从薄膜的上下表面分别反射的两列光是相干光,其光程差为△x =2d ,即光程差为薄膜厚度的2倍,当光程差△x =nλ时此处表现为亮条纹,故相邻亮条纹之间的薄膜的厚度差为12λ,在图中相邻亮条纹(或暗条纹)之间的距离变大,则薄膜层的厚度之间变小,因条纹宽度逐渐变宽,则厚度不是均匀变小。
选项D 正确。
3. 【答案】D【解析】【分析】本题考查折射定律以及双缝干涉实验。
【详解】由双缝干涉条纹间距的公式Lx d λ∆=可知,当两种色光通过同一双缝干涉装置时,波长越长条纹间距越宽,由屏上亮条纹的位置可知12λλ>反射光经过三棱镜后分成两束色光,由图可知M 光的折射角大,又由折射定律可知,入射角相同时,折射率越大的色光折射角越大,由于12λλ>则12n n <所以N 是波长为λ1的光出射位置,故D 正确,ABC 错误。
故选D 。
4. 【答案】C【解析】解:因为路程差即(膜的厚度的两倍)是半波长的偶数倍,振动加强,为亮条纹,路程差是半波长的奇数倍,振动减弱,为暗条纹。
所以人从同侧看,可看到亮条纹时,同一高度膜的厚度相同,则彩色条纹水平排列,因竖直放置的肥皂薄膜受到重力的作用,下面厚,上面簿,形状视如凹透镜,因此,在薄膜上不同的地方,来自前后两个面的反射光所走的路程差不同,导致上疏下密,故C 正确,ABD 错误。
光的干涉参考答案
光的干涉参考解答一 选择题1.如图示,折射率为n 2厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束之间的光程差是 (A )2n 2e (B )2n 2e -2λ (C )2n 2e -λ (D )2n 2e -22n λ[A ][参考解]:两束光都是在从光疏介质到光密介质的分界面上反射,都有半波损失存在,其光程差应为δ=(2n 2e +2λ)-2λ= 2n 2e 。
2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过一块厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径光的光程差等于 (A )(r 2+ n 2t 2)-(r 1+ n 1t 1)(B )[r 2+ (n 2-1)t 2] -[r 1+ (n 1-1)t 1] (C )(r 2-n 2t 2)-(r 1-n 1t 1) (D )n 2t 2-n 1t 1[ B ]3.如图,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜垂直向上缓缓平移而离开平面玻璃板时,可以观察到环状干涉条纹 (A )向右移动 (B )向中心收缩 (C )向外扩张 (D )静止不动[ B ][参考解]:由牛顿环的干涉条件(k 级明纹)λλk ne k =+22 ⇒ nk e k 2)21(λ-= 可知。
4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传到B ,若A 、B 两点的相位差是3π,则此路径AB 的光程差是 (A )1.5λ (B )1.5n λ (C )3λ (D )1.5λ/n[ A ][参考解]:由相位差和光程差的关系λδπϕ2=∆可得。
3S 1PS 空气二 填空题1.如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ,在图中的屏中央O 处(S 1O=S 2O ),两束相干光的相位差为λθπsin 2d 。
光的干涉参考答案
光的干涉参考解答一 选择题1.如图示,折射率为n 2厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束之间的光程差是 (A )2n 2e (B )2n 2e -2λ (C )2n 2e -λ (D )2n 2e -22n λ[A ][参考解]:两束光都是在从光疏介质到光密介质的分界面上反射,都有半波损失存在,其光程差应为δ=(2n 2e +2λ)-2λ= 2n 2e 。
2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过一块厚度为t 2,折射率为n 2的另一(A )(r 2+ n 2t 2)-(r 1+ n 1t 1)(B )[r 2+ (n 2-1)t 2] -[r 1+ (n 1-1)t 1] (C )(r 2-n 2t 2)-(r 1-n 1t 1) (D )n 2t 2-n 1t 1[ B ]3.如图,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜垂直向上缓缓平移而离开平面玻璃板时,可以观察到环状干涉条纹 (A )向右移动 (B )向中心收缩 (C )向外扩张 (D )静止不动[ B ][参考解]:由牛顿环的干涉条件(k 级明纹)λλk ne k =+22 ⇒ nk e k 2)21(λ-= 可知。
4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传到B ,若A 、B 两点的相位差是3π,则此路径AB 的光程差是 (A )1.5λ (B )1.5n λ (C )3λ (D )1.5λ/n[ A ][参考解]:由相位差和光程差的关系λδπϕ2=∆可得。
3S 1PS 空气二 填空题1.如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ,在图中的屏中央O 处(S 1O=S 2O ),两束相干光的相位差为λθπsin 2d 。
高中物理(新人教版)选择性必修一课后习题:光的干涉(课后习题)【含答案及解析】
光的干涉课后篇巩固提升必备知识基础练1.(多选)下列关于双缝干涉实验的说法正确的是()A.单缝的作用是获得频率保持不变的相干光源B.双缝的作用是获得两个振动情况相同的相干光源C.频率相同、相位差恒定、振动方向相同的两列单色光能够发生干涉现象D.照射单缝的单色光的波长越小,光屏上出现的条纹宽度越宽,单缝的作用是获得一个线光源,双缝的作用是获得两个振动情况完全相同的光源,故选项A错误,B正确;频率相同、相位差恒定的两列光可以发生干涉现象,选项C正确;由Δx=ldλ可知,波长越短,条纹间距越窄,选项D错误。
2.(2021河北博野中学高二开学考试)某一质检部门为检测一批矿泉水的质量,利用干涉原理测定矿泉水的折射率。
方法是将待测矿泉水填充到特制容器中,放置在双缝与光屏之间(可视为双缝与光屏之间全部为矿泉水),如图所示,特制容器未画出,通过比对填充后的干涉条纹间距x2和填充前的干涉条纹间距x1就可以计算出该矿泉水的折射率。
则下列说法正确的是(设空气的折射率为1)()A.x2=x1B.x2>x1C.该矿泉水的折射率为x1x2D.该矿泉水的折射率为x2x1n=cv和v=fλ可知光在水中的波长小于在空气中的波长,根据双缝干涉条纹的间距公式Δx=ldλ可知填充矿泉水后的干涉条纹间距x2小于填充前的干涉条纹间距x1,所以A、B错误;根据n=cv 和v=fλ可得n=λ1λ2,又由x1=ldλ1和x2=ldλ2得n=x1x2,故C正确,D错误。
3.如图所示,用频率为f 的单色光垂直照射双缝,在光屏上的P 点出现第3条暗条纹,已知光速为c ,则P 点到双缝距离之差S 2P-S 1P 应为( )A.c 2fB.3c 2fC.3c fD.5c 2fλ=c f ,又P 点出现第3级暗条纹,即S 2P-S 1P=5×λ2=5c 2f ,选项D 正确。
4.某同学自己动手利用如图所示的器材,观察光的干涉现象,其中,A 为单缝屏,B 为双缝屏,C 为像屏。
(参考资料)光的干涉习题(附答案)
光的干涉(附答案)一. 填空题1. 光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 4I 0 。
2. 在双峰干涉试验中,用折射率为n 的薄云母片覆盖其中的一条狭缝,这时屏幕上的第7级明纹恰好移到屏幕中央原零级明纹的位置,设入射光波长为λ,则云母片的厚度为 7λ/(n -1) 。
3. S 1和S 2是两个波长均为λ的相干波源,相距3λ4,S 1的相位比S 2超前π2。
若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,那么在S 1、S 2连线上,S 1和S 2的外侧各点,合成波的强度分别是 4 I 0,0 。
3λ44. 用波长为λ的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。
若使凸透镜慢慢向上垂直移动距离d ,移过视场中某固定观察点的条纹数等于 2d/λ 。
S 1 S 25.空气中两块玻璃形成的空气劈形膜,一端厚度为零,另一端厚度为0.005 cm,玻璃折射率为1.5,空气折射率近似为1。
如图所示,现用波长为600 nm的单色平行光,沿入射角为30°角的方向射到玻璃板的上表面,则在劈形膜上形成的干涉条纹数目为144 。
解:通过折射定律,求空气劈形膜上表面的入射角:n空气sin30o=n玻璃sini入,得到sini入=1/3根据劈尖干涉的特点,可以得到相邻明纹中心的高度差Δe:Δe=λ/2(1-2.25/9)0.5得到最终的干涉条纹数目:m=5*10-5*2(1-2.25/9)0.5/6*10-7≈1446.维纳光驻波实验装置示意如图。
MM为金属反射镜,NN为涂有极薄感光层的玻璃板。
MM与NN之间夹角φ=3.0×10-4 rad,波长为λ的平面单色光通过NN板垂直入射到MM金属反射镜上,则反射光与入射光在相遇区域形成光驻波,NN板的感光层上形成对应于波腹波节的条纹。
实验测得两个相邻的驻波波腹感光垫A、B的间距1.0 mm,则入射光的波长为 6.0×10-4mm 。
2014年西南交通大学《大学物理AII》作业No.05光的干涉
2
