向量的数量积的运算律

合集下载

向量的运算法则

向量的运算法则

(1) 实数与向量的运算法则:设•、」为实数,则有:1) 结合律:•(")=(」)a。

2) 分配律:(m_) —a, (a b) a ,b。

(2) 向量的数量积运算法则:1) a <b =b <a。

2) ( a) - (a Jb) - -a=a(H.b)。

3) (a b) = a <c b <c。

(3) 平面向量的基本定理。

e ,e2是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a,有且仅有一对头数胡,..迈,满足 a ='浄',:.2e2。

(4) a与b的数量积的计算公式及几何意义:a<b =|a ||b | COST,数量积a «b等于a的长度|a |与b在a的方向上的投影|b|cosv的乘积。

(5) 平面向量的运算法则。

1) 设a = (X i,yJ , b =(X2,y2),贝U a+b =(人X2,y i y?)。

2) 设a = (X1,yJ , b =(X2,y2),贝V a-b =(为一x?, y1 -y?)。

3) 设点A(X1, y1), B(X2, y2),则AB = OB - OA = (X2 _ X1, y2 - y1)。

4) 设a = (x, y), ■R,则■ a = C x, ■ y) o5) 设a = g, yj , b =(X2, y2),贝U a *b = (X1X2 y^)。

(6) 两向量的夹角公式:亠X t X2+ y1y2/cos日, 2 2(a = (X1,yJ , b = (x?』?))。

x; y; x;y(7) 平面两点间的距离公式:d A,B =|AB|二AB AB 二(x? —xj2(y?-y j2(A(X1,yJ , B(X2,y2))。

(8) 向量的平行与垂直:设a =(X1,%) , b = (X2,y?),且b =0,则有:1) a||b := b = ■ a^ x1y2-x2y1=0。

第七讲。数量积,向量积讲解

第七讲。数量积,向量积讲解

2
所以
( a,b ) 3
(3) 因为
4
a • b | a || b | cos( a,b ) | b | Pr jba
所以
Pr
ju AB
a•b |b|
9 3
3
例2 试用向量证明三角形的余弦定理.
证明 在DABC中, ∠BCA, |CB|a, |CA|b, |AB|c,
要证c2a2b22abcos .
3 运算律 (1)交换律 a •b b • a
(2)分配律 (a b) • c a • c b • c
(3)结合律 (a) • b (a • b) a • (b)
其中λ为常数。 4 数量积的计算公式 设向量
a x1i y1 j z1k, b x2i y2 j z2k
则有
a • b x1x2 y1 y2 z1z2
| a || b |
3 两向量的向量积的运算律 (1) a×b=-b×a; (2)(λa)×b=a×(λb)=λ(a×b (λ为常数) (3)(a+b)×c=a×c+b×c
向量积还可用三阶行列式表示
i j k a b ax ay az
bx by bz
由上式可推出
ห้องสมุดไป่ตู้
a// b
ax ay az
θ
A
S
B
W | F || S | cos
2 性质: (1) a·a=|a|2
i • i 1, j • j 1, k • k 1
(2)a b a •b 0
i • j 0, j • k 0, k • i 0
(3)θ表示两非零向量a和b的夹角,则有
cos a • b
| a || b |

