八年级上册数学北师大版第三章知识点

合集下载

北师大版数学八年级上册第三章位置与坐标知识点归纳及例题(含答案)

北师大版数学八年级上册第三章位置与坐标知识点归纳及例题(含答案)

北师大版八年级上册第三章位置与坐标知识点归纳及例题1 平面直角坐标系【要点梳理】知识点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).知识点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).知识点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.知识点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.知识点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.知识点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征知识点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.2.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【思路点拨】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【答案】D.【解析】由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.【总结升华】本题考查了学生的阅读理解能力,由已知条件正确确定点的位置是解决本题的关键.类型二、平面直角坐标系与点的坐标的概念3.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A 点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).4.如图,四边形OABC 各个顶点的坐标分别是O (0,0),A (3,0),B (5,2),C (2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E(5,3),所以S四边形ABCO =S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征5. 已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m 的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).2 坐标平面内图形的轴对称和平移【知识点梳理】知识点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.知识点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).知识点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.知识点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则的值为_______.【思路点拨】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a +b =-3,1-b =-1,再解方程可得a 、b 的值,进而算出的值.【答案】25【解析】解:∵点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),∴a +b =-3,1-b =-1,解得:b =2,a =-5,=25,【总结升华】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x 轴的对称点为( )A .(3,-2)B .(-3,2)C .(-3,-2)D .(2,-3)【答案】A .2.已知点A(-3,2)与点B(x ,y)在同一条平行于y 轴的直线上,且点B 到x 轴的距离等于3,求点B 的坐标.b a b a b a【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).度,变为P′(0,1).【答案】2、4.4. 如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S=3×4﹣×3×2﹣×4×1﹣×2×2=5;△ABO(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).3《平面直角坐标系》全章复习与巩固【知识网络】【知识点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.知识点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:知识点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1- x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1- y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1- x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1- y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.知识点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.知识点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).知识点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”. 【典型例题】 类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:.例如把(3,-2)放入其中,就会有32 +(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________. 【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入求值即可. 【答案】66 .【解析】解:将(-2,3)代入,,得(-2)2+3+1=8, 再将(8,1)代入,得82 +1+1=66, 故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________. 【答案】 (-5,3);向西走2米,向南走6米. 类型二、平面直角坐标系2. 第三象限内的点P(x ,y),满足|x|=5,y 2=9,则点P 的坐标为________. 【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x ,y 的具体值.21a b ++21a b ++21a b ++【答案】(-5,-3).【解析】因为|x|=5,y2=9.所以x=±5,y=±3,又点P(x,y)在第三象限,所以x<0,y<0,故点P的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) . A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.如图,是某校的平面示意图,已知图书馆、行政楼的坐标分别为(﹣3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他地点的坐标(3)在图中用点P表示体育馆(﹣1,﹣3)的位置.【思路点拨】(1)根据图书馆、行政楼的坐标分别为(﹣3,2),(2,3),可以建立合适的平面直角坐标系,从而可以解答本题;(2)根据(1)中的平面直角坐标系可以写出其它地点的坐标;(3)根据点P(﹣1,﹣3)可以在直角坐标系中表示出来.【答案与解析】解:(1)由题意可得,(2)由(1)中的平面直角坐标系可得,校门口的坐标是(1,0),信息楼的坐标是(1,﹣2),综合楼的坐标是(﹣5,﹣3),实验楼的坐标是(﹣4,0);(3)在图中用点P表示体育馆(﹣1,﹣3)的位置,如下图所示,【总结升华】本题考查利用坐标确定位置,解题的关键是明确题意,建立相应的平面直角坐标系.4.如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO=S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E (5,3),所以S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF=5×3﹣×2×2﹣×1×3﹣×3×2 =.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC 三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC 向右平移1个单位,再向下平移2个单位,所得△A 1B 1C 1的三个顶点坐标分别是什么?(2)将△ABC 三个顶点的横坐标都减去5,纵坐标不变,分别得到A 2、B 2、C 2,依次连接A 2、B 2、C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系? (3)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到A 3、B 3、C 3,依次连接A 3、B 3、C 3各点,所得△A 3B 3C 3与△ABC 的大小、形状和位置上有什么关系? 【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6. 三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C (4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。