6.在迈克尔逊干涉仪的一支光路中,放入一片折射率为 n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波
长λ,则薄膜的厚度是
λ
[
] (A)
2
λ
(B) 2n
λ
(C) n
λ
(D)
2(n − 1)
解:设薄膜厚度为 d,则放入薄膜后光程差的改变量为 2(n-1)d
解:由 P106 计算光程时的常见情况(2)可得。 [ F ] 4.在厚度均匀的薄膜表面形成的干涉条纹是等厚干涉条纹。
解:由 P113 等厚干涉的定义可得。 [ F ] 5.对于某单色光的增反膜,其反射光干涉相消。
解:增透膜就是膜的两个表面的反射光干涉相消,增反膜就是膜的两个表面的反射光干涉相长。
二、选择题:
∆ = 2ne = (2k + 1) λ 2
因此当 k=0
时,透明材料的厚度最少为 emin
=
λ 4n
=
600 4 × 1.25
= 120
(nm )
n2 = 1.25 n1 = 1.00 n3 = 1.50
5.波长为 λ 的平行单色光垂直照射到劈尖薄膜上,劈尖角为θ ,劈尖薄膜的折射率为 n,第 k 级明条纹与第 k+5 级明
2
3. 波长λ = 600nm 的单色光垂直照射到牛顿环装置上,第二级明条纹与第五级明条纹所对应的空气薄膜厚度之差为
nm。
解:对于牛顿环等厚干涉条纹,因 2n e + λ = kλ ,故牛顿环装置上第二级明纹与第五级明纹对应的空气薄膜厚度差为 2
∆ e = ∆ k × λ = 3 × 600 = 900 (nm)
光的干涉(有答案)
光的⼲涉(有答案)光的⼲涉⼀、⼲涉的相关知识点1、双缝⼲涉:由同⼀光源发出的光经双缝后,在屏上出现明暗相间的条纹.⽩光的双缝⼲涉的条纹是中央为⽩⾊条纹,两边为彩⾊条纹,单⾊光的双缝⼲涉中相邻亮条纹间距离为Δx = Δx =l dλ 2、薄膜⼲涉:利⽤薄膜(如肥皂液薄膜) 前后两⾯反射的光相遇⽽形成的.图样中同⼀条亮(或暗)条纹上所对应的薄膜厚度相同⼆、双缝⼲涉1、⼀束⽩光在真空中通过双缝后在屏上观察到的⼲涉条纹,除中央⽩⾊亮纹外,两侧还有彩⾊条纹,其原因是 ( )A .各⾊光的波长不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同B .各⾊光的速度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同C .各⾊光的强度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同D .上述说法都不正确答案 A解析⽩光包含各种颜⾊的光,它们的波长不同,在相同条件下做双缝⼲涉实验时,它们的⼲涉条纹间距不同,所以在中央亮条纹两侧出现彩⾊条纹,A 正确.2、 (2011·北京·14)如图所⽰的双缝⼲涉实验,⽤绿光照射单缝S 时,在光屏P 上观察到⼲涉条纹.要得到相邻条纹间距更⼤的⼲涉图样,可以 ( )A .增⼤S1与S 2的间距B .减⼩双缝屏到光屏的距离C .将绿光换为红光D .将绿光换为紫光答案 C解析在双缝⼲涉实验中,相邻两条亮纹(或暗纹)间的距离Δx =l dλ,要想增⼤条纹间距可以减⼩两缝间距d ,或者增⼤双缝屏到光屏的距离l ,或者换⽤波长更长的光做实验.由此可知,选项C 正确,选项A 、B 、D 错误.3、双缝⼲涉实验装置如图所⽰,绿光通过单缝S 后,投射到具有双缝的挡板上,双缝S 1和S 2与单缝的距离相等,光通过双缝后在与双缝平⾏的屏上形成⼲涉条纹.屏上O 点距双缝S 1和S 2的距离相等,P 点是距O 点最近的第⼀条亮条纹.如果将⼊射的单⾊光换成红光或蓝光,讨论屏上O 点及其上⽅的⼲涉条纹的情况是 ( )A.O点是红光的亮条纹B.O点不是蓝光的亮条纹C.红光的第⼀条亮条纹在P点的上⽅D.蓝光的第⼀条亮条纹在P点的上⽅答案AC解析O点处波程差为零,对于任何光都是振动加强点,均为亮条纹,故B错;红光的波长较长,蓝光的波长较短,根据Δx=ldλ可知,C正确.4、关于光的⼲涉现象,下列说法正确的是()A.在波峰与波峰叠加处,将出现亮条纹;在波⾕与波⾕叠加处,将出现暗条纹B.在双缝⼲涉实验中,光屏上距两狭缝的路程差为1个波长的某位置,将出现亮纹C.把⼊射光由黄光换成紫光,两相邻亮条纹间的距离变窄D.当薄膜⼲涉的条纹是等间距的平⾏线时,说明薄膜的厚度处处相等答案BC解析在波峰与波峰叠加处,或在波⾕与波⾕叠加处,都是振动加强区,将出现亮条纹,选项A错误;在双缝⼲涉实验中,出现亮纹的条件是光屏上某位置距两狭缝的路程差为波长的整数倍,出现暗纹的条件是光屏上某位置距两狭缝的路程差为半波长的奇数倍,选项B正确;条纹间距公式Δx=ldλ,λ黄>λ紫,选项C正确;薄膜⼲涉实验中的薄膜是“楔形”空⽓膜,选项D错误.5、关于光的⼲涉,下列说法中正确的是()A.在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是不等的B.在双缝⼲涉现象⾥,把⼊射光由红光换成紫光,相邻两个明条纹间距将变宽C.只有频率相同的两列光波才能产⽣⼲涉D.频率不同的两列光波也能产⽣⼲涉现象,只是不稳定答案 C解析在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是相等的,A错误;由条纹间距Δx=ldλ,⼊射光的波长越长,相邻两个明条纹间距越⼤,因此,把⼊射光由红光换成紫光,相邻两个明条纹间距将变窄,B错误;两列光波产⽣⼲涉时,频率必须相同,C正确,D错误.6、如图所⽰,⼀束复⾊光由真空射向半圆形玻璃砖的圆⼼,经玻璃砖后分为两束单⾊光a、b,则()A.玻璃中a光波长⼤于b光波长B.玻璃中a光折射率⼤于b光折射率C .逐渐增⼤⼊射⾓i ,a 光⽐b 光先发⽣全反射D .利⽤同⼀双缝⼲涉实验装置,a 光产⽣的⼲涉条纹间距⽐b 光⼤ad7、在双缝⼲涉实验中,双缝到光屏上P 点的距离之差Δr =0.6 µm ;分别⽤频率为f 1=5.×1014 Hz 和f 2=7.5×1014 Hz 的单⾊光垂直照射双缝,则P 点出现明、暗条纹的情况是A .⽤频率为f 1的单⾊光照射时,出现明条纹B .⽤频率为f 2的单⾊光照射时,出现明条纹C .⽤频率为f 1的单⾊光照射时,出现暗条纹D .⽤频率为f 2的单⾊光照射时,出现暗条纹答案 AD解析根据c =λf ,可得两种单⾊光波长分别为:λ1=c f 1=3×1085×1014m =0.6 µm λ2=c f 2=3×1087.5×1014m =0.4 µm 与题给条件(Δr =0.6 µm)⽐较可知Δr =λ1=32λ2,故⽤频率为f 1的光照射双缝时,P 点出现明条纹;⽤频率为f 2的光照射双缝时,P 点出现暗条纹.8、如图所⽰,在双缝⼲涉实验中,S 1和S 2为双缝,P 是光屏上的⼀点,已知P 点与S 1、S 2距离之差为2.1×10-6 m ,分别⽤A 、B 两种单⾊光在空⽓中做双缝⼲涉实验,问P 点是亮条纹还是暗条纹?(1)已知A 光在折射率为1.5的介质中波长为4×10-7 m ;(2)已知B 光在某种介质中波长为3.15×10-7 m ,当B 光从这种介质射向空⽓时,临界⾓为37°;(3)若让A 光照射S 1,B 光照射S 2,试分析光屏上能观察到的现象.解析 (1)设A 光在空⽓中波长为λ1,在介质中波长为λ2,由n =c v =λ1λ2,得λ1=nλ2=1.5×4×10-7 m =6×10-7 m 根据路程差Δr =2.1×10-6m ,所以N 1=Δr λ1=2.1×10-66×10-7=3.5 由此可知,从S 1和S 2到P 点的路程差是波长λ1的3.5倍,所以P 点为暗条纹.(2)根据临界⾓与折射率的关系sin C =1n 得n =1sin 37°=53由此可知,B 光在空⽓中波长λ3为:λ3=nλ介=53×3.15×10-7 m =5.25×10-7 m 路程差Δr 和波长λ3的关系为:N 2=Δr λ3=2.1×10-65.25×10-7=4 可见,⽤B 光做光源,P 点为亮条纹.(3)若让A 光和B 光分别照射S 1和S 2,这时既不能发⽣⼲涉,也不发⽣衍射,此时在光屏上只能观察到亮光.答案 (1)暗条纹 (2)亮条纹 (3)见解析9、如图所⽰,在双缝⼲涉实验中,已知SS 1=SS 2,且S 1、S 2到光屏上P 点的路程差Δr =1.5×10-6 m. (1)当S 为λ=0.6 µm 的单⾊光源时,在P 点处将形成______条纹.(2)当S 为λ=0.5 µm 的单⾊光源时,在P 点处将形成______条纹.(均选填“明”或“暗”)答案 (1)暗 (2)明解析 (1)当λ=0.6 µm =0.6×10-6 m 时, Δr =1.5×10-6 m =212λ.在P 点处将形成暗条纹. (2)当λ=0.5 µm =0.5×10-6 m 时,Δr =1.5×10-6 m =3λ,在P 点处将形成明条纹10、如图所⽰,a 、b 为两束不同频率的单⾊光,以45°的⼊射⾓射到玻璃砖的上表⾯,直线OO ′与玻璃砖垂直且与其上表⾯交于N 点,⼊射点A 、B 到N 点的距离相等,经玻璃砖上表⾯折射后两束光相交于图中的P 点,则下列说法正确的是 ( )A .在真空中,a 光的传播速度⼤于b 光的传播速度B .在玻璃中,a 光的传播速度⼩于b 光的传播速度C .同时增⼤⼊射⾓(⼊射⾓始终⼩于90°),则a 光在下表⾯先发⽣全反射D .对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽答案 D解析各种光在真空中的光速相同,选项A 错误;根据题图,⼊射⾓相同,a 光的折射⾓较⼤,所以a 光的折射率较⼩,由光在介质中的光速v =c n得,a 光在介质中的传播速度较⼤,选项B 错误;根据临界⾓公式C =arcsin 1n可知,a 光的临界⾓较⼤,b 光在下表⾯先发⽣全反射,选项C 错误;a 光的折射率较⼩,波长较长,根据公式Δx =l dλ可知,对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽,选项D 正确.