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律

8.1.2 向量数量积的运算律(教师独具内容)课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明.【知识导学】知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则交换律 a ·b =□01b ·a 结合律 (λa )·b =□02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□04a ·c +b ·c 【新知拓展】对向量数量积的运算律的几点说明(1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC →=c ,AB ⊥OC 于D ,可以看出,a ,b 在向量c 上的投影分别为|a |cos ∠AOD ,|b |cos ∠BOD ,此时|b |cos ∠BOD =|a |cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a .(2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线.1.判一判(正确的打“√”,错误的打“×”)(1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2-b 2.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)已知|a |=2,b 在a 上的投影的数量为-2,则a ·(a -b )=________. (2)已知|a |=3,|b |=4,则(a +b )·(a -b )=________.(3)已知|a |=6,|b |=8,〈a ,b 〉=120°,则|a 2-b 2|=________,|a -b |=________,|a 2+b 2|=________.答案 (1)8 (2)-7 (3)28 237 100题型一 求向量的夹角例1 已知单位向量e 1,e 2的夹角为60°,求向量a =e 1+e 2,b =e 2-2e 1的夹角. [解] 设a ,b 的夹角为θ,∵单位向量的夹角为60°, ∴e 1·e 2=|e 1||e 2|cos60°=12.∴a ·b =(e 1+e 2)·(e 2-2e 1)=e 1·e 2+e 22-2e 21-2e 1·e 2=e 22-2e 21-e 1·e 2=1-2-12=-32, |a |=a 2=e 1+e 22=|e 1|2+|e 2|2+2e 1·e 2=1+1+1= 3. |b |=b 2=e 2-2e 12= |e 2|2-4e 1·e 2+4|e 1|2=1+4-4×12= 3.∴cos θ=a ·b |a ||b |=-323×3=-12. ∵θ∈[0,π],∴θ=120°. 金版点睛求向量a ,b 夹角θ的思路(1)解题流程求|a |,|b |→计算a ·b →计算cos θ=a ·b|a ||b |→结合θ∈[0,π],求出θ(2)解题思想:由于|a |,|b |及a ·b 都是实数,因此在涉及有关|a |,|b |及a ·b 的相应等式中,可用方程的思想求解(或表示)未知量.[跟踪训练1] 已知|a |=3,|b |=5,|a +b |=7,求a ·b 及a 与b 的夹角. 解 ∵|a +b |=7,∴(a +b )2=a 2+2a ·b +b 2=|a |2+2a ·b +|b |2=34+2a ·b =49,∴a ·b =152.设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=1523×5=12.又∵θ∈[0,π],故a 与b 的夹角θ=60°. 题型二 求向量的模例2 已知x =1是方程x 2+|a |x +a ·b =0的根,且a 2=4,〈a ,b 〉=120°. 求:(1)向量b 的模;(2)向量λb 的模. [解] (1)∵a 2=4,∴|a |2=4,即|a |=2. 把x =1代入方程x 2+|a |x +a ·b =0,得 1+|a |+a ·b =0,∴a ·b =-3,则a ·b =|a ||b |cos 〈a ,b 〉=2|b |cos120°=-3, ∴|b |=3.(2)由(1)知|b |=3, ∴|λb |=|λ||b |=3|λ|. 金版点睛极化恒等式求模长(1)两个结论①(a +b )2=a 2+2a ·b +b 2; ②(a +b )·(a -b )=a 2-b 2.证明 ①(a +b )2=(a +b )·(a +b )=a ·a +a ·b +b ·a +b ·b =a 2+2a ·b +b 2. ②(a +b )·(a -b )=a ·a -a ·b +b ·a -b ·b =a 2-b 2. 说明:下列结论也是成立的: (a -b )2=a 2-2a ·b +b 2,(a +b )·(c +d )=a ·c +a ·d +b ·c +b ·d .(2)由上述结论,我们不难得到4a ·b =(a +b )2-(a -b )2, 即a·b =14[(a +b )2-(a -b )2].我们把该恒等式称为“极化恒等式”. (3)应用向量数量积的运算律求向量的模的方法①求模问题一般转化为求模平方,与向量数量积联系,并灵活应用a 2=|a |2,勿忘记开方.②一些常见的等式应熟记,如(a ±b )2=a 2±2a ·b +b 2,(a +b )(a -b )=a 2-b 2等. 提醒:向量的模是非负实数;一个向量自身的数量积,等于它模的平方. [跟踪训练2] (1)已知|a |=63,|b |=1,a ·b =-9,则〈a ,b 〉=( ) A .120° B .150° C .60° D .30°(2)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a -b |,|a +b |.答案 (1)B (2)见解析解析 (1)cos 〈a ,b 〉=a ·b |a ||b |=-963×1=-32,又0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=150°,故选B.(2)解法一:|a +b |=a +b2=a 2+b 2+2a·b=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉 =52+52+2×5×5×co s π3=5 3.|a -b |=a -b2=a 2+b 2-2a·b=|a |2+|b |2-2|a ||b |cos 〈a ,b 〉 =52+52-2×5×5×co s π3=5.解法二:以a ,b 为邻边作▱ABCD ,设AC ,BD 相交于点E ,如图所示.∵|a |=|b |且∠DAB =π3,∴△ABD 为正三角形,∴|a -b |=|DB →|=5,|a +b |=|AC →|=2|AE →| =2|AB →|2-|BE →|2=252-⎝ ⎛⎭⎪⎫522=5 3.题型三 用向量数量积解决垂直问题例3 已知平面上三个向量a ,b ,c 的模均为1,它们相互之间的夹角为120°,求证:(a -b )⊥c .[证明] 证法一:∵|a |=|b |=|c |=1,且a ,b ,c 之间的夹角均为120°,∴(a -b )·c =a ·c -b ·c =|a ||c |cos120°-|b ||c |cos120°=0.∴(a -b )⊥c .证法二:如图,设OA →=a ,OB →=b ,OC →=c ,连接AB ,AC ,BC 的三条线段围成正三角形ABC ,O 为△ABC 的中心,∴OC ⊥AB . 又∵BA →=a -b ,∴(a -b )⊥c . 金版点睛要解决的问题是用向量表示,它往往对应一个几何图形;如果是几何的形式表示,它往往对应一个向量关系式.要善于发现这二者之间的关系,从一种形式转化为另一种形式,用哪种形式解决问题方便就选用哪种形式.[跟踪训练3] 若O 为△ABC 所在平面内一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .A ,B ,C 均不是答案 C解析 由(OB →-OC →)·(OB →+OC →-2OA →)=0,得CB →·(AB →+AC →)=0, 又∵CB →=AB →-AC →,∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|2-|AC →|2=0. ∴|AB →|=|AC →|.∴△ABC 为等腰三角形.1.若向量a 的方向是正北方向,向量b 的方向是西偏南30°方向,且|a |=|b |=1,则(-3a )·(a +b )等于( )A.32 B .-32C.23 D .-23答案 B解析 由题意知a 与b 的夹角为120°,∴a ·b =-12.∴(-3a )·(a +b )=-3a 2-3a ·b =-32.2.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模是( ) A .2 B .4 C .6 D .12 答案 C解析 (a +2b )·(a -3b )=a 2-a ·b -6b 2=|a |2-|a |×4×12-6×16=-72.解得|a |=6.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a -b |等于( ) A .1 B. 2 C. 3 D .2答案 A 解析 |a -b |=a -b2=a 2+b 2-2a ·b=12+12-2·1·cos〈a ,b 〉=2-2cos60°=1.4.已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.答案 -8或5解析 由3a +λb +7c =0,可得7c =-(3a +λb ),则49c 2=9a 2+λ2b 2+6λa ·b .由a ,b ,c 为单位向量,得a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.5.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61, (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.解 (1)因为(2a -3b )·(2a +b )=61, 所以4a 2-4a ·b -3b 2=61,所以4×42-4×4×3cos θ-3×32=61,cos θ=-12,又因为θ∈[0,π],所以θ=120°. (2)因为|a +b |2=a 2+2a ·b +b 2=16+2×4×3cos120°+9=13,所以|a +b |=13,同样可求得|a -b |=37.。