最新北师大版八年级数学上册知识点总结

最新北师大版八年级数学上册知识点总结

最新北师大版八年级数学上册知识点总结第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。

满足222a b c +=的三个正整数称为勾股数。

第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a(2)性质:①当a ≥0≥0;当a=aa =。

2.立方根的概念及其性质:(1)概念:若3x a =,那么x 是a(2a =;②3a = 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

5 (a ≥0,b ≥0) a ≥0,b >0)。

第三章 1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

北师大版八年级数学上册知识点梳理

北师大版八年级数学上册知识点梳理

第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。

命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。

正确的命题叫真命题,不正确的命题叫假命题。

基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。

定理:用逻辑的方法判断为正确并作为推理的根据的真命题。

注意:基本事实和定理一定是真命题。

[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。

[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。

三角形三内角和等于180°。

三角形的一个外角等于与它不相邻的的两个内角之和。

[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。

思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。

还有其它推出来的性质:全等三角形的周长相等、面积相等。

全等三角形的对应边上的对应中线、角平分线、高线分别相等。

[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。

八年级上册数学北师大版知识点总结

八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。

2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。

第二章实数1. 无理数:无限不循环小数叫做无理数。

2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。

一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。

3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。

4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。

正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。

第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。

2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。

4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。

北师大版八年级数学上册:3.1《确定位置》说课稿1

北师大版八年级数学上册:3.1《确定位置》说课稿1

北师大版八年级数学上册:3.1《确定位置》说课稿1一. 教材分析《确定位置》是北师大版八年级数学上册第三章第一节的内容。

本节内容是在学生已经掌握了坐标系的基础知识上进行的,主要让学生了解确定点在平面直角坐标系中的位置的方法,进一步培养学生的空间想象能力和逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对坐标系有一定的了解。

但是,对于如何准确、快速地确定点的位置,以及如何运用坐标系解决实际问题,仍然是他们的学习难点。

因此,在教学过程中,我需要针对学生的实际情况,采取适当的教学方法,帮助学生突破这个难点。

三. 说教学目标1.知识与技能目标:使学生掌握确定点在平面直角坐标系中的位置的方法。

2.过程与方法目标:通过观察、实践、探究等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:确定点在平面直角坐标系中的位置的方法。

2.教学难点:如何快速、准确地确定点的位置,以及如何运用坐标系解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、实践操作法等。

2.教学手段:利用多媒体课件、实物模型、坐标系图等辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引发学生对确定位置的思考,从而导入新课。