三、薄膜⼲涉11、劈尖⼲涉是⼀种薄膜⼲涉,其装置如图7甲所⽰.将⼀块平板玻璃放置在另⼀平板玻璃之上,在⼀端夹⼊两张纸⽚,从⽽在两玻璃表⾯之间形成⼀个劈形空⽓薄膜.当光垂直⼊射后,从上往下看到的⼲涉条纹如图⼄所⽰,⼲涉条纹有如下两个特点:图7(1)任意⼀条明条纹或暗条纹所在位置下⾯的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定.现若在图甲装置中抽去⼀张纸⽚,则当光垂直⼊射到新劈形空⽓薄膜后,从上往下观察到的⼲涉条纹将如何变化?答案见解析解析光线在空⽓膜的上下表⾯上反射,并发⽣⼲涉,形成⼲涉条纹,设空⽓膜顶⾓为θ,d 1、d 2处为两相邻明条纹,如图所⽰,则两处光的路程差分别为Δx 1=2d 1,Δx 2=2d 2,因为Δx 2-Δx 1=λ,所以d 2-d 1=12λ. 设条纹间距为Δl ,则由⼏何关系得d 2-d 1Δl =tan θ,即Δl =λ2tan θ.当抽去⼀张纸⽚时,θ减⼩,Δl 增⼤,即条纹变疏.12、甲所⽰,在⼀块平板玻璃上放置⼀平凸薄透镜,在两者之间形成厚度不均匀的空⽓膜,让⼀束单⼀波长的光垂直⼊射到该装置上,结果在上⽅观察到如图⼄所⽰的同⼼内疏外密的圆环状⼲涉条纹,称为⽜顿环,以下说法正确的是 ( )A .⼲涉现象是由于凸透镜下表⾯反射光和玻璃上表⾯反射光叠加形成的B .⼲涉现象是由于凸透镜上表⾯反射光和玻璃上表⾯反射光叠加形成的C .⼲涉条纹不等间距是因为空⽓膜厚度不是均匀变化的D .⼲涉条纹不等间距是因为空⽓膜厚度是均匀变化的答案 AC解析由于在凸透镜和平板玻璃之间的空⽓形成薄膜,所以形成相⼲光的反射⾯是凸透镜的下表⾯和平板玻璃的上表⾯,故A 正确,由于凸透镜的下表⾯是圆弧⾯,所以形成的薄膜厚度不是均匀变化的,形成不等间距的⼲涉条纹,故C 正确,D 错.。
第十六章 第2讲 光的干涉、衍射和偏振
第2讲光的干涉、衍射和偏振目标要求 1.知道什么是光的干涉、衍射和偏振.2.掌握双缝干涉中出现亮、暗条纹的条件.3.知道发生明显衍射的条件.考点一光的干涉现象光的干涉(1)定义:在两列光波叠加的区域,某些区域相互加强,出现亮条纹,某些区域相互减弱,出现暗条纹,且加强区域和减弱区域相互间隔的现象.(2)条件:两束光的频率相同、相位差恒定.(3)双缝干涉图样特点:单色光照射时,形成明暗相间的等间距的干涉条纹.1.光的颜色由光的频率决定.(√)2.频率不同的两列光波不能发生干涉.(√)3.在“双缝干涉”实验中,双缝的作用是使白光变成单色光.(×)4.在“双缝干涉”实验中,双缝的作用是用“分光”的方法使两列光的频率相同.(√) 1.双缝干涉(1)条纹间距:Δx=ldλ,对同一双缝干涉装置,光的波长越长,干涉条纹的间距越大.(2)明暗条纹的判断方法:如图所示,相干光源S1、S2发出的光到屏上P′点的路程差为Δr=r2-r1.当Δr=nλ(n=0,1,2,…)时,光屏上P′处出现明条纹.当Δr=(2n+1)λ2(n=0,1,2,…)时,光屏上P′处出现暗条纹.2.薄膜干涉(1)形成原因:如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.光照射到薄膜上时,从膜的前表面AA′和后表面BB′分别反射回来,形成两列频率相同的光波,并且叠加.(2)明暗条纹的判断方法:两个表面反射回来的两列光波的路程差Δr等于薄膜厚度的2倍,光在薄膜中的波长为λ.在P1、P2处,Δr=nλ(n=1,2,3,…),薄膜上出现明条纹.在Q处,Δr=(2n+1)λ2(n=0,1,2,3,…),薄膜上出现暗条纹.(3)应用:增透膜、检查平面的平整度.考向1双缝干涉例1在图示的双缝干涉实验中,光源S到缝S1、S2距离相等,P0为S1、S2连线的中垂线与光屏的交点.用波长为400 nm的光实验时,光屏中央P0处呈现中央亮条纹(记为第0条亮条纹),P处呈现第3条亮条纹.当改用波长为600 nm的光实验时,P处将呈现()A.第2条亮条纹B.第3条亮条纹C.第2条暗条纹D.第3条暗条纹答案 A解析由公式Δx=ld λ可知PP03=ldλ1,当改用波长为600 nm 的光实验时,则有PP0n=ldλ2,即n3=λ1λ2=400600,解得n=2,即P处将呈现第2条亮条纹,A正确.考向2薄膜干涉例2(多选)图甲是用光的干涉法来检查物体平面平整程度的装置,其中A为标准平板,B 为待检查的物体,C为入射光,图乙为观察到的干涉条纹,下列说法正确的是()A.入射光C应采用单色光B.图乙条纹是由A的下表面反射光和B的上表面反射光发生干涉形成的C.当A、B之间某处距离为入射光的半波长奇数倍时,对应条纹是暗条纹D.由图乙条纹可知,被检查表面上有洞状凹陷答案AB例3(2021·江苏卷·6)铁丝圈上附有肥皂膜,竖直放置时,肥皂膜上的彩色条纹上疏下密,由此推测肥皂膜前后两个面的侧视形状应当是()答案 C解析薄膜干涉为前后两个面反射回来的光发生干涉形成干涉条纹,当入射光为复色光时,出现彩色条纹.由于重力作用,肥皂膜前后表面的厚度从上到下逐渐增大,从而使干涉条纹上疏下密,由于表面张力的作用,使得肥皂膜向内凹陷,故C正确,A、B、D错误.考点二光的衍射和偏振现象1.光的衍射发生明显衍射现象的条件:只有当障碍物或狭缝的尺寸足够小的时候,衍射现象才会明显.2.光的偏振(1)自然光:包含着在垂直于传播方向上沿一切方向振动的光,而且沿着各个方向振动的光波的强度都相同.(2)偏振光:在垂直于光的传播方向的平面上,只沿着某个特定的方向振动的光.(3)偏振光的形成①让自然光通过偏振片形成偏振光.②让自然光在两种介质的界面发生反射和折射,反射光和折射光可以成为部分偏振光或完全偏振光.(4)偏振光的应用:加偏振滤光片的照相机镜头、液晶显示器、立体电影、消除车灯眩光等.(5)光的偏振现象说明光是一种横波.1.阳光下茂密的树林中,地面上的圆形亮斑是光的衍射形成的.(×)2.泊松亮斑是光的衍射形成的.(√)3.光遇到障碍物时都能产生衍射现象.(√)4.自然光是偏振光.(×)1.单缝衍射与双缝干涉的比较单缝衍射双缝干涉不同点条纹宽度条纹宽度不等,中央最宽条纹宽度相等条纹间距各相邻亮条纹间距不等各相邻亮(暗) 条纹等间距亮度情况中央条纹最亮,两边变暗条纹清晰,亮度基本相同相同点干涉、衍射都是波特有的现象,都属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射的本质从本质上看,干涉条纹和衍射条纹的形成有相似的原理,光的干涉和衍射都属于光波的叠加,干涉是从单缝通过两列频率相同的光在屏上叠加形成的,衍射是由来自单缝上不同位置的光在屏上叠加形成的.考向1单缝衍射与双缝干涉的比较例4如图所示的4种明暗相间的条纹分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮条纹).在下面的4幅图中从左往右排列,亮条纹的颜色依次是()A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫答案 B解析双缝干涉条纹是等间距的,而单缝衍射条纹除中央亮条纹最宽、最亮之外,两侧条纹亮度、宽度都逐渐减小,因此1、3为双缝干涉条纹,2、4为单缝衍射条纹.相邻亮条纹间距Δx=lλ,红光波长比蓝光波长长,则红光干涉条纹间距大于蓝光干涉条纹间距,即1、3d分别对应红光和蓝光.而在单缝衍射中,当单缝宽度一定时,波长越长,衍射越明显,即中央条纹越宽越亮,黄光波长比紫光波长长,即2、4分别对应紫光和黄光.综上所述,1、2、3、4四幅图中亮条纹的颜色依次是:红、紫、蓝、黄,B正确.考向2光的偏振例5奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定含糖量.偏振光通过糖的水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标准值相比较,就能确定被测样品的含糖量了.如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,然后将被测样品P置于A、B之间.(1)偏振片A的作用是_____________________________________________________.(2)偏振现象证明了光是一种________.(3)以下说法中正确的是________.A.到达O处光的强度会减弱B.到达O处光的强度不会减弱C.将偏振片B转动一个角度,使得O处光强度最强,偏振片B转过的角度等于αD.将偏振片A转动一个角度,使得O处光强度最强,偏振片A转过的角度等于α答案(1)把自然光变成偏振光(2)横波(3)ACD解析(1)自然光通过偏振片后变为偏振光,故A的作用是把自然光变成偏振光.(2)偏振现象证明光是一种横波.(3)偏振片只能让一定偏振方向的光通过,没有样品时,要使到达O处的光最强,偏振片A、B的透光方向应相同;当放入样品时,由于样品的“旋光度”是α,即偏振方向不再与B的透光方向平行,到达O处光的强度会减弱,A正确,B错误;偏振片B转过的角度等于α,并使偏振片B的透振方向与偏振光的偏振方向平行时,光到达O处的强度将再次最大,C正确;同理,D正确.考点三几何光学与物理光学的综合应用例6(多选)如图所示,不同波长的两单色光a、b沿同一方向从空气射向半圆形玻璃砖,入射点O在直径的边缘,折射光线分别为OA、OB,则()A.a单色光的频率比b单色光的频率大B.当a、b两束光由玻璃射向空气中,a光临界角比b光临界角大C.在玻璃砖中a单色光从O到A的传播时间大于b单色光从O到B的传播时间D.在玻璃砖中a单色光从O到A的传播时间等于b单色光从O到B的传播时间E.