第02讲 空间向量的数量积运算(4种类型)

第02讲 空间向量的数量积运算(4种类型)

2023暑假新高二第02讲空间向量的数量积运算(4种类型)2023.08【知识梳理】一、空间向量的数量积1.两个向量的数量积.已知两个非零向量a、b,则|a|·|b|cos 〈a,b〉叫做向量a 与b 的数量积,记作a·b,即a·b=|a|·|b|cos 〈a,b〉.要点诠释:(1)由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同.(2)两向量的数量积,其结果是数而非向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定.(3)两个向量的数量积是两向量的点乘,与以前学过的向量之间的乘法是有区别的,在书写时一定要将它们区别开来,不可混淆.2.空间向量数量积的性质设,a b是非零向量,e 是单位向量,则①||cos ,a e e a a a e ⋅=⋅=<>;②0a b a b ⊥⇔⋅=;③2||a a a =⋅ 或||a = ④cos ,||||a b a b a b ⋅<>=⋅;⑤||||||a b a b ⋅≤⋅ 3.空间向量的数量积满足如下运算律:(1)(λa)·b=λ(a·b);(2)a·b=b·a(交换律);二、空间两个向量的夹角.1.定义:已知两个非零向量a、b,在空间任取一点D,作OA a = ,OB b = ,则∠AOB 叫做向量a 与b 的夹角,记作〈a,b〉,如下图。

根据空间两个向量数量积的定义:a·b=|a|·|b|·cos〈a,b〉,那么空间两个向量a、b 的夹角的余弦cos ,||||a ba b a b ⋅〈〉=⋅。

要点诠释:1.规定:π>≤≤<b a ,02.特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果090,>=<b a ,那么a 与b 垂直,记作b a ⊥。

12022-向量数量积的运算律

12022-向量数量积的运算律

向量数量积的运算律制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标:1、 掌握平面向量数量积的运算律及其运算;2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法;3、通过解题实践,体会向量数量积的运算方法.学习重点:向量数量积的运算律及其应用.学习难点:向量数量积分配律的证明.重点知识回顾:1、两个向量的夹角的范围是: ;2、向量在轴上的正射影正射影的数量为 ;3、向量的数量积(内积):a ·b = ;4、两个向量的数量积的性质:(1)b a ⊥⇔ ;(2)a a ⋅= 或a = ;(3)θcos = ;向量数量积的运算律平面向量数量积的常用公式证明:(1)(2)cb c a c b a b a b a b a b a a b b a ⋅+⋅=⋅+⋅=⋅=⋅=⋅⋅=⋅))(3(;)()())(2(;1λλλλ)(2222))(1(b b a a b a +⋅+=+22))()(2(b a b ab a -=-+典例剖析:例1、已知a =6,b =4,a 与b 的夹角为060,求:(1)b 在a 方向上的投影;(2)a 在b 方向上的投影;(3)例2、已知a 与b 的夹角为0120,a =2,b =3,求:()()b a b a 32-⋅+)())(;();()(b a b a b a b a 3232122+⋅--⋅(-+54取何值,问夹角为与t t b a -==0120,1例3、已知a =3,b =4,(且a 与b 不共线),当且仅当k 为何值时,向量b k a +与b k a - 互相垂直?变式:已知a =1, b =2, a 与b a -垂直.求a 与b 的夹角.练习题:求证菱形的对角线互相垂直.例4、已知a =2,b =4,0120,=b a ,求a 与b a -的夹角.课堂小结:跟踪练习:1、下列运算不正确的是 ( )A.()()c b a c b a ++=++B.()c b c a c b a ⋅+⋅=⋅+C.()b m a m b a m +=+D. ()()c b a c b a ⋅⋅=⋅⋅2、设1e 、2e 是两个单位向量,它们的夹角为060,则()()=+-⋅-2121232e e e e() A.29- B. 29C.8-D.83、已知7=a , 7=b ,7=+b a ,则a 与b 的夹角为( );4、已知:向量a 与b 的夹角为0120,且4=a , 2=b ,求:(1)b a +; (2)b a 43-; (3)()()b a b a 2-⋅+。

高二数学向量数量积的运算律

高二数学向量数量积的运算律

ab
a b 0 ∣AC∣=∣BD∣=
22
a b
即:AC=BD,长方形对角线相等
平面向量数量积运算律
小结:平面向量数量积运算规律
作业: (1)第111页练习A、B (2)预习2.3.3,并做课后练习A
不要做思想的巨人, 行动的矮子
;网客多拓客获客软件系统 网客多拓客获客软件系统 ;
互相垂直?
解:若向量a kb与a kb垂直, 根据向量垂直的性质,则
(a kb)( a kb)=0
(a

k
b)( a

k
b)
a2
-
k
a

b

k
a

b
-
k
2
2
b
∣a∣2 -k 2∣b∣2 9 16k 2 0
解得 : k 3 或k 3
44ຫໍສະໝຸດ 平面向量数量积运算律所以(a b) ( a) b a (b)
平面向量数量积运算律
由于a与a共线,b与b共线 a,b a, b
0时 (a) b ∣( a∣)∣ b∣cos a,b ∣a∣∣ b∣cos a,b (a b) ∣( a∣∣ b∣cos a,b ) ∣a∣∣ b∣cos a,b a (b) ∣a∣∣( b∣)cos a, b ∣a∣∣ b∣cos a, b
o
而∣a∣∣ b∣=∣b∣∣ a∣
B1 B
所以| b || a | cos b, a | a || b | cos a,b
即: a b b a 交换律
平面向量数量积运算律
由于a与a共线,b与b共线 a,b a, b
0时 (a) b ∣( a∣)∣ b∣cos a,b ∣a∣∣ b∣cos a,b (a b) ∣( a∣∣ b∣cos a,b ) ∣a∣∣ b∣cos a,b a (b) ∣a∣∣( b∣)cos a, b ∣a∣∣ b∣cos a, b

2.3.2、2.3.3向量积的运算公式及度量公式概述.

