第六章实数ppt

合集下载

实数(共16张PPT)优秀

实数(共16张PPT)优秀
§1.6实数域
第一页,共16页。
第二页,共16页。
§1.6实数域
• 一、无理数的引入 • 二、实数的无限小数定义 • 三、闭区间套定义实数的方法
• 四、实数的运算 • 五、实数集的性质
第三页,共16页。

第四页,共16页。
二、实数的无限小数定义
• 阿基米德公理 • 度量线段长度 • 实数的概念 • 实数的顺序 • 实数集的稠密性
第十六页,共16页。
第六页,共16页。
第七页,共16页。
第八页,共16页。
第九页,共16页。
第十页,共16页。
第十一页,共16页。
实数 (无限小数)
有理数(无限循 环小数)
无理数(无限不 循环小数)
正有理数

负有理数
正无理数
负无理数
第十二页,共16页。
第十三页,共16页。
第十四页,共16页。
第十五页,共16页。
第五页,共16页。
阿基米德公理
三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义

实数ppt课件

实数ppt课件

原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称

02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。

实数ppt课件

实数ppt课件

方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度

第六章第3课《实数》课件 (共23张PPT)

第六章第3课《实数》课件 (共23张PPT)

绝对值:实数a的绝对值,记为|a|,它 是一个非负实数.
几何意义: |a|表 示点x到原点0的距 0 ( a = 0) 离.而| a-b |表示点a -a( a﹤0) 与点b的距离. a( a﹥ 0 )
|a| =
倒数:如果 a ≠ 0 ,那么它的倒数为
1. a
乘积是1的两个数互为倒数.若a与 b互为倒数,则ab=1.
回顾 探究1 有理数包括哪些数?
正有理数 使用计算器计算,把下列有理数写成 整数 小数的形式,你有什么发现? 有理数 有理数 零 分数 负有理数
9 47 11 3 47 5 3 像 = 5.875 , 3, = 0.6 , 3= 3.0,5 , , , , . 8 11 9 9 8 5 . . . . 9 5 11 = 0.5. = 0.81 , = 0.12 , 9 11 9 ★任何一个有理数都可以写成有限小 数或无限循环小数的形式.
-4
-3
-2
-1
0
1
2
3 O’ 4

探究3:你能在数轴上表示 2 和 吗? 2
2
-2 -1 0 1
2
2 3 4
每一个无理数都可以用数轴上的一个点 来表示.数轴上的点有些表示有理数,有些 表示无理数.
四、实数与数轴上的点的对应关系
每一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一点都表示一个实数。
48
(6) 比较大小:-7
思考题
如图,数轴上表示1、 2 的对应点分别是A、 B,点B关于点A的对称点为C,则C点所表示 的数是( C )
A.
2 1 B. 1- 2
C. 2 - 2 D. 2 2
C A B
2
0

第六章实数复习(公开课)ppt课件

第六章实数复习(公开课)ppt课件

在几何图形中,我们也需要使用在绘制函数图像时,我们需要使用实 数。例如,绘制一次函数、二次函数 、三角函数等图像时都需要用到实数 。
科学问题中的实数应用
物理测量
在物理学中,许多物理量都是用 实数来表示的。例如,物体的速 度、加速度、力等都需要用到实
总结词
实数减法的运算律
详细描述
实数减法具有一些重要的运算律,如差不变性质、减法结 合律和减法交换律等。这些运算律可以帮助我们简化复杂 的减法计算,提高计算的准确性和效率。
实数的乘法
总结词
实数乘法的定义与性质
详细描述
实数乘法是数学中的基本运算之一,它具有结合律、交换 律和分配律等性质。实数乘法可以用来解决许多实际问题 ,如计算面积、解决概率问题等。
根式的化简
化简根式是指将根式化简为一个最简 形式的过程。例如,√8=2√2,因为8 可以分解为4×2,而4的平方根是2, 所以√8=2√2。
Part
05
实数的应用
生活中的实数应用
长度测量
在日常生活中,我们经常需要测 量物体的长度、宽度和高度等, 这些都需要用到实数。例如,测 量房间的尺寸、家具的大小等。
总结词
实数乘法的几何意义
详细描述
实数乘法的几何意义可以理解为将数轴上的点进行拉伸或 压缩。在数轴上,一个数乘以另一个数的结果等于一个数 覆盖另一个数的长度。
总结词
实数乘法的运算律
详细描述
实数乘法具有结合律、交换律和分配律。结合律是指 (ab)c=a(bc);交换律是指ab=ba;分配律是指 a(b+c)=ab+ac。这些运算律可以帮助我们简化复杂的乘 法计算,提高计算的准确性和效率。
在数轴上进行乘法运算时,将数 轴上的每个点乘以一个正数或负 数,长度会相应地扩大或缩小。