用a、b两束光在相同条件下做双缝干涉实验,a光产生的干涉条纹间距比b光小答案ADE解析因为a光的偏折程度大于b光,所以根据折射定律得知:玻璃对a光的折射率大于对b光的折射率,所以a单色光的频率比b单色光的频率大,故A正确;根据全反射临界角公,可知,a光的折射率大,则a光的临界角小于b光的临界角,故B错误;对于式sin C=1n,光在任一光束研究:设入射角为i,折射角为r,玻璃砖的半径为R,则折射率为n=sin isin r,光在玻璃中传播距离为s=2R sin r,光在玻璃中传播时间为t=s v,玻璃中传播速度为v=cn,i、R、c均相等,所以在玻璃砖中a单色光从O到A的传播时间等联立以上可得t=2R sin ic于b单色光从O到B的传播时间,故C错误,D正确;根据折射率大,频率高,波长短,可知a光的折射率大于b光的折射率,则a光在真空中的波长小于b光在真空中的波长,根据双缝干涉条纹间距公式,可知a光产生的干涉条纹间距比b光小,故E正确.例7如图所示,截面为等腰直角三角形ABC的玻璃砖,∠B=90°,一束频率为f=6×1014Hz 的光线从AB 面中点处垂直射入棱镜,在AC 面发生全反射,从BC 面射出后,进入双缝干涉装置.已知AC 长度L =0.3 m ,双缝间距d =0.2 mm ,光屏与双缝间距离l =1.0 m ,光在真空中的传播速度为c =3.0×108 m/s.求:(1)玻璃砖对该光线的折射率的最小值n ; (2)光线在玻璃砖中传播的最短时间t ; (3)光屏上相邻亮条纹的间距Δx . 答案 (1)2 (2)1×10-9 s (3)2.5 mm解析 (1) 由几何关系知,光线在AC 面发生全反射的入射角为45°,可知临界角C ≤45°时,折射率有最小值,由sin C =1n 得n ≥2,即最小折射率为 2.(2) 由几何关系可知,光线在玻璃砖中传播距离 s =22L ,光线在玻璃砖中的传播速度v =c n传播时间t =s v代入数据解得最短时间t =1×10-9 s (3) 由λ=c f ,Δx =ldλ联立代入数据解得Δx =2.5 mm.课时精练1.(多选)下列说法中正确的是( )A .荷叶上的露珠显得特别“明亮”是由于水珠将光线会聚而形成的B .将双缝干涉实验中的双缝间距调小,则干涉条纹间距变大C .用加有偏振滤光片的相机拍照,可以拍摄清楚汽车内部的情景D .肥皂膜在阳光下呈现彩色条纹是光的衍射现象E .两束光振动方向互相垂直时不会发生干涉答案BCE解析荷叶上的露珠显得特别“明亮”是由于水珠对光线的全反射形成的,故A错误;在双缝干涉实验中,条纹间距Δx=lλ,若将双缝间距d调小,则条纹间距Δx变大,故B正确;d在照相机镜头前加装偏振滤光片拍摄汽车内部情景,滤去了汽车外玻璃的反射光,使景象清晰,故C正确;肥皂膜表面可看到彩色条纹,是因为肥皂膜的前后两面反射回来的两列光发生干涉时形成的,故D错误;两束光振动方向相互垂直时不会发生干涉,E正确.2.(2019·北京卷·14)利用图示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到如图中甲和乙两种图样.下列关于P处放置的光学元件说法正确的是()A.甲对应单缝,乙对应双缝B.甲对应双缝,乙对应单缝C.都是单缝,甲对应的缝宽较大D.都是双缝,甲对应的双缝间距较大答案 A解析由题图中给出的甲、乙两种图样可知,甲是单缝衍射的图样,乙是双缝干涉的图样,A项正确,B、C、D项错误.3.(多选)(2023·河北张家口市模拟)通过如图甲所示的装置可研究光的干涉和衍射现象.从光源发出的光经过一缝板,在缝板后有一装有感光元件的光屏,通过信号转换,可在电脑上看到屏上的光强分布情况.图乙分别显示出A光和B光通过同一缝板得到的光强分布情况.下列有关A、B两种色光的说法正确的有()A.光通过的可能是缝板上的单缝B.A光的波长比B光的波长长C.A光在玻璃中的传播速度大于B光在玻璃中的传播速度D.A光比B光更容易发生明显的衍射现象答案BCD解析从光的强度分布可以看出,光屏上的光是等间距、等亮度的,所以是光通过双缝产生的干涉现象,A错误;由题图乙可看出,A光的条纹间距大于B光的,由Δx=lλ可知,A光d的波长大于B光的波长,B正确;A光的频率小于B光的频率,则玻璃对A光的折射率小于对B光的折射率,所以A光在玻璃中的传播速度大于B光在玻璃中的传播速度,C正确;由于A光的波长较长,所以更容易发生明显的衍射现象,D正确.4.(2023·江苏海安市检测)如图所示,a、b两束不同单色光相互平行,从平行玻璃砖PQ表面入射,从MN面出射时变为一束光c,则下列说法正确的是()A.a、b中有一束光在MN面发生了全发射B.在玻璃中a光传播速度大于b光的传播速度C.在同一个双缝干涉装置中,a光干涉条纹间距较大D.减小玻璃砖的厚度,光从MN面出射时变为两束平行光答案 D解析根据光路的可逆性原理可知,对于平行玻璃砖界面来说,能够射进玻璃砖的光线,在另一个界面绝对不会发生全反射,因此无论是a光线还是b光线,都不可能在MN面发生全反射现象,A错误;画出光路图如图甲所示,根据折射定律有sin i=n a sin i a,sin i=n b sin i b,由图可知i b > i a,则n b<n a,根据波速与折射率的关系有n=c v,则v b > v a,B错误;由波长与折射率的关系可知λb > λa,根据干涉条纹间距公式Δx=lλ,则Δx b>Δx a,C错误;如图乙所d示减小玻璃砖的厚度,下边界变为M′N′,则出射时变为两束平行光,D正确.5.(2023·浙江绍兴市模拟)如图所示,把一个底角很小的圆锥玻璃体倒置(上表面为圆形平面,纵截面为等腰三角形)紧挨玻璃体下放有一平整矩形玻璃砖,它和圆锥玻璃体间有一层薄空气膜.现用红色光垂直于上表面照射,从装置的正上方向下观察,可以看到( )A .一系列不等间距的三角形条纹B .一系列明暗相间的等间距圆形条纹C .若将红光换成白光,则看到黑白相间的条纹D .若将红光换成紫光,则看到的亮条纹数将变少 答案 B解析 由于截面是等腰三角形,从圆心向外,经过相同的宽度空气膜厚度增加量相同,根据光的干涉原理,从装置的正上方向下观察,可以看到一系列明暗相间的等间距圆形条纹,A 错误,B 正确;若将红光换成白光,则看到明暗相间的彩色条纹,C 错误;由于红光的波长比紫光的长,若将红光换成紫光,则条纹间距减小,看到的亮条纹数将增多,D 错误. 6.(2021·湖北卷·5)如图所示,由波长为λ1和λ2的单色光组成的一束复色光,经半反半透镜后分成透射光和反射光.透射光经扩束器后垂直照射到双缝上并在屏上形成干涉条纹.O 是两单色光中央亮条纹的中心位置,P 1和P 2分别是波长为λ1和λ2的光形成的距离O 点最近的亮条纹中心位置.反射光入射到三棱镜一侧面上,从另一侧面M 和N 位置出射,则( )A .λ1<λ2,M 是波长为λ1的光出射位置B .λ1<λ2,N 是波长为λ1的光出射位置C .λ1>λ2,M 是波长为λ1的光出射位置D .λ1>λ2,N 是波长为λ1的光出射位置 答案 D解析 由双缝干涉条纹间距公式Δx =λld 可知,当两种色光通过同一双缝干涉装置时,波长越长相邻两亮条纹间距越宽,由屏上亮条纹的位置可知λ1>λ2,反射光经过三棱镜后分成两束色光,由题图可知从N 位置出射的光的折射角大,又由折射定律可知,入射角相同时,折射率越小的色光折射角越大,由于λ1>λ2,则n 1<n 2,所以N 是波长为λ1的光出射位置,故D 正确,A、B、C错误.7.(多选)(2022·山东卷·10)某同学采用图甲所示的实验装置研究光的干涉与衍射现象,狭缝S1、S2的宽度可调,狭缝到屏的距离为L.同一单色光垂直照射狭缝,实验中分别在屏上得到了图乙、图丙所示图样.下列描述正确的是()A.图乙是光的双缝干涉图样,当光通过狭缝时,也发生了衍射B.遮住一条狭缝,另一狭缝宽度增大,其他条件不变,图丙中亮条纹宽度增大C.照射两条狭缝时,增加L,其他条件不变,图乙中相邻暗条纹的中心间距增大D.照射两条狭缝时,若光从狭缝S1、S2到屏上P点的路程差为半波长的奇数倍,P点处一定是暗条纹答案ACD解析题图乙中间部分为等间距条纹,所以题图乙是光的双缝干涉图样,当光通过狭缝时,同时也发生衍射,故A正确;狭缝越小,衍射范围越大,衍射条纹越宽,遮住一条狭缝,另一狭缝宽度增大,则衍射现象减弱,题图丙中亮条纹宽度减小,故B错误;根据条纹间距公式有Δx=Lλ,则照射两条狭缝时,增加L,其他条件不变,题图乙中相邻暗条纹的中心间距d增大,故C正确;照射两条狭缝时,若光从狭缝S1、S2到屏上P点的路程差为半波长的奇数倍,P点处一定是暗条纹,故D正确.8.(2023·辽宁省模拟)随着科技的发展,夜视技术越来越成熟.一切物体都可以产生红外线,即使在漆黑的夜里“红外监控”“红外摄影”也能将目标观察得清清楚楚.为了使图像清晰,通常在红外摄像头的镜头表面镀一层膜,下列说法正确的是()A.镀膜的目的是尽可能让入射的红外线反射B.镀膜的目的是尽可能让入射的所有光均能透射C.镀膜的厚度应该是红外线在薄膜中波长的四分之一D.镀膜的厚度应该是红外线在薄膜中波长的二分之一答案 C解析镀膜的目的是尽可能让红外线能够透射,而让红外线之外的光反射,从而使红外线图像更加清晰,故A、B错误;当红外线在薄膜前、后表面的反射光恰好干涉减弱时,反射光最弱,透射光最强,根据干涉相消的规律可知,此时红外线在薄膜前、后表面反射光的光程差应为半波长的奇数倍,而为了尽可能增加光的透射程度,镀膜的厚度应该取最薄的值,即红外线在薄膜中波长的四分之一,故C正确,D错误.9.(2023·福建龙岩市质检)如图所示,把一矩形均匀薄玻璃板ABCD压在另一个矩形平行玻璃板上,一端用薄片垫起,将红单色光从上方射入,这时可以看到明暗相间的条纹,下列关于这些条纹的说法中正确的是()A.条纹方向与AB边平行B.条纹间距不是均匀的,越靠近BC边条纹间距越大C.减小薄片的厚度,条纹间距变小D.将红单色光换为蓝单色光照射,则条纹间距变小答案 D解析薄膜干涉的光程差Δs=2d(d为薄膜厚度),厚度相同处产生的条纹明暗情况相同,因此条纹应与BC边平行,故A错误;因为两玻璃间形成的空气膜厚度均匀变化,因此条纹是等间距的,故B错误;减小薄片厚度,条纹间距将增大,故C错误;将红光换成蓝光照射,入射光波长减小,条纹间距将减小,故D正确.10.