2.3.2、2.3.3向量积的运算公式及度量公式概述.

张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB要点核心解读1.向量数量积的运算律 a b b a ⋅=⋅)1((交换律); )()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律). 2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c AB B A ⋅=⋅== ,)(00/c b a c OB OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②AB 的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a == 则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c cb b ac b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 -3所示,若,,b a ==则=,,b a D b a -=+由+==a b a ||||||,b 可知,60oABC =∠b 与D所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值.于是,4||,5||==b a且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,C ⋅有最大值?[解析] 由三角形法则构造P B 及Q C 的数量积转化为实数范围内求最大值,,.Q ,B B CA QA C A AP P =+-=即,--=--=A A C---=⋅∴AC AB C B ().AP (.Q P ⋅+⋅-=B A AC AP AP .)()22.r AC AB AP AB AP AC -⋅=⋅+- =-+)(=⋅+-⋅r AC ..2..cos ||.||2r A AB +-.cos 2+-=r A bc ⋅当与同向时,⋅最大为.||.||ra AP =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:Q B P 与 的夹角θ为何值时,.CQ BP ⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(,0k A B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标,考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角.[解析] 解法一:根据,|||||,|||22b a b a ==有又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a a b a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -= 得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+ 得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B b a 0,,以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠这时,,0b a BA b a C -=+=而|,|||||b a b a -==即 .||||||==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30 =∠AOC即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围,考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b ,0231213=⨯-⨯=⋅b a 故有.b a ⊥ 由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433t t k -=故 ,47)2(41)34(41222-+=-+=+t t t t t k 即当2-=t 时,t t k 2+有最小值为⋅-47 [点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x 5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题:①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ). )14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D 2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a=+=|2|,1||),0b a b 则( ). 3.A 32.B 4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-OB O ().OC B (,0)2=-则△ABC 的形状为( ).A .正三角形B .等腰三角形C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(),6,4(==O 且,//,0⊥则向量=0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D 7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ). ||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //. 8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足⋅=PA PM AP 则,2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅F E A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||ob a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-=(1)求||tb a +的最小值及相应的t 值;(2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明: ;)1(EF PA =.)2(EF PA ⊥16.平面内有向量)1,2(),1,5(B ),7,1(===OP O OA 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。

空间向量数量积

空间向量数量积

A F
B E
D C
A
D
A
B
C
图一
D
C B 图二
二、垂直问题
例1、在平面内一条直线与这个平面旳一条斜线旳射影 垂直,那么它也与这条斜线垂直。
已知,如图,PO、PA分别是平面 内旳垂线、斜线, AO是PA在平面 内旳射影, l 且l⊥OA, 求证:l ⊥PA.
P
O
l
A
例2、如图,m, n是平面内的两条相交直线, 如果l m, l n,求证:l .
① (a) • b (a • b);数乘结合律 ② a • b b • a;交换律 ③ a • (b c) a • b a • c.分配律
不能 不能
不一定
例1、已知空间四边形ABCD的每条边和对角线都等 于a, 点E、F、G分别是AB、AD、DC的中点,
求:(1)AB AC;(2)AD DB;(3)GF AC. A
l
m
g
n
例3、已知空间四边形 OABC中,AOB BOC AOC, 且OA OB OC, M、N分别是OA、BC的中点,G是MN的 中点,求证:OG BC .
O
M
A
G
C
N
B
变式:正方体ABCD A1B1C1D1中,P是DD1的中点, O是底面ABCD的中心,求证: B1O 平面PAC .
(一)数量积旳定义
(1)空间向量旳夹角
已知两个非零向量 a,b ,在空间中任取一点O,作 OA a,OB b, 则AOB叫做向量a与b的夹角, 记作 a,b ,
ቤተ መጻሕፍቲ ባይዱ
(2)、数量积旳定义
①:零向量与任历来量旳数量积为0 ②: a • a a a cos a, a a 2

平面向量的数量积及运算律

平面向量的数量积及运算律

平面向量的数量积及运算律1. 引言平面向量是在平面上具有大小和方向的量。

在研究平面向量的运算中,数量积是一个重要的概念。

本文将介绍平面向量的数量积及其运算律。

2. 数量积的定义给定两个平面向量A和B,它们的数量积(也称为点积或内积)定义为 |A| |B| cosθ,其中 |A| 和 |B| 分别表示向量A和B的模长,θ 表示两个向量之间的夹角。

3. 数量积的性质平面向量的数量积具有以下性质:3.1 交换律对于任意两个向量A和B,有A ·B = B ·A。

3.2 分配律对于任意三个向量A,B和C,有A · (B + C) = A ·B + A ·C。

3.3 结合律对于任意三个向量A,B和C,有 (A + B) ·C = A ·C + B ·C。

3.4 数量积与运算顺序无关对于任意三个向量A,B和C,有 (A + B) ·C = A ·C + B ·C和A · (B + C) = A ·B + A ·C。