人教版七年级数学下册课件:6.3实数 (共32张PPT)

人教版七年级数学下册课件:6.3实数 (共32张PPT)


2
3
4
3.人为构造的数 0.1010010001
(每两个 1之 间 依 次 增 加 一 个 0 )
1 2, 1、下列各数 , , 0 ( 3) 3.14, 2 , 7 中,有理数的个数有( C ) A 2个 B 3个 C 4个 D 5个 3 2、在 0 , 0.100100010000 , 3 , 8 3 3 , 9中,无理数分别 1 3 0 . 1001000100 00 是 。 9 3
3. - 6 是 6 的相反数。π -3.14的相反 数是3.14-π 。
1、设 3 对应数轴上的点是A, 3 对应数 轴上的点是B,那么A、B间的距离是 2 3。 2、在数轴上与原点的距离是 2 6 的点所表 示的数是 2 6 。 3、求下列各数的相反数:
3
2,
3 , 4
3 2,
-3 -2 -1 0
3.6 3.6
1 2 3 4
有理数都可以用数轴上的点表示
探究 直径为1个单位长度的圆从原点沿
数轴向右滚动一周,圆上的一点由原点 到达O′,点O′的坐标是多少?
O OO′= π
1
2
3 O′
4
点O′对应的数是π
无理数π可以用数轴上的点表示
以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧, 与正半轴的交点表示什么?
3
无限不循环小数 无限不循环小数叫无理数 有理数和无理数统称为实数
1.7320
3.14159265
归纳
实数的分类
正有理数 有理数
实 数 无理数
0
负有理数
正无理数 负无理数
有限小数或 无限循环小数
无限不循环小数

第六章实数复习(公开课)ppt课件

第六章实数复习(公开课)ppt课件

19世纪
数学家逐步完善实数理论 ,形成了完备的实数体系 ,为数学分析、连续函数 等研究奠定了基础。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以转化为加法运算,即a-b=a+(-b)。
总结词
减法运算的运算律
详细描述
减法运算同样满足交换律和结合律,即a-b=b-a和(ab)-c=a-(b+c)。
总结词
减法运算的运算性质
详细描述
减法的可逆性也是减法的一个重要性质,每一个数都有 唯一的相反数;另外,0是减法的单位元,任何数与0 相减都等于它本身。
总结词
加法运算的运算律
详细描述
加法运算还有一些特殊的运算律,例如,任何数与0相加 都等于它本身,即a+0=a;相反数相加等于0,即a+(a)=0。
总结词
加法运算的运算性质
详细描述
加法运算还有一些重要的运算性质,例如,加法的可逆性 ,即每一个数都有加法逆元,与它相加等于0;加法的单 位元,即有一个特殊的数0,任何数与它相加都等于它本 身。
实数在几何学中有着广泛的应用,例如在计算长度 、面积和体积时,需要使用实数表示测量值。
函数定义域与值域
实数可以用来定义各种数学函数,包括代数函数、 三角函数、指数函数和对数函数等,同时函数的值 域也由实数构成。
数学分析基础
实数对于数学分析来说是必不可少的基础,极限、 连续性和可微性的定义都离不开实数。
在物理中的应用
80%
测量与计算
在物理学中,实数常被用于表示 和计算各种物理量,如长度、时 间、质量、电荷等。
100%
物理定律的数学表达
许多物理定律可以用实数表示的 数学公式来描述,例如牛顿第二 定律 F=ma。

《实数》ppt课件

《实数》ppt课件

指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。

人教版七年级下册 第六章 实数 6.3 实数 课件(共16张PPT)

人教版七年级下册  第六章 实数  6.3 实数 课件(共16张PPT)