(2021·山东卷·7)用平行单色光垂直照射一层透明薄膜,观察到如图所示明暗相间的干涉条纹.下列关于该区域薄膜厚度d随坐标x的变化图像,可能正确的是()答案 D11.单缝衍射实验中所产生图样的中央亮条纹宽度的一半与单缝宽度、光的波长、缝屏距离的关系,和双缝干涉实验中所产生图样的相邻两亮条纹间距与双缝间距、光的波长、缝屏距离的关系相同.利用单缝衍射实验可以测量金属的线膨胀系数,线膨胀系数是表征物体受热时长度增加程度的物理量.如图是实验的示意图,挡光片A 固定,挡光片B 放置在待测金属棒上端,A 、B 间形成平直的狭缝,激光通过狭缝,在光屏上形成衍射图样.温度升高,金属棒膨胀使得狭缝宽度发生变化,衍射图样也随之发生变化.在激光波长已知的情况下,通过测量缝屏距离和中央亮条纹宽度,可算出狭缝宽度及变化,进而计算出金属的线膨胀系数.下列说法正确的是( )A .使用激光波长越短,其他实验条件不变,中央亮条纹越宽B .相同实验条件下,金属的膨胀量越大,中央亮条纹越窄C .相同实验条件下,中央亮条纹宽度变化越大,说明金属膨胀量越大D .狭缝到光屏距离越大,其他实验条件相同,测得金属的线膨胀系数越大答案 C解析 对比双缝干涉相邻两亮条纹间距与双缝间距、光的波长、缝屏距离的关系公式Δx =l dλ可得单缝衍射中央亮条纹宽度的一半与单缝宽度、光的波长、缝屏距离的关系为Δx 2=l dλ,激光波长变短,其他条件不变,则中央亮条纹变窄,A 错误;相同实验条件下,金属的膨胀量越大,则单缝距离d 越小,中央亮条纹越宽,B 错误;相同实验条件下,中央亮条纹宽度变化越大,说明单缝的距离d 变化大,即金属膨胀量越大,C 正确;金属的线膨胀系数属于金属的特有属性,与实验装置无关,D 错误.12.某一质检部门为检测一批矿泉水的质量,利用干涉原理测定矿泉水的折射率.方法是将待测矿泉水填充到特制容器中,放置在双缝与荧光屏之间(之前为真空),如图所示,特制容器未画出,通过对比填充后的干涉条纹间距x 2和填充前的干涉条纹间距x 1就可以计算出该矿泉水的折射率.单缝S 0、双缝中点O 、屏上的P 0点均位于双缝S 1和S 2的中垂线上,屏上P 点处是P 0上方的第3条亮条纹(不包括P 0点处的亮条纹)的中心.已知入射光在真空中的波长为λ,真空中的光速为c ,双缝S 1与S 2之间的距离为d ,双缝到屏的距离为L ,则下列说法正确的是( )A .来自双缝S 1和S 2的光传播到P 点处的时间差为3λcB .x 2>x 1C .该矿泉水的折射率为x 1x 2D .仅将单缝S 0向左(保持S 0在双缝的中垂线上)移动的过程中,P 点处能观察到暗条纹 答案 C解析 第三条亮条纹对应路程差s =3λ,但光在介质中的传播速度小于c ,故A 错误;由Δx =L d λ,n =c v =λλ0可知(λ0为光在矿泉水中的波长),光在矿泉水中的波长小于真空中的波长,所以x 2<x 1,故B 错误;由n =c v =λλ0,x 1=L d λ,x 2=L d λ0,得n =x 1x 2,故C 正确;由Δx =L dλ可知,向左移动S 0对观察结果没有影响,故D 错误.。
光的干涉计算题及答案
《光的干涉》计算题1.在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9m)的单色光照射,双缝与屏的距离D =300 mm.测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm,求双缝间的距离.解:由题给数据可得相邻明条纹之间的距离为∆x=12.2 / (2×5)mm=1.22 mm 2分由公式∆x=Dλ / d,得d=Dλ / ∆x=0.134 mm 3分2. 在图示的双缝干涉实验中,若用薄玻璃片(折射率n1=1.4)覆盖缝S1,用同样厚度的玻璃片(但折射率n2=1.7)覆盖缝S2,将使原来未放玻璃时屏上的中央明条纹处O变为第五级明纹.设单色光波长λ=480 nm(1nm=109m),求玻璃片的厚度d(可认为光线垂直穿过玻璃片).解:原来,δ = r2-r1= 0 2分覆盖玻璃后,δ=( r2 + n2d–d)-(r1 + n1d-d)=5λ3分∴(n2-n1)d=5λ125nnd-=λ2分= 8.0×10-6 m 1分3. 薄钢片上有两条紧靠的平行细缝,用波长λ=546.1 nm (1 nm=10-9 m)的平面光波正入射到钢片上.屏幕距双缝的距离为D=2.00 m,测得中央明条纹两侧的第五级明条纹间的距离为∆x=12.0 mm.(1) 求两缝间的距离.(2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离?(3) 如果使光波斜入射到钢片上,条纹间距将如何改变?解:(1) x=2kDλ / dd = 2kDλ /∆x2分此处k=5∴d=10 Dλ / ∆x=0.910 mm 2分(2) 共经过20个条纹间距,即经过的距离l=20 Dλ / d=24 mm 2分(3) 不变2分4. 在双缝干涉实验中,单色光源S0到两缝S1和S2的距离分别为l1和l2,并且l1-l2=3λ,λ为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D(D>>d),如图.求:(1) 零级明纹到屏幕中央O点的距离.(2) 相邻明条纹间的距离.屏解:(1) 如图,设P 0为零级明纹中心则 D O P d r r /012≈- 3分(l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-= 3分 (2) 在屏上距O 点为x 处, 光程差 λδ3)/(-≈D dx 2分 明纹条件 λδk ±= (k =1,2,....) ()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆ 2分5. 在双缝干涉实验中,用波长λ=500 nm 的单色光垂直入射到双缝上,屏与双缝的距离D =200 cm ,测得中央明纹两侧的两条第十级明纹中心之间距离为Δx =2.20 cm ,求两缝之间的距离d .(1nm=109m)解:相邻明纹间距 ∆x 0 = D λ / d 2分两条缝之间的距离 d = D λ / ∆x 0 =D λ / (∆x / 20) =20 D λ/∆x= 9.09×10-2 cm 3分6. 双缝干涉实验装置如图所示,双缝与屏之间的距离D =120 cm ,两缝之间的距离d =0.50 mm ,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射双缝. (1) 求原点O (零级明条纹所在处)上方的第五级明条纹的坐标x . (2) 如果用厚度l =1.0×10-2 mm , 折射率n =1.58的透明薄膜复盖在图中的S 1缝后面,求上述第五级明条纹的坐标x '.解:(1) ∵ dx / D ≈ k λx ≈Dk λ / d = (1200×5×500×10-6 / 0.50)mm= 6.0 mm 4分(2) 从几何关系,近似有r 2-r 1≈ D x /d '有透明薄膜时,两相干光线的光程差 δ = r 2 – ( r 1 –l +nl ) = r 2 – r 1 –(n -1)l ()l n D x 1/d --'=对零级明条纹上方的第k 级明纹有 λδk = 零级上方的第五级明条纹坐标()[]d k l n D x /1λ+-=' 3分=1200[(1.58-1)×0.01±5×5×10-4] / 0.50mm=19.9 mm 3分P d λ x '7. 在如图所示的瑞利干涉仪中,T 1、T 2是两个长度都是l 的气室,波长为λ的单色光的缝光源S 放在透镜L 1的前焦面上,在双缝S 1和S 2处形成两个同相位的相干光源,用目镜E 观察透镜L 2焦平面C 上的干涉条纹.当两气室均为真空时,观察到一组干涉条纹.在向气室T 2中充入一定量的某种气体的过程中,观察到干涉条纹移动了M 条.试求出该气体的折射率n (用已知量M ,λ和l 表示出来).解:当T 1和T 2都是真空时,从S 1和S 2来的两束相干光在O 点的光程差为零.当T 1中充入一定量的某种气体后,从S 1和S 2来的两束相干光在O 点的光程差为(n – 1)l . 1分 在T 2充入气体的过程中,观察到M 条干涉条纹移过O 点,即两光束在O 点的光程差改变了M λ.故有(n -1)l -0 = M λ 3分 n =1+M λ / l . 1分8.用波长λ=500 nm 的平行光垂直照射折射率n =1.33的劈形膜,观察反射光的等厚干涉条纹.从劈形膜的棱算起,第5条明纹中心对应的膜厚度是多少?解: 明纹, 2ne +λ21=k λ (k =1,2,…)3分 第五条,k =5, ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分9. 在Si 的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的AB 段).现用波长为600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B 处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为3.42,SiO 2折射率为1.50)解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) 2分 A 处为明纹,B 处第8个暗纹对应上式k =7 1分 ()nk e 412λ+==1.5×10-3 mm 2分A ,膜10. 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分11. 波长为λ的单色光垂直照射到折射率为n 2的劈形膜上,如图所示,图中n 1<n 2<n 3,观察反射光形成的干涉条纹.(1) 从形膜顶部O 开始向右数起,第五条暗纹中心所对应的薄膜厚度e 5是多少?(2) 相邻的二明纹所对应的薄膜厚度之差是多少?解:∵ n 1<n 2<n 3,二反射光之间没有附加相位差π,光程差为δ = 2n 2 e第五条暗纹中心对应的薄膜厚度为e 5,2n 2 e 5 = (2k - 1)λ / 2 k = 5()2254/94/152n n e λλ=-⨯= 3分 明纹的条件是 2n 2 e k = k λ相邻二明纹所对应的膜厚度之差∆e = e k+1-e k = λ / (2n 2) 2分3。