3.5 平行向量的数量积如果两个向量A和B平行(即夹角θ=0°或180°),则它们的数量积为 |A| |B|。

3.6 垂直向量的数量积如果两个向量A和B垂直(即夹角θ=90°),则它们的数量积为0。

4. 应用举例4.1 判断两个向量的关系通过计算两个向量的数量积,可以判断它们的夹角、平行性和垂直性。

例如,如果两个向量的数量积为0,则它们垂直;如果数量积为正数,则它们夹角小于90°;如果数量积为负数,则它们夹角大于90°。

4.2 计算向量的模长通过数量积的定义 |A| |B| cosθ,可以计算一个向量的模长。

例如,如果已知向量A和它与另一个向量的夹角θ,以及另一个向量的模长,则可以利用数量积计算出A的模长。

4.3 求解平面向量的夹角通过数量积的定义 |A| |B| cosθ,可以求解两个向量之间的夹角θ。

2.3.2 、2.3.3 向量积的运算公式及度量公式

2.3.2 、2.3.3 向量积的运算公式及度量公式

张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x --=所以=||要点核心解读1.向量数量积的运算律a b b a ⋅=⋅)1((交换律);)()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律).2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c B A ⋅=⋅== ,)(00/c b a c OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+ ,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此 ①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a ==则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c c b b a c b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 - 3所示,若,,b BC a AB ==则=CA ,B ,b a D b a -=+由+==a b a ||||||,b 可知,60o ABC =∠b 与B D 所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值. 于是,4||,5||==b a 且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k 解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,Q BP C ⋅有最大值?[解析] 由三角形法则构造B 及C 的数量积转化为实数范围内求最大值,,,B C A AP =+-=即,--=--=A A C---=⋅∴C B ().(.⋅+⋅-=A .)()22.r AP -⋅=⋅+- =-+)(AC AB AP =⋅+-⋅r AC ..2..cos ||.||2AP r A AC AB +-.cos 2+-=r A bc ⋅当与CB 同向时,CB AP ⋅最大为.||.||ra =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..Q P C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:C Q B P 与 的夹角θ为何值时,.⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k AC AB ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(B C ,0k A AC B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标, 考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角. [解析] 解法一:根据,|||||,|||22b a b a ==有 又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a ab a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -=得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B OA b OB a OA 0,,、以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠ 这时,,0b a b a -=+= 而|,|||||b a b a -== 即 .||||||BA OB OA ==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30=∠AOC 即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围, 考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b,0231213=⨯-⨯=⋅b a 故有.b a ⊥由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a 即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433tt k -=故 ,47)2(41)34(41222-+=-+=+t t t tt k 即当2-=t 时,t t k 2+有最小值为⋅-47[点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对 3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题: ①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ).)14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a =+=|2|,1||),0b a b 则( ).3.A 32.B4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-O ().(,0)2=-OA 则△ABC 的形状为( ). A .正三角形 B .等腰三角形 C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(B ),6,4(==O OA 且,OB //,C 0AC OA ⊥则向量=C 0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ).||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //.8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足=PA PM 则2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ 11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x 12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a 三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||o b a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-= (1)求||tb a +的最小值及相应的t 值; (2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明:;)1(EF PA = .)2(EF PA ⊥16.平面内有向量)1,2(),1,5(),7,1(===O 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。

条据书信 向量积的分配律证明

条据书信 向量积的分配律证明

向量积的分配律证明(1)实数与向量的运算法则:设、为实数,则有:1)结合律:(a)()a。

2)分配律:()a a,(a b)a b。

(2)向量的数量积运算法则:1)a b b a。

2)(a)b(a b)a b a(b)。

3)(a b)c a c b c。

(3)平面向量的基本定理。

e1,e2是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a,有且仅有一对实数1,2,满足a1e12e2。

(4)a与b的数量积的计算公式及几何意义:a b|a||b|cos,数量积a b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

(5)平面向量的运算法则。

1)设a=(x1,y1),b=(x2,y2),则a+b=(x1x2,y1y2)。

2)设a=(x1,y1),b=(x2,y2),则a-b=(x1x2,y1y2)。

3)设点A(x1,y1),B(x2,y2),则AB OB OA(x2x1,y2y1)。

4)设a=(x,y),R,则a=(x,y)。

5)设a=(x1,y1),b=(x2,y2),则a b=(x1x2y1y2)。

(6)两向量的夹角公式:cos(a=(x1,y1),b=(x2,y2))。

(7)平面两点间的距离公式:。

dA,B=|AB|(A(x1,y1),B(x2,y2))(8)向量的平行与垂直:设a=(x1,y1),b=(x2,y2),且b0,则有:1)a||b b=a x1y2x2y10。

2)a b(a0)a·b=0x1x2y1y20。

(9)线段的定比分公式:P(x,y)(x,y)P(x,y)PP设P,,是线段的分点,是实数,且PP PP2,则111222121x yx1x2OPOP211)。

(1t)OP OP1OP tOP12(t1y1y211(10)三角形的重心公式:△ABC三个顶点的坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则△ABC 的重心的坐标为G(x1x2x3y1y2y3,)。