2.探究新知:引导学生观察、实践,探究确定点在平面直角坐标系中的位置的方法。

3.巩固新知:通过一系列的练习题,让学生巩固所学知识,提高解决问题的能力。

4.拓展与应用:结合实际问题,让学生运用坐标系解决问题,培养学生的应用能力。

5.总结与反思:让学生总结本节课所学内容,反思自己的学习过程,提高自我认知。

七. 说板书设计板书设计要简洁明了,突出本节课的关键知识点。

可以设计成以下形式:确定位置的方法:1.观察坐标系图2.确定点的位置3.记录坐标值八. 说教学评价教学评价主要从学生的学习态度、参与度、练习成果等方面进行。

北师大版数学八年级上册知识点总结

北师大版数学八年级上册知识点总结

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

新北师大版八年级数学上册第三章位置与坐标知识点总结和典型例题分析

新北师大版八年级数学上册第三章位置与坐标知识点总结和典型例题分析

新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。

2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。

在平面中确定位置时需要两个独立的数据:方位角、距离。

特别需要注意的是中心位置的确定。

3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。

需要两个数据确定物体位置。

4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。

此方法简单明了,但不够准确。

A1区,D3区等。

5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。

二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。

通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。

水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y轴统称坐标轴,公共原点O称为坐标系的原点。

两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。

2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。

过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。

3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。

(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。

北师大版八年级上册数学第3讲《勾股定理复习》知识点梳理

北师大版八年级上册数学第3讲《勾股定理复习》知识点梳理

北师大版八年级上册数学第3讲《勾股定理复习》知识点梳理【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理 如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:a b 、c 222a b c +=a b c 、、222a b c +=(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系: 若,则△ABC 是以∠C 为90°的直角三角形; 若时,△ABC 是锐角三角形; 若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的简单应用1、(2016•益阳)在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729【思路点拨】根据题意正确表示出AD 2的值是解题关键.【答案与解析】解:如图,在△ABC 中,AB=15,BC=14,AC=13,设BD=x ,则CD=14﹣x ,由勾股定理得:AD 2=AB 2﹣BD 2=152﹣x 2,AD 2=AC 2﹣CD 2=132﹣(14﹣x )2,故152﹣x 2=132﹣(14﹣x )2,解之得:x=9.∴AD=12.∴S △ABC =BC •AD=×14×12=84.【总结升华】此题主要是要读懂解题思路,然后找到解决问题的切入点,问题才能迎刃而解.举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长.【答案】解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得.∴ .同理.∴ .①当∠ACB >90°时,BC =BD -CD =9-5=4.∴ △ABC 的周长为:AB +BC +CA =15+4+13=32.22222151281BD AB AD =-=-=9BD =22222131225CD AC AD =-=-=5CD=②当∠ACB <90°时,BC =BD +CD =9+5=14.∴ △ABC 的周长为:AB +BC +CA =15+14+13=42.综上所述:△ABC 的周长为32或42.2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:.【思路点拨】欲证的等式中出现了AM 2、BM 2、CM 2,自然想到了用勾股定理证明,因此需要作CD ⊥AB .【答案与解析】证明:过点C 作CD ⊥AB 于D .∵ AC =BC ,CD ⊥AB ,∴ AD =BD .∵ ∠ACB =90°,∴ CD =AD =DB .∴ 在Rt △CDM 中,,∴ .【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.举一反三:【变式】已知△ABC 中,AB =AC ,D 为BC 上任一点,求证:.2222AM BM CM +=()()2222AM BM AD DM AD DM +=-++222222AD AD DM DM AD AD DM DM =-⋅+++⋅+222()AD DM =+222()CD DM =+222CD DM CM +=2222AM BM CM +=22AB AD BD CD -=⋅【答案】解:如图,作AM ⊥BC 于M ,∵AB =AC ,∴BM =CM,则在Rt △ABM 中:……①在Rt △ADM 中:……②由①-②得: = (MC +DM )•BD =CD ·BD类型二、勾股定理及逆定理的综合应用3、(2014秋•黎川县期中)如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【思路点拨】根据勾股定理求出BE 2、EF 2、BF 2,根据勾股定理的逆定理判断即可.【答案与解析】解:∵△BEF 是直角三角形,理由是:∵在正方形ABCD 中,AB=4,AE=2,DF=1,∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3,∵由勾股定理得:BE 2=AB 2+AE 2=42+22=20,EF 2=DE 2+DF 2=22+12=5,BF 2=BC 2+CF 2=42+32=25,∴BE 2+EF 2=BF 2,∴∠BEF=90°,222AB AM BM =+222AD AM DM =+22AB AD -=()()22BM DM BM DM BM DM -=+-即△BEF是直角三角形.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE2+EF2=BF2.4、如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论. (2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.【答案与解析】 解:(1)猜想:AP=CQ 证明:在△ABP与△CBQ中, ∵ AB=CB,BP=BQ,∠ABC=∠PBQ=60° ∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ ∴△ABP≌△CBQ∴ AP=CQ (2)由PA:PB:PC=3:4:5 可设PA=3a,PB=4a,PC=5a 连结PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60° ∴△PBQ为正三角形∴ PQ=4a 于是在△PQC中,∵∴△PQC是直角三角形【总结升华】本题的关键在于能够证出△ABP≌△CBQ,从而达到线段转移的目的,再利用勾股定理的逆定理判断三角形的形状.举一反三:【变式】如图所示,在△ABC 中,D 是BC 边上的点,已知AB =13,AD =12,AC =15,BD =5,求DC 的长.【答案】解:在△ABD 中,由可知:,又由勾股定理的逆定理知∠ADB =90°.在Rt △ADC 中,.5、如果ΔABC 的三边分别为,且满足,判断ΔABC 的形状.【答案与解析】解:由,得 : ∴ ∵ ∴ ∵ , ∴ . 由勾股定理的逆定理得:△ABC 是直角三角形.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?22212513+=222AD BD AB +=22281,9DC AC AD DC =-==a b c 、、222506810a b c a b c +++=++222506810a b c a b c +++=++2226981610250a a b b c c -++-++-+=222(3)(4)(5)0a b c -+-+-=222(3)0(4)0(5)0a b c -≥-≥-≥,,3,4, 5.a b c ===222345+=222a b c +=【思路点拨】将长方体表面展开,由于蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种情况.【答案与解析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度.在图②中,由勾股定理,得.在图③中,由勾股定理,得.因为130>100,所以图③中的AB 的长度最短,为10,即蚂蚁需要爬行的最短路线长为10.【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解.举一反三:【变式】(2014秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?222311130AB =+=22268100AB =+=cm cm【答案】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.。