第十六章 实验十五 用双缝干涉测光的波长
实验十五 用双缝干涉测光的波长 目标要求 1.掌握由Δx =l dλ测量光的波长的原理,并会测单色光波长.2.观察单色光的双缝干涉图样,掌握测量头测量条纹间距的方法.实验技能储备1.实验原理单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)条纹间距Δx 与双缝间距d 、双缝到屏的距离l 、单色光波长λ之间满足λ=d lΔx . 2.实验步骤(1)观察双缝干涉图样①将光源、遮光筒、毛玻璃依次安放在光具座上,如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度和角度,使光源灯丝发出的光能沿遮光筒轴线到达光屏.④安装单缝和双缝,尽量使缝的中点位于遮光筒的轴线上,使单缝与双缝平行,二者间距约为5~10 cm.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹.(2)测量单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中心,记下此时手轮上的读数a 1,将该条纹记为第1条亮条纹;转动手轮,使分划板中心刻线移动至第n 条亮条纹的中心,记下此时手轮上的读数a n .③用刻度尺测量双缝与光屏间距离l (d 是已知的).④改变双缝间的距离d ,双缝到屏的距离l ,重复测量.3.数据分析(1)条纹间距Δx =a n -a 1n -1.(2)波长λ=d l Δx . (3)计算多组数据,求λ的平均值.4.注意事项(1)安装时,注意使光源、透镜、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且间距适当.(2)光源灯丝最好为线状灯丝,并与单缝平行且靠近.(3)调节的基本依据:照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮光筒不共轴;干涉条纹不清晰,一般原因是单缝与双缝不平行.考点一 教材原型实验例1 如图所示,在“用双缝干涉测量光的波长”实验中:(1)在光具座上放置的光学元件依次为:①光源、②滤光片、③________、④________、⑤遮光筒、⑥光屏(含测量头).(2)利用图中装置研究双缝干涉现象时,下列说法中正确的是________.A .将光屏移近双缝,其他条件不变,干涉条纹间距变小B .将滤光片由蓝色的换成红色的,其他条件不变,干涉条纹间距变大C .将单缝向双缝移动一小段距离后,其他条件不变,干涉条纹间距变大D .换一个两缝之间距离更大的双缝,其他条件不变,干涉条纹间距变小E .去掉滤光片,其他条件不变,干涉现象消失(3)在某次测量中,将测量头的分划板中心刻线与某条亮条纹中心对齐,将该亮条纹记为第1条亮条纹,此时手轮上的示数如图甲所示.然后同方向转动测量头,使分划板中心刻线与第6条亮条纹中心对齐,此时手轮上的示数如图乙所示,则此示数为________ mm ,由此可求得相邻亮条纹的间距Δx 为________ mm.(4)已知双缝间距d 为2.0×10-4 m ,测得双缝到屏的距离l 为0.700 m ,由计算式λ=__________,求得所测红光波长为________ nm.答案 (1)单缝 双缝 (2)ABD(3)13.870 2.310 (4)Δxd l 660 解析 (1)由题图可知,③为单缝,④为双缝.(2)将光屏移近双缝,l 减小,则由Δx =l dλ可知,在其他条件不变时,干涉条纹间距变小,故A 正确;将滤光片由蓝色的换成红色的,则波长λ变大,所以其他条件不变时,干涉条纹间距变大,故B 正确;将单缝向双缝移动一小段距离后,其他条件不变时,干涉条纹间距不变,故C 错误;换一个两缝之间距离更大的双缝,则d 变大,在其他条件不变时,干涉条纹间距变小,故D 正确;去掉滤光片,其他条件不变,会形成彩色干涉条纹,故E 错误.(3)由题图乙可得读数为x 2=13.5 mm +37.0×0.01 mm =13.870 mm ,由题图甲可得读数为x 1=2 mm +32.0×0.01 mm =2.320 mm ,则相邻亮条纹的间距Δx =x 2-x 15=13.870-2.3205mm =2.310 mm.(4)由Δx =l d λ可得λ=d l Δx ,代入数据解得,波长为λ=2.310×10-3×2.0×10-40.700m =6.6×10-7 m =660 nm.例2 (2023·浙江省镇海中学模拟)(1)如图所示,小王同学做在“用双缝干涉测量光的波长”实验中发现目镜中干涉条纹与分划板中心刻线始终有一定的角度,下列哪个操作可以使得分划板中心刻线与干涉条纹平行________.A .仅拨动拨杆B .仅旋转单缝C .仅前后移动凸透镜D .仅旋转毛玻璃处的测量头(2)小王同学将分划板中心刻线与干涉条纹调平行后,将测量头的分划板中心刻线与某条亮条纹中心对齐,将该亮条纹定为第1条亮条纹,此时手轮上的示数如图所示,手轮上的示数是________ mm.答案 (1)D (2)50.15解析 (1)若要使得分划板中心刻线与干涉条纹平行,则仅旋转毛玻璃处的测量头即可,故选D.(2)手轮上的示数是50 mm +0.05 mm ×3=50.15 mm.考点二 探索创新实验例3 洛埃德在1834年提出了一种更简单的观察干涉的装置.如图所示,单色光从单缝S 射出,一部分入射到平面镜后反射到屏上,另一部分直接投射到屏上,在屏上两光束交叠区域里将出现干涉条纹.单缝S 通过平面镜成的像是S ′.(1)通过洛埃德镜在屏上可以观察到明暗相间的干涉条纹,这和双缝干涉实验得到的干涉条纹一致.如果S 被视为其中的一个缝,________相当于另一个“缝”.(2)实验中已知单缝S 到平面镜的垂直距离h =0.15 mm ,单缝到光屏的距离D =1.2 m ,观测到第3条亮条纹中心到第12条亮条纹中心的间距为22.78 mm ,则该单色光的波长λ=________ m .(结果保留1位有效数字)(3)以下哪些操作能够增大光屏上相邻两条亮条纹之间的距离________.A .将平面镜稍向上移动一些B .将平面镜稍向右移动一些C .将光屏稍向右移动一些D .将光源由红色光改为绿色光答案 (1) S ′ (2)6×10-7 (3)AC解析 (1)通过洛埃德镜在屏上可以观察到明暗相间的干涉条纹,这和双缝干涉实验得到的干涉条纹一致.如果S 被视为其中的一个缝,S ′相当于另一个“缝”.(2)第3条亮条纹中心到第12条亮条纹中心的间距为22.78 mm ,则相邻亮条纹间距为Δx =22.78×10-312-3m ≈2.53×10-3 m ,等效双缝间的距离为d =2h =0.30 mm =3.0×10-4 m ,根据双缝干涉条纹间距Δx =D d λ,则有λ=d D Δx =3.0×10-4×2.53×10-31.2m ≈6×10-7 m. (3)根据双缝干涉条纹间距Δx =D d λ可知,仅增大D 、仅减小d 或仅增大波长λ都能够增大光屏上相邻两条亮条纹之间的距离,所以A、C正确.课时精练1.(2021·浙江6月选考·17(2))如图所示是“用双缝干涉测量光的波长”实验的装置.实验中:(1)观察到较模糊的干涉条纹,要使条纹变得清晰,值得尝试的是________.(单选)A.旋转测量头B.增大单缝与双缝间的距离C.调节拨杆使单缝与双缝平行(2)要增大观察到的条纹间距,正确的做法是________.(单选)A.减小单缝与光源间的距离B.减小单缝与双缝间的距离C.增大透镜与单缝间的距离D.增大双缝与测量头间的距离答案(1)C(2)D解析(1)若粗调后看到的是模糊不清的条纹,则最可能的原因是单缝与双缝不平行,要使条纹变得清晰,可尝试调节拨杆使单缝与双缝平行,故选C.(2)根据Δx=ldλ,可知要增大条纹间距,可以增大双缝到光屏的距离l或减小双缝的间距d,故选D.2.可发出红、黄、绿三色光的多层警示灯,被广泛应用于数控机床、电子机械自动化生产线等工业领域.某同学想采用如图甲所示的实验装置测定三种色光的波长.(1)打开多层示警灯的绿光灯,将遮光筒对准光源放置.在光源和双缝之间还必须放置一个________(选填“滤光片”或“单缝”),其目的是保证经双缝得到的两列光是________(选填“相干”或“非相干”)光;(2)已知双缝之间的距离为0.6 mm,双缝到屏的距离为1.5 m,绿光的干涉图样如图乙所示,分划板中心刻线在A 位置时螺旋测微器的读数为1.128 mm ,在B 位置时读数如图丙所示,为________ mm ,则该绿光的波长为________ nm(计算结果保留三位有效数字);(3)在不改变其他条件的情况下,该同学又进行了几组实验,通过照相底片记录了干涉图样,分别测量了红光、黄光的波长(红光为625 nm 、黄光为570 nm).图(a)、(b)、(c)是实验中记录下的三种色光的干涉图样,但被不小心弄混了,经判断绿光产生的干涉图样是图________(选填(a)、(b)或(c)).答案 (1)单缝 相干 (2)6.526 540 (3)(c)解析 (1)在光源和双缝之间还必须放置一个单缝,其目的是保证经双缝得到的两列光是相干光.