向量的数量积运算律

向量的数量积运算律

03
向量数量积在几何中的应用
力的合成与分解
力的合成
根据向量加法的平行四边形法则,两个力可以合成一个合力。合力的方向和大小可以通过向量的加法 运算得出。
力的分解
一个力可以分解为两个或多个分力,分力的方向和大小可以通过向量的减法运算和数乘运算得出。
速度和加速度的研究
速度
速度是一个向量,表示物体在单位时间内移动的距离和方向。速度的大小表示物体运动的快慢,方向表示物体 运动的方向。
02
向量数量积的运算律
交换律
总结词
向量数量积的交换律是指两个向量的数量积与其顺序无关。
详细描述
设向量$mathbf{a}$和$mathbf{b}$,则有$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$,无论$mathbf{a}$和$mathbf{b}$的顺序如何。
结合律
总结词
向量数量积的结合律是指三个向量的数量积的结合顺序无关。
详细描述
设向量$mathbf{a}$、$mathbf{b}$和$mathbf{c}$,则有$(mathbf{a} cdot mathbf{b}) cdot mathbf{c} = mathbf{a} cdot (mathbf{b} cdot mathbf{c})$,无论$mathbf{a}$、$mathbf{b}$和$mathbf{c}$的组合顺序 如何。
通过代数式展开,可以将复杂的 向量运算转化为简单的标量运算, 提高计算效率。
坐标系法
01
坐标系法是一种常用的向量运 算技巧,通过在坐标系中表示 向量,可以将向量运算转化为 坐标运算。
02
在二维坐标系中,任意向量 $vec{A}$可以表示为$(x, y)$, 在三维坐标系中可以表示为$(x, y, z)$。

向量的运算基本定律

向量的运算基本定律

向量的运算基本定律1•实数与向量的积的运算律:设入、卩为实数,那么:J J⑴结合律:入(卩a )=(入卩)a;⑵第一分配律:(入+卩)a = X a+ a ;⑶第二分配律:X( a+b)= X a+x b.2•向量的数量积的运算律:⑴a • b= b • a (交换律);(2)( ..;“a) • b= (a • b) = ;;” a • b= a • ( b);(3)( a+b) • c= a • c +b • c.3.平面向量基本定理:如果e i、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数X i、X 2,使得a=X iei+ X 2e2.不共线的向量e i、e2叫做表示这一平面内所有向量的一组基底.4.向量平行的坐标表示:设a=(x i,y i), b=(x2,y2),且 b = 0,贝U a b(b = 0) := X i y? - x?y i 二 0 .5.a与b的数量积(或内积):a • b=| a|| b|cos 0 .55. a • b的几何意义:数量积a • b等于a的长度| a|与b在a的方向上的投影| b|cos 0的乘积.6.平面向量的坐标运算:4 4 4⑴设a= (x1, yj , b=化,y2),则a+b =(x「x?, % y?).⑵设a= (x i, y i), b =(X2, y2),则a- b =(治-x?, % - y?)./ 5 t T T⑶设A(为,yj,BN y?),则AB =OB -0人=区-为』2 -y)⑷设a=(x,y)^ R,则■ a=(' X, ■ y).、T 呻* 呻⑸设a=(x i, y) b =区,y2),则a • b =(住屮财.7 .两向量的夹角公式:,y i), bg, y?)).8.平面两点间的距离公式:d A,B = |AB F:$AB AB f ;'(X2 _X i)2 (y? - y i)2 (A (x i, y i),B(x?, y?)).9.向量的平行与垂直:设a=(x i,y i), b=(X2,y2),且 b = 0,则A|| b= b= 入 a - x i y 2 "2力=0.a _ b(a +0) = a • b=0:= x 1x 2 y 1y^ 0.10 •线段的定比分公式:设R(x i ,yj , P 2(X 2,y 2), P(x,y)是线段RF 2的分点,入是实数,且RP = A.PF 2,贝U *—1 OP =tOP*+(i —t)OP2(). i +人11 •三角形的重心坐标公式: △ ABC 三个顶点的坐标分别为A(X i ,y i )、B(X 2,y 2)、C(X 3,y 3),则厶ABC 的重心的坐标 i2 .点的平移公式:I=x —hI =y -k注:图形F 上的任意一点P(x , y)在平移后图形F 上的对应点为P (x , y ),且PP 的坐 标为(h,k).13.“按向量平移”的几个结论:⑴点P(x, y)按向量a=(h, k)平移后得到点P '(x h, y k).⑵ 函数y=f(x)的图象C 按向量a=(h,k)平移后得到图象C ',则C '的函数解析式为 y = f (x -h) k .⑶ 图象C '按向量a=(h,k)平移后得到图象C,若C 的解析式y 二f(x),则C 的函数解 析式为 y = f (x h) - k .⑷曲线C: f(x,y)=O 按向量a= (h,k)平移后得到图象C ',则C '的方程为 ⑸ 向量m=(x, y)按向量a=(h, k)平移后得到的向量仍然为m=(x, y). 4 .三角形五“心”向量形式的充要条件:设O 为ABC 所在平面上一点,角A,B,C 所对边长分别为a,b,c ,则 2 ⑴O 为 ABC 的外心=OA -OB-OC . T T T 呻 ⑵O 为 ABC 的重心 二OA OB OC =0.是G( X-! x 2 x 3 3 y i y 2 y 3) 3 )=x h 「2 2 二 OP =OP PP⑶O为ABC的垂心二OA OB =OB OC =OC OA⑷O为ABC的内心二aOA bOB cOC4 =0.⑸O为ABC的.A的旁心= aOA 二 bOB cOC。