北师大版八年级上册数学《变化的鱼》位置与坐标说课教学课件复习导学

北师大版八年级上册数学《变化的鱼》位置与坐标说课教学课件复习导学

关系?
y
“鱼”先向右平
移3个单位,
(5, 4)
(8, 4)
再向下平移2个 单位。
(8, 2)
O
x
巩固练习
1、(1) 将“鱼”的“顶点” 纵坐标保持不变,横 坐标分别加4,所得到的“鱼”与原来的“鱼”相 比有什么变化? y
O
x
巩固练习
1、(2) 将“鱼”的“顶点”横坐标保持不变,纵 坐标分别加–1,所得到的“鱼”与原来的“鱼” 相比有什么变化? y
合作交流
ⅲ、将“鱼”的“顶点”的横坐标保持不变,纵 坐标变为原来的2倍,所得到的“鱼”与原来的 “鱼”有什么变化? y
整条“鱼”被纵 向拉伸为原来 的2倍。
O
x
(4, –2)
(4, –4)
合作交流
ⅳ、将“鱼”的“顶点”的横坐标保持不变,纵 坐标变为原来的2倍,所得到的“鱼”与原来的 “鱼”有什么变化? y
(–5, –2) (–4, –2) (4, –2) (5, –2)
合作交流
ⅰ、如果将黑色“鱼”的横坐标保持不变,纵坐

分别变为原来的– 1倍,得到的红y色“鱼”与原来

黑样两对色 的条称“位“ 。鱼 置鱼”关”有系关什?于么x轴
(4, 2)
O
x
(4, –2)
新知归纳
直角坐标系内的对称规律:
(1)纵坐标不变,横坐标分别乘以–1,所得图形 与原图形关于y轴对称; (2)横坐标不变,纵坐标分别乘以–1,所得图形 与原图形关于x轴对称;
纵坐标变为原 来 1 的呢?
2
整条“鱼”被纵
向压缩为原来 的一半。
O
x (4, –1)
(4, –2)
新知归纳

导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合

导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合

第三章 图形的平移与旋转
第四章 因式分解 第五章 分式与分式方程
第六章 平行四边形
任它本身;负数的绝对值是它的相反数;0 的绝对值是 0。(反之,若 5 绝对值
性质 |a|=a,则 a≥0;若|a|=-a,则 a≤0。)
互为相反数的两个数的绝对值相等。
两个负数比较大小,绝对值大的反而小。
如果两个数只有符号不同,那么称其中一个数为另一个的相反数,也称这两个数互
性质 负数。
一般地,形如 的代数式叫做二次根式,a 叫做被开方数。
二次根 一般地,被开方数不含分母,也不含能开得尽方的因数或因式的二次根式叫最简二次根式。
11

·
( , ),
(,)
第三章 位置与坐标
序号 1
知识点 确定位置
第三章 位置与坐标
内容 在平面内,确定一个物体的位置一般需要 2 个数据。 在平面内,两条互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条 数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平 的数轴叫做 x 轴或横轴,垂直的数轴叫做 y 轴或纵轴,x 轴和 y 轴统称为坐标轴,它们的 公共原点 O 称为直角坐标系的原点。建立了平面直角坐标系,平面内的点就可以用一组有 序实数对(a,b)来表示了。 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一 象限,其它三部分按逆时针方向依次叫做第二、三、四象限。坐标轴上的点不在任何一个 象限内。
性质 一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算数 定义 一般地,如果一个正数 x 的平方等于 a, ,那么这个正数 x 就叫做 a 的算数平方根。 9
平方根 性质 一个正数的算数平方根是正数;0 的算数平方根是 0;负数没有算数平方根。