(2)分划板中心刻线在B 位置时读数为6.5 mm +2.6×0.01 mm =6.526 mm条纹间距为Δx =6.526-1.1284mm =1.349 5 mm 由Δx =l d λ解得该绿光的波长λ=d l Δx =0.6×10-31.5×1.349 5×10-3 m =5.398×10-7 m ≈540 nm.(3)由波长关系λ红>λ黄>λ绿,可知在其他条件不变的情况下,干涉图样条纹间距Δx 红>Δx 黄> Δx 绿,所以绿光的条纹间距最小,则绿光产生的干涉图样是题图(c).3.寒假期间小明利用图甲所示的物品,测量了某型号刀片的厚度.实验过程如下:(1)点燃蜡烛,用蜡烛火焰把玻璃片的一面熏黑;(2)并齐捏紧两片刀片,在玻璃片的熏黑面划出两条平直划痕;(3)如图乙所示,将激光光源和玻璃片固定在桌上,并将作为光屏的白纸固定在距离足够远的墙上.(4)打开激光光源,调整光源的高度并使激光沿水平方向射出,恰好能垂直入射在两划痕上.(5)观察白纸上的干涉条纹如图丙所示.用刻度尺测出a 、b 两点间的距离为________ cm ,则两相邻暗纹中心之间的距离Δy =________ cm.(6)测得玻璃片到光屏的距离L =3.00 m ,已知该红色激光的波长λ=700 nm ,利用公式求出双划痕间距d =________ mm ,即为刀片厚度(结果保留两位有效数字).答案 (5)10.50 2.1 (6)0.10解析 (5)用刻度尺测出a 、b 两点间的距离为10.50 cm ,两相邻暗纹中心之间的距离为Δy =10.505cm =2.1 cm. (6)刀片的厚度为Δy =L d λ,解得d =0.10 mm.。
光的干涉习题答案
学号 班级 姓名 成绩第十六章 光的干涉(一)一、选择题1、波长mm 4108.4-⨯=λ的单色平行光垂直照射在相距mm a 4.02=的双缝上,缝后m D 1=的幕上出现干涉条纹。
则幕上相邻明纹间距离是[ B ]。
A .0.6mm ;B .1.2 mm ;C .1.8 mm ;D . 2.4 mm 。
2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[ C ]。
A.条纹的间距变大;B.明纹宽度减小;C.整个条纹向上移动;D.整个条纹向下移动。
3、双缝干涉实验中,入射光波长为λ,用玻璃薄片遮住其中一条缝,已知薄片中光程比相同厚度的空气大2.5λ,则屏上原0级明纹处[ B ]。
A .仍为明条纹;B .变为暗条纹;C .形成彩色条纹;D .无法确定。
4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ B ]。
A .使屏靠近双缝; B .使两缝的间距变小; C .把两个缝的宽度稍微调窄; D .改用波长较小的单色光源。
5、在双缝干涉实验中,单色光源S 到两缝S 1、S 2距离相等,则中央明纹位于图中O 处,现将光源S 向下移动到S ’的位置,则[ B ]。
A .中央明纹向下移动,条纹间距不变;B .中央明纹向上移动,条纹间距不变;C .中央明纹向下移动,条纹间距增大;D .中央明纹向上移动,条纹间距增大。
二、填空题1、某种波长为λ的单色光在折射率为n 的媒质中由A 点传到B 点,相位改变为π,问光程改变了2λ , 光从A 点到B 点的几何路程是 2nλ 。
2、从两相干光源s 1和s 2发出的相干光,在与s 1和s 2等距离d 的P 点相遇。
若s 2位于真空中,s 1位于折射率为n 的介质中,P 点位于界面上,计算s 1和s 2到P 点的光程差 d-nd 。
3、光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是04I ;最小光强是 0 。
光的干涉 练习题有答案
高二物理选修3-4 13.3光的干涉针对训练1.两盏普通白炽灯发出的光相遇时,我们观察不到干涉条纹,这是因为()A.两盏灯亮度不同B.灯光的波长太短C.两灯光的振动情况不同D.电灯发出的光不稳定2.2009年11月21日凌晨2时30分,黑龙江新兴煤矿发生瓦斯爆炸事故,造成10名矿工遇难。
煤矿中的瓦斯危害极大,某同学查资料得知含有瓦斯的气体的折射率大于干净空气的折射率,于是他根据双缝干涉现象设计了一个监测仪,其原理如图所示:在双缝前面放置两个完全相同的透明容器A、B,容器A与干净的空气相通,在容器B中通入矿井中的气体,观察屏上的干涉条纹,就能够监测瓦斯浓度。
如果屏的正中央O点变为暗纹,说明B中气体()A.一定含瓦斯B.一定不含瓦斯C.不一定含瓦斯 D.无法判断3.一束白光通过双缝后在屏上观察到干涉条纹,除中央白色条纹外,两侧还有彩色条纹,其原因是()A.各色光的波长不同,因而各色光分别产生的干涉条纹间距不同B.各色光的速度不同,造成条纹的间距不同C.各色光的强度不同,造成条纹的间距不同D.各色光通过双缝到达一确定点的距离不同4.在双缝干涉实验中,双缝到光屏上P点的距离之差为0.6 μm,若分别用频率为f1=5.0×1014 Hz和f2=7.5×1014 Hz的单色光垂直照射双缝,则P点出现明、暗条纹的情况是( ) A.单色光f1和f2分别照射时,均出现明条纹B.单色光f1和f2分别照射时,均出现暗条纹C.单色光f1照射时出现明条纹,单色光f2照射时出现暗条纹D.单色光f1照射时出现暗条纹,单色光f2照射时出现明条纹5.如图(甲)所示为双缝干涉实验的装置示意图,(乙)图为用绿光进行实验时,在屏上观察到的条纹情况,a为中央条纹,(丙)图为换用另一颜色的单色光做实验时观察到的条纹情况,a′为中央亮条纹,则以下说法正确的是()A .(丙)图可能为用红光实验产生的条纹,表明红光波长较长B .(丙)图可能为用紫光实验产生的条纹,表明紫光波长较长C .(丙)图可能为用紫光实验产生的条纹,表明紫光波长较短D .(丙)图可能为用红光实验产生的条纹,表明红光波长较短6.如图3所示,在双缝干涉实验中,若单缝S 从双缝S 1、S 2的中央对称轴位置处稍微向上移动,则( )A .不再产生干涉条纹B .仍可产生干涉条纹,其中央亮条纹P 的位置不变C .仍可产生干涉条纹,其中央亮条纹P 的位置略向上移D .仍可产生干涉条纹,其中央亮条纹P 的位置略向下移图37.双逢干涉实验装置如图4所示,双缝间的距离为d ,双缝到像屏的距离为L ,调整实验装置使得像屏上可以见到清晰的干涉条纹,关于干涉条纹的情况,下列叙述正确的是( )A .若将像屏向左平移一小段距离,屏上的干涉条纹将变得不清晰B .若将像屏向右平移一小段距离,屏上仍有清晰的干涉条纹C .若将双逢间距离d 减小,像屏上的两个相邻明条纹间的距离变小D .若将双缝间距离d 减小,像屏上的两个相邻暗条纹间的距离增大8.某同学自己动手利用如图所示器材,观察光的干涉现象.其中,A 为单缝屏,B 为双缝屏,C 为像屏.当他用一束阳光照射到A 上时,屏C 上并没有出现干涉条纹.他移走B 后,C 上出现一窄亮斑.分析实验失败的原因,最大的可能是( )A .单缝S 太窄B .单缝S 太宽C .S 到S 1和S 2距离不等D .太阳光不能做光源9.激光散斑测速是一种崭新的测速技术,它应用了光的干涉原理。
(完整版)光的干涉练习题及答案
(完整版)光的干涉练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。
【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。
【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。
图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。
由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。
【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )是明的,圆环是等距离的; 是明的,圆环是不等距离的;是暗的,圆环是等距离的; 是暗的,圆环是不等距离的。
【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。
【答案】:B6、若把牛顿环装置(都是用折射率为的玻璃制成的)由空气搬入折射率为的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。
【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。
【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O处。
第十六章 光的干涉 作业及参考答案 2014
P 1.521.75 1.52图中数字为各处的折射率图16-23 λ 1.621.62 第十六章 光的干涉一、 选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为 (A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。
其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。
【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。
【D 】4.(自测提高5)在如图16-23所示的由三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为() (A )全暗 (B )全明(C )右半部明,左半部暗 (D )右半部暗,左半部明解答:对左半边而言,介质折射率1.52<1.62<1.75,没有半波损失,因此,出现明纹;对右半边而言,介质折射率1.52<1.62>1.52,产生半波损失, 因此,出现暗纹。
光的干涉练习题及答案.