向量数量积的坐标表示

向量数量积的坐标表示

05
向量数量积的扩展
向量点乘的坐标表示
总结词
向量点乘的坐标表示是两个向量的对应坐标相乘,然后求和。
详细描述
向量点乘的坐标表示是两个向量的对应坐标相乘,然后求和。设向量$mathbf{A} = (a_1, a_2, a_3)$,向量$mathbf{B} = (b_1, b_2, b_3)$,则$mathbf{A} cdot mathbf{B} = a_1b_1 + a_2b_2 + a_3b_3$。
在工程中的应用
机械系统分析
向量数量积可以用于分析机械系 统的运动状态,例如分析机器人 的关节运动、车辆的行驶轨迹等。
控制系统分析
向量数量积可以用于控制系统的 分析和设计,例如分析系统的稳 定性、设计控制算法等。
信号处理
在信号处理中,向量数量积可以 用于分析信号的频率和相位,例 如进行频谱分析和滤波器设计等。
$mathbf{C} = (c_1, c_2, c_3)$,则$mathbf{A} cdot (mathbf{B} times mathbf{C}) = (a_1(b_2c_3 - b_3c_2), a_2(b_3c_1 - b_1c_3), a_3(b_1c_2 - b_2c_1))$。
感谢观看
mathbf{B} = mathbf{B} cdot mathbf{A}$。
数量积满足分配律,即$(mathbf{A}
+
mathbf{பைடு நூலகம்}) cdot mathbf{C} = mathbf{A}
cdot mathbf{C} + mathbf{B} cdot
mathbf{C}$。
数量积为0当且仅当两个向量垂直,即 $mathbf{A} cdot mathbf{B} = 0$当且仅当 $mathbf{A} perp mathbf{B}$。

向量的数量积的运算律

向量的数量积的运算律

像十分夸张同时还隐现着几丝华丽,矮胖的暗橙色细小棕绳一样的胡须仿佛特别粗野同时还隐现着几丝标新立异。那一双瘦长的纯黑色轻盈似的眉毛,仿佛真是飘忽不定同时
还隐现着几丝小巧。再看女政客T.克坦琳叶女士的身形,她有着古怪的仿佛软管般的肩膀,肩膀下面是短小的仿佛银剑般的手臂,她轻灵的淡红色榴莲般的手掌好像十分绚
辫,戴着一顶显赫的水青色猪肺样的拖布麒灵帽,他上穿高贵的暗白色炸鸡般的长椅海光银蕉甲,下穿破烂的的淡蓝色彩蛋般的肥肠蟒鹰围裙,脚穿异形的暗灰色兔子般的烟
枪烟波靴……有时很喜欢露出露着古老的紫宝石色螃蟹造型的鸡窝微宫肚脐,那上面上面长着镶着银宝石的墨灰色的细小海胆形态的体毛。整个形象认为很是时尚却又透着一
CA CB ,D是CB 的中点, E是AB上的点,
且AE 2EB, 求证: AD CE
A
E
C
D
B
作业:练习册 P92全部
高贵的银蕉甲的副考官是
I.提瓜拉茨局长。他出生在欧桑姆柯佛族群的牛屎海滩,绰号:铁耳水牛!年龄看上去大约十六七岁,但实际年龄足有八千多岁,身高一
米六左右,体重约八十多公斤。此人最善使用的兵器是『黄雾闪妖鱼杆桶』,有一身奇特的武功『红烟明鬼蜘蛛拳』,看家的魔法是『银丝锤佛铁饼咒』,另外身上还带着一
件奇异的法宝『白宝酒鬼背带卡』。他有着凸凹的墨蓝色木偶一样的身材和怪异的墨紫色邮筒形态的皮肤,似乎有点病态但又有些猜疑,他头上是破旧的钢灰色路灯造型的美
丝标准……I.提瓜拉茨局长长着摇晃的蓝宝石色天鹅形态的脑袋和变异的青古磁色牛肝般的脖子,最出奇的是一张细长的亮白色海豹样的脸,配着一只浮动的青远山色菜碟
一样的鼻子。鼻子上面是一对怪异的亮蓝色软盘一样的眼睛,两边是很大的紫罗兰色烟盒耳朵,鼻子下面是普通的海蓝色香蕉似的嘴唇,说话时露出彪悍的紫红色地痞样的牙

向 量 数 量 积

向 量 数 量 积

向量数量积
向量的数量积,也称为内积或点积,是两个向量的一种特殊乘法运算。

向量数量积的数学表达式为:如果有两个非零向量a和b,那么它们的数量积定义为|a||b|cosθ,其中θ是向量a与向量b之间的夹角。

在笛卡尔坐标系中,如果向量a=(x₁,y₁)和向量b=(x₁,y₁),那么它们的数量积可以通过它们的坐标进行计算,即a·b=x₁·x₁+y₁·y₁。

向量数量积的几何意义可以理解为一个向量在另一个向量方向上的投影的长度与第二个向量长度的乘积。

这个运算在物理中有着广泛的应用,例如在分析力的作用时,力和位移的点积可以用来计算做功的多少。

向量的数量积是一个非常重要的概念,它在数学、物理以及工程学等领域都有着广泛的应用。

了解其定义和性质对于解决相关问题是非常有帮助的。

向量的运算法则

向量的运算法则

向量的运算法则(1)实数与向量的运算法则:设λ、μ为实数,则有:1)结合律:a a )()(λμμλ=。

2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。

(2)向量的数量积运算法则: 1)ab ba••=。

2))()()(b a b a b a ba λλλλ===•••。

3)cb c a cb a •••+=+)(。

(3)平面向量的基本定理。

21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。

(4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =•,数量积b a •等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。