北师大版八年级上册数学《平面直角坐标系》位置与坐标教学说课研讨课件复习

北师大版八年级上册数学《平面直角坐标系》位置与坐标教学说课研讨课件复习

地理课件:/kejian/dili/
历史课件:/kejian/lish i/
A
)
A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴 B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴 C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴 D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴
第三章
第1课时 平面直角坐标系
知识要点基础练
综合能力提升练
拓展探究突破练
-10-
12.如图,一只甲虫在5×5的方格( 每小格边长为1 )上沿着网格线运动.规定:向上向右走为 正,向下向左走为负.如果从A到B记为A→B( +1,+4 ),从B到A记为B→A( -1,-4 ),其中第一个 数表示左右方向,第二个数表示上下方向,那么图中
知识要点基础练
综合能力提升练
拓展探究突破练
-3-
知识点2 确定点的坐标 3.如图,点A( -1,2 ),则点B的坐标为( D )
A.( -2,2 ) C.( -3,-2 )
B.( -2,-3 ) D.( -2,-2 )
第三章
第1课时 平面直角坐标系
知识要点基础练
综合能力提升练
拓展探究突破练
-4-
4.( 教材母题变式 )( 1 )写出图中点A,B,C,D,E,F的坐标. ( 2 )在图中描出下列各点:L( -5,-3 ),M( 4,0 ),N( 0,5 ),
( 1 )A→C( +3 , +4 ),B→D( +3 , -2 ); ( 2 )若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程; ( 3 )若这只甲虫从A处去

北师大版数学八年级上册3《一次函数的图象》说课稿5

北师大版数学八年级上册3《一次函数的图象》说课稿5

北师大版数学八年级上册3《一次函数的图象》说课稿5一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三章的内容。

本节课主要让学生掌握一次函数的图象特点,学会如何绘制一次函数的图象,并能够通过图象分析一次函数的性质。

教材通过引入实际生活中的例子,激发学生的学习兴趣,让学生体会数学与生活的紧密联系。

在教材中,安排了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析八年级的学生已经学习了函数的基本概念,对函数有一定的认识。

但是,对于一次函数的图象,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出一次函数的图象,帮助学生建立函数图象的概念。

此外,学生需要掌握如何利用描点法绘制一次函数的图象,并能够通过图象分析一次函数的性质。

三. 说教学目标1.知识与技能目标:让学生掌握一次函数的图象特点,学会如何绘制一次函数的图象,并能够通过图象分析一次函数的性质。

2.过程与方法目标:通过实际问题引入一次函数的图象,培养学生从实际问题中抽象出函数图象的能力。

利用描点法绘制一次函数的图象,培养学生的动手操作能力。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学生的学习兴趣和积极性。

四. 说教学重难点1.教学重点:一次函数的图象特点,绘制一次函数的图象方法。

2.教学难点:如何从实际问题中抽象出一次函数的图象,利用描点法绘制一次函数的图象。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,提高教学效果。