光的⼲涉练习题及答案.⼀、选择题1、严格地讲,空⽓折射率⼤于1,因此在⽜顿环实验中,若将玻璃夹层中的空⽓逐渐抽去⽽成为真空时,⼲涉环将:()A.变⼤;B.缩⼩;C.不变;D.消失。
【答案】:A2、在迈克⽿逊⼲涉仪的⼀条光路中,放⼊⼀折射率n ,厚度为h 的透明介质板,放⼊后,两光束的光程差改变量为:()A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。
【答案】:A3、⽤劈尖⼲涉检测⼯件(下板)的表⾯,当波长为λ的单⾊光垂直⼊射时,观察到⼲涉条纹如图。
图中每⼀条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。
由图可见⼯件表⾯:()A.⼀凹陷的槽,深为λ/4;B.有⼀凹陷的槽,深为λ/2;C.有⼀凸起的埂,深为λ/4;D.有⼀凸起的埂,深为λ。
【答案】:B4、⽜顿环实验装置是⽤⼀平凸透镜放在⼀平板玻璃上,接触点为C ,中间夹层是空⽓,⽤平⾏单⾊光从上向下照射,并从下向上观察,看到许多明暗相间的同⼼圆环,这些圆环的特点是:()A.C 是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C 是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。
【答案】:B5、若将⽜顿环玻璃夹层中的空⽓换成⽔时,⼲涉环将:()A .变⼤;B .缩⼩;【答案】:B6、若把⽜顿环装置(都是⽤折射率为1.52的玻璃制成的)由空⽓搬⼊折射率为1.33的⽔中,则⼲涉条纹()A .中⼼暗斑变成亮斑;B .变疏;C .变密;D .间距不变。
【答案】:C7、两个不同的光源发出的两个⽩光光束,在空间相遇是不会产⽣⼲涉图样的,这是由于()A.⽩光是由许多不同波长的光组成;B.两个光束的光强不⼀样;C.两个光源是独⽴的不相⼲光源;D.两个不同光源所发出的光,频率不会恰好相等。
【答案】:C8、在双缝⼲涉实验中,若单⾊光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O 处。
现将光源S 向下移动到S '位置,则()A .中央明条纹也向下移动,且条纹间距不变;B .中央明条纹向上移动,且条纹间距不变;C .中央明条纹向下移动,且条纹间距增⼤;D .中央明条纹向上移动,且条纹间距增⼤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P 1.52 1.75 1.52 图中数字为各处的折射率 图16-23 λ 1.62 1.62 第十六章 光的干涉一、 选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1)解答:根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==e n 422。
其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。
【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n)解答:干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。
【D 】4.(自测提高5)在如图16-23所示的由三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为()(A )全暗 (B )全明(C )右半部明,左半部暗 (D )右半部暗,左半部明 解答:对左半边而言,介质折射率1.52<1.62<1.75,没有半波损失,因此,出现明纹;对右半边而言,介质折射率1.52<1.62>1.52,产生半波损失, 因此,出现暗纹。
【A 】5. (自测提高6)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A )2(n -1)d (B )2nd (C )2(n -1)d +λ / 2 (D )nd (E )(n -1)d解答:放入薄片后,光通过薄片的原光程d 变为nd ,又光线往复,光程的改变量为2(n -1)d【B 】6. (自测提高9) 如图16-25a 所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500 nm 的单色光垂直照射。
看到的反射光的干涉条纹如图16-29b 所示,有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切。
则工件的上表面图16-22 e n 1 n 2 n 3 λ1 A B 图b 图a图16—17 缺陷是(A )不平处为凸起纹,最大高度为500 nm(B )不平处为凸起纹,最大高度为250 nm(C )不平处为凹槽,最大深度为500 nm(D )不平处为凹槽,最大深度为250 nm解答:向上弯曲,高度增加,不平处应凸起以抵偿高度的增加。
设相邻条纹对应的厚度差为d ∆,因条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切,又空气折射率2n =1,则最大高度222h d n λλ=∆==二、填空题7.(基础训练12)如图16-17所示,在双缝干涉实验中,若把一厚度为e,折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向 上 移动;覆盖云母片后,两束光至原中央明纹O 处的光程差是e n )1(-解答提示:设S 1被云母片覆盖后,零级明纹应满足21)(r e r ne =-+即21)1(r r e n =+-,显然12r r >中央亮纹将向上移动,如图所示。
O 点处21r r =,来自S 2,S 1两束光的光程差为8.(基础训练16)波长为λ的单色光垂直照射到折射率为2n 的劈形膜上,如图16-18所示,图中321n n n <<。
观察反射光形成的干涉条纹.从劈形膜顶开始向右数第5条暗纹中心所对应的薄膜厚度2n 49e λ= 解答提示:321n n n <<,没有半波损失,膜顶(e=0)处为暗纹。
暗纹处 2/)12(2λ+=k e n 2 ...)3,2,1,0(=k 第5条暗纹,4=k , 2n 49e λ=9.(基础训练18)波长600nm 的单色光垂直照射到牛顿环装置上,第2个明环和第5个明环所对应的空气薄膜厚度只差为900nm解答提示:相邻明(暗)纹对应的空气薄膜厚度差为半个波长,第2个明环与第5个明环之间为3个明纹的距离,因此,厚度差为3个半波长,即900nm.10.(自测提高13)一双缝干涉装置,在空气中观察时干涉条纹间距为1.0nm 。
若整个装置放在水中,干涉条纹的间距将为 0.75 nm 。
(设水的折射率为4/3)。
在空气中有一劈形透明膜,其劈尖角rad 4100.1-⨯=θ,在波长nm 700=λ的单色光垂直照射下,测得两相邻干涉明条纹间距cm l 25.0=,由此可知此透明材料的折射率n = 1.4 .解答提示:(1)在空气中λ∆d D x =,其它介质中nm nm n d D d D x n 75.03/41====λλ∆; (2) 若为空气劈尖,相邻两条纹的高度差2h λ∆=, 其它介质劈尖,相邻两条纹的高度差n 2h n 2λλ∆==,又因为θθ∆l l h ≈=sin ,所以4.1101025.021********=⨯⨯⨯⨯==---θλl n r 1 r 2e n r e r ne )1()(21-=--+=δn 2n 1n 3O λ图16-18OP r 1 r 2 θλ S 1 S 2 d θ图16-3011.(自测提高16)如图所示,两缝S 1和S 2之间的距离为d ,媒质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则 屏幕上P 处,两相干光的光程差为21sin r r d -+θ. 解答提示:如图所示,过S 2作平行光的垂线,由三角关系可知垂线与S 1S 2夹角为θ,则两相干光的光程差 2121sin sin r r d r d r -+=-+=θθδ 三、计算题12.(自测提高19)在双缝干涉实验中,波长λ =550nm 的平行光垂直入射到缝间距 a=2×10-4 m 的双缝上,屏到双缝的距离D =2m 。
求:(1)中央明纹两侧的两条第10级明纹中心的间距。
(2)用一厚度为 e =6.6×10-6 m 、折射率为 n = 1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?解:(1)第10级明纹中心的位置m m a D k x 2471010551021055210---⨯⋅=⨯⨯⋅⨯⨯==λ ∴两条第10级明纹中心之距cm x 11210=;(2)覆盖云玻璃后,零级明纹应满足21)1(r r e n =+-设不盖玻璃片时,此点为第k 级明纹,则应有λk r r =-12,所以λk e n =-)1(, 796.6)1(≈=-=λen k零级明纹移到原第7级明纹处。
13.(自测提高20)在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3 , 为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图16-33所示。
求:(1)零级明纹到屏幕中央O 点的距离。
(2)相邻明条纹间的距离。
解: 设条纹到屏幕中央O 点的距离为x (1)零级明纹对应的光程差为零,因此,光程差 0)(/)()(1212121122=-+=-+-=+-+=l l D xd l l r r r l r l δ d D d D l l x /3/)(21λ=-=(2)k 级明纹λδk l l D d x k =-+=)(/12得()()()()12112/3/1/4/k k x k l l D d k D dx k l l D d k D dλλλλ+=+-=+=++-=+⎡⎤⎣⎦ 相邻明纹的距离1/k k x x x D d λ+∆=-=14. (自测提高22) 在牛顿环装置的平凸透镜和平玻璃板之间充满折射率n = 1.33 的透明液体(设玻璃的折射率大于1.33)凸透镜的曲率半径为300cm ,波长λ=6500 Å 的平行单色光垂直照射到牛顿环上,凸透镜顶部刚好与和平玻璃板接触。
求:(1)从中心向外数第十个明环所在处的液体厚度10e ,(2)第十个明环的半径10r 。
图16-33 屏 d S 2 S 1l 1 S 0 l 2 O D解:(1)设第十个明环处液体厚度为10e ,λλλ102210==+k necm n e 4101032.22/)210(-⨯=-=∴λλ (2)由牛顿环的明环公式n R k r k 2)12(λ-= cm m m r 373.01073.333.121065010300)1102(39210=⨯=⨯⨯⨯⨯⨯-⨯=---15. (自测提高23)在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜。
入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对 1=600 nm 的光波干涉相消,对 2=700 nm 的光波干涉相长。
且在600 nm 到700 nm 之间没有别的波长是最大限度相消或相长的情形。
求所镀介质膜的厚度。
解:设薄膜的厚度为h 。
因介质薄膜的折射率介于空气和玻璃之间,不存在半波损失。
由题意知 1、 2分别对应同一级次的暗、明纹,因此,光程差()122'21/2n h k k λλ∆==+= 得:()()121632/2600/2003/2'370010/2 1.350.77810k h k n mm λλλλ--=-==⎡⎤⎣⎦==⨯⨯⨯=⨯四.附加题16. (自测提高24) 如图16-34所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙e 0。
现用波长为 的单色光垂直照射,已知平凸透镜的曲率半径为R ,求反射光形成的牛顿环的各暗环半径。
解:设空气薄膜的厚度为h ,平凸透镜与平板玻璃相接触时空气薄膜的厚度为e 。
如图所示,由三角关系222)(re R R +-=得:R r e /2=,则()200/2h e e e r R =+=+ 又各暗环的光程差()2/221/2nh k λλ∆=+=+得:()2200/2/2/22h k e r R k e R r k R λλλ=⇒+=⇒+=因此,各暗环半径:00(2)(2/)r R k e k k e λλ=->为整数,且。