(5)平面向量的运算法则。

1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。

2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。

3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x yy =-=--。

4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。

5)设a =11(,)x y ,b =22(,)x y ,则a •b =1212()x x y y +。

(6)两向量的夹角公式:121222221122cos x y x yθ+⋅+(a =11(,)x y ,b =22(,)x y )。

(7)平面两点间的距离公式:,A Bd =||AB AB AB =⋅222121()()x x y y -+-A 11(,)x y ,B 22(,)x y )。

(8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有:1)a ||b ⇔b =λa 12210x yx y ⇔-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A E C D B
作业:练习册P92全部
; / 无尘车间施工 无尘室工程 洁净室装修 洁净棚 无尘车间工程承包
wnd74xpy
的出来的糙汉子。”“本王也就除了长的一张祸国妖民的脸之外,其余都是堂堂的七尺男儿,你说我糙我也认了,就当你是在夸我 吧!”“你这个人怎么听不出好赖话呢,我这是在讥讽。”“我知道,但只要是你说的话,我都想听。”“你没喝糊涂吧?真是受不了 你,快点喝完了就回去吧,我可不负责当你们天香楼的解语花。”“呵呵,解语花,你行吗?”“你„„”纪雪芙生来第一次被人怼, 心中甚是闷闷不平,将面前酒杯里的酒一饮而尽,萧煜痕见她先喝了杯中酒,这才端起酒杯喝了下去。“怎么样,这酒不错吧?”“呜 哇,好辣。”第017章 浇愁酒更愁“你倒是慢点喝,没人跟你抢。”纪雪芙白了萧煜痕一眼,“谁说没人抢,你坐在这里跟我喝酒,难 道你不是人啊?”“这有什么好生气的,就说你们女人小家子气,还不信。我国舅府多得是这‘桃花醉’,想喝到时候我叫人送几坛给 你不就得了吗?”“此话当真?”“当真。”“那我还是不要了。”“为什么?”“我怕你下毒毒死我。”“毒死你对我有什么好 处?”“好处可多了,这样你就能觊觎我雪城的财富。”“喔?听你这么一说,这倒是个好主意,不然我现在下毒还来得及吗?”萧煜 痕接着纪雪芙的话茬说下去,不知道是酒精的作用还是纪雪芙真的气急了,脸上神色通红,可爱极了。“雪芙姑娘,我能问你个问题 吗?”“请说。”“对你来说,朋友和亲情哪个更重要?”“对我而言,亲情就像天上的太阳一样,每天都能见到,早就习惯了,虽然 有时还会埋怨太阳太热太毒,有耀斑,有焦灼,有烦热。但是没有了太阳会怎么样呢?一生就会像是从未见过太阳的树苗,不会长大, 也不会成长为参天大树,亲情是相辅相成的必然。而友情就像是火,一把烧完了就没有了。玩火的后果就是有可能自食其果。如果被友 情的火灼烧了,肯定会很疼,有很深刻的记忆,或许也是一辈子的伤痕。 ” “如果曾经照耀过你的太阳突然消失在人海里,你还会相 信这个世界依然光明吗?”“信,你不信吗?”“我本可以容忍黑暗,如果我不曾见过太阳。而然阳光已经使我荒凉,成为更新的荒 凉。”“每一个人都可以是太阳,也可以是把火,但是如果太阳不是常常照耀着我的那个太阳,不是我的守护者,可能我并不会很难过。 如果离开的人是曾经用火烧过我,可能我会刻有鲜明的记忆,既然什么都无法改变,为什么不顺其自然?”纪雪芙说完这句话,才发现 眼前的酒坛早就空空如也,萧煜痕的脸上鼻尖也微微泛红。但他如鹰钩般的眼睛像是一口枯井,又像是一把冰刃,直戳纪雪芙的心底, 盯着她久久不肯离去。“或许你说得对。”萧煜痕苦涩的挤出一个笑容,笑的很是勉强,或许他自己心里的痛苦也就只有他自己知道吧。 “雪芙姑
答案: -72 .
例4:已知单位向量 e, e 的夹角为 60 ,
0 1 2
且 a 2e e ; b 3e 2e
1 2 1
2
求a b, 及 a与b的夹角
例5. 已知
a 3, b 4(且a与b不共线), 当且仅当k为何值时,向量 a kb 与a-kb互相垂直?
例6在等腰直角三角形 ABC 中,C是直角, CA CB,D是CB的中点,E是AB上的点, 且AE 2 EB, 求证:AD CE

思考:我们已经知道,实数乘法满足 结合律,向量的数量积满足结合律吗?
即 ( a b ) c a ( b c ) 成立吗?
答案: 因为上式左边是与 c 共线的向量, 右边是与a 共线的向量, 而a 和c 的方向 不一定相同的,所以上 式不成立.
(三)举例:
例1 求证: (1) ( a b ) 2 a 2 a b b ; ( 2) ( a b ) ( a b ) a b .
2 2 2 2
练习:已知平行四边形 ABCD 中, 设 AB a, AD b,求证: |a b| |a b| 2 (| a | | b | )
2 2 2 2
例2:已知 | a || b | 5,
a与b的夹角为 , ,求 | a b |, |a b| 3
例3 已知 a 6, b 4, a与b的夹角为 60, 求(a 2b ) (a 3b ).
平面向量的数量积 的运算律
• •
(一) 复习: 1平面向量的数量积
定义:已知两个非零向 量 a 和 b , 它们的夹角
为 ,我们把数量 a b cos 叫做向量 a 和 b 的数量 积(或内积),记作 a b ,即1 ) a b a | b | cos .
( 2) a b a b 0 . a b (3) cos . a b
(4) a b a b .
(二)平面向量数量积的运算律
( 1 ) a b b a (交换律) ; ( 2) ( a ) b ( a b ) a ( b ) ; ( 3) ( a b ) c a c b c .
(3) ( a b ) c a c b c的证明:
A
2
b a
O
B
1
A1
c
B1
C
证明: 任取一点O, 作OA a , AB b , OC c. 方向上的投影的和 . 由此可证,运算律( 3 )成立
因为a b (即OB )在c 方向上的投影等于a、 b 在c
相关文档
最新文档