六. 说教学过程1.导入新课:通过一个实际问题,引入一次函数的图象,激发学生的学习兴趣。

2.知识讲解:讲解一次函数的图象特点,如何绘制一次函数的图象。

3.动手实践:让学生利用描点法绘制一次函数的图象,培养学生的动手操作能力。

4.案例分析:分析一些实际问题,引导学生从实际问题中抽象出一次函数的图象。

北师大版八年级上册数学第三章位置与坐标PPT

北师大版八年级上册数学第三章位置与坐标PPT
例 1.下列语句不正确的是( D )
A.平面直角坐标系中,两条互相垂直的数轴的垂足是原点 B.平面直角坐标系所在的平面叫做坐标平面 C.平面直角坐标系中,x轴、y轴把坐标平面分成四部分 D.凡是两条互相垂直的直线都能组成平面直角坐标系
新课讲解
分析:本题主要考查平面直角坐标系的概念.根据平面直 角坐标系的概念可知A,B,C项正确.D项不正确, 因为坐标系必须由数轴构成,且构成平面直角坐标 系的两条数轴互相垂直、原点重合,故选D.
怎样确定位置呢?
新课讲解
知识点1 平面上确定物体位置的方法
议一议
(1)在电影院内,确定一个座位一般需要几个 数据?
(2)在生活中,确定物体的位置还有其他方法 吗?与同伴进行交流.
(3)在平面内,确定一个点的位置一般需要几 个数据呢?
新课讲解
如果将“6排3号”简记作(6,3),那么“3排6号” 如何表示?(5,6)表示什么含义?
第三章 位置与坐标
1 确定位置
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.在现实生活中感受确定位置的多种方法. 2.能比较灵活地运用不同的方法确定物体的位置. 3.根据图形或者目标确定位置.(重点)
新课导入
生活中我们常常需要确定物体的位置。如:确定学校、 家庭的位置,确定地图上城市的位置,在棋盘上确定棋子 的位置,在海战中确定战舰的位置……
些目标?要想确定敌舰B的位
1.4cm 1cm
置,还需要什么数据? (2)距我方潜艇20 n mile处 的敌舰有哪几艘?
1cm
(3)要确定每艘敌舰的 位置,各需要几个数据?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学北师大版第三章知识点
八年级上册数学北师大版第三章主要涵盖了线性方程和一次不等
式的知识点。

本章的主要目标是通过学习和掌握线性方程和不等式的
相关概念、性质和解法,培养学生运用代数方法解决实际问题的能力。

一、线性方程组的解
1.定义和性质
线性方程组指的是由一组线性方程构成的方程组。

在本章中,我
们主要研究由两个未知数的线性方程组。

在二元一次方程组中,一般形式为:
ax + by = c
dx + ey = f
其中a、b、c、d、e、f为已知数,x、y为未知数。

2.线性方程组的解的判定
线性方程组的解主要通过消元法和代入法进行求解。

其中,消元法是将方程组中的某个未知数表示为其他未知数的函数,然后代入到其他方程中,进而求得未知数的值。

代入法则是将一个方程的解代入到另一个方程中,求得另一个未知数的值。

当线性方程组有解时,其解的形式为有序数对。

3.解线性方程组的方法
解二元一次方程组的一般步骤为:
(1)通过消元法或代入法得到一个未知数的值;
(2)将得到的未知数的值代入到另一个方程中,求得另一个未知数的值;
(3)验证求得的未知数值是否满足原来的方程组。

当方程组有无数解或者无解时,需要通过消元法或代入法的结果进行判断。

二、一次不等式的解集
1.定义和性质
一次不等式指的是含有未知数的一元一次方程,其一般形式为ax + b > 0或ax + b < 0。

一次不等式的解集表示为某个区间或某个区间的并集。

2.解一次不等式的方法
解一次不等式的方法主要有两种:图像法和代数法。

图像法是通过绘制一次不等式的解集的数轴图,来直观地表示解集的范围。

代数法是通过转化一次不等式的形式,将其变为一个等价的一次方程,再求解方程的解集。

解一次不等式时要注意变号的性质,并对解进行验证。

三、实际问题与线性方程或不等式的应用
1.实际问题的建模
通过实际问题的建模,将问题转化为适合使用线性方程或不等式求解的代数关系式。

2.实际问题的求解
将建模后的方程或不等式进行求解,得到满足实际问题要求的解。

在实际问题的求解过程中,要注意问题中的条件和约束,并对解
进行合理性验证。

3.实际问题的拓展
通过解决实际问题,培养学生的数学建模能力、问题解决能力和
创新思维。

同时,引导学生将数学知识与实际应用结合起来,更好地
理解和应用数学知识。

通过学习线性方程和一次不等式的知识点,学生可以培养逻辑思维、分析问题和解决问题的能力。

同时,线性方程和一次不等式在实
际生活中有广泛的应用,例如经济学、物理学、工程学等领域都离不
开线性方程和一次不等式的运用。

总之,八年级上册数学北师大版第三章主要包括线性方程组的解
和一次不等式的解集,通过学习这些知识点,可以帮助学生提升数学
思维和解决实际问题的能力。

同时,线性方程和一次不等式在实际生
活中的应用也是十分重要的。

相关文档
最新文档