3 1.7320
3 5 1.710
5 2.2360 3 7 1.913
3.14159265
无限不循环小数
无限不循环小数叫无理数
我们把这类无限不循环的小数叫做无理数。
☆无理数的特征:
1.圆周率及一些含有 的数 2 1
2.开方开不尽数 2、3 5
注意:带根号 的数不一定 是无理数
3
2
0.5050050005 (每两个5之间依次增加一个 0)
正有理数: 9 , __________________;
正无理数:_0_.5_0_5_0_0_5_0_0_0_5___,_3_3__, ;
3
1
负有理数: 8 , ____________3______;
,
正无理数: 5 2 __________________;
2 ___2___ ______ 0 _0___
a是一个实数,它的相反数为 -a
一个正实数的绝对值是它本身; 一个负实数的绝对值是它的相反数; 0的绝对值是0
1、正实数的绝对值是 它本身 ,0的绝对值是 0 , 负实数的绝对值是它的相反数 .
2、 3 的相反数是 3 ,绝对值是
3、一个数的绝对值是 p ,则这个数是 2
4、比较大小:-7 大于 50
3.
p 2
.
5、绝对值等于 5 的数是 5 。
(1)( 3 2) 2; (2)3 3 2 3
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
解:由题知,a010 a
2 实数: __5_, _9_,_3__8,__13_,_0._•_,_0_,_2__,0_.5_0_5_0_050005 , 3 3

《实数》课件精品 (公开课)2022年数学PPT

《实数》课件精品 (公开课)2022年数学PPT

情境引入2
两位同学背靠背,规定向前为正,
一人向前走3步,记作
,
一人向后走3步 ,记作
.
对照数轴,说出-3与+3两数的相同点和不同点. 你还能说出具备这些特征的成对的数吗?
一 相反数
探究一 相反数的概念
活动1:观察下列一组数+1和-1,+2.5和-2.5, +4和-4,并把它们在数轴上表示出来.
思考: 1)上述各对数之间有什么特点? 2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗? 4)表示各对数的点在数轴上有什么位置关系?
9 35
64
π

0.6
3 4
3 9
0.13
(1)有理数: {
9
64

0.6
3
4
3 0.13
π (2)无理数: { 3 5
3 9
(3)整数: { 9
(4)负数: { 3
4
(5)分数: {

0.6
(6)实数: {
64 3
3 9
3 0.13
4
3


} } }

5. 比较 3 7 与6的大小.
解: ∵37 >36 ∴ 3 7 > 6.
二 多重符号的化简 问题1:a的相反数是什么?
a 的相反数是-a , a可表示任意有理数. 问题2:如何求一个数的相反数?
在这个数前加一个“-”号.
问题3:若把 a分别换成+5,-7,0时,这些数的相 反数怎样表示?
a = +5, a = -7, a = 0,
- a = -(+5) - a = -(-7) -a = 0
思考 由此你可以得到什么结论? 有理数都可以化成有限小数或无限循环

实数ppt课件人教版

实数ppt课件人教版

实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版

人教版数学七年级下册课件6.3实数(共20张PPT)

人教版数学七年级下册课件6.3实数(共20张PPT)
-a,当a 0时.
例1 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5,1 3 3 是什么数的相反数;
(3)求 3 64 的绝对值;
(4)已知一个数的绝对值是 3 ,求这个数. 解:(1) 6 的相反数是 6 ;π 3.14 的相反数是 3.14 π .
(2) 5 是 5 的相反数 ;1 3 3 是 3 3 1 的相反数.
解: 1 5 π 2.236 3.142 5.38;
2 3 2 1.732 1.414 2.45 .
课堂小结
1.什么是无理数?什么是实数? 2.实数的分类; 3.实数与数轴,实数的相反数、绝对值; 4.实数的大小比较; 5.实数的运算.
如: π__<_ 3.146
3 _<__1.732
实数的运算
实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方 运算,而且正数和0可以进行开平方运算,任意一个实数可以进行 开立方运算.
有理数的运算法则和运算性质同样适用于实数. 实数的混合运算顺序:先乘方、开方,再乘除,后加减.
例2 计算下列各式的值:
实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数和0可以进行开平方运算,任意一个实数可以进行开立方
运算. (2)指出
是什么数的相反数;正无理数
(2)

, 无理=数

(3)
所以
的绝对值是4.
3232232223…(两个3之间依次多1个2).
负无理数
(3)求
的绝对值;
无限不循环小数
14159265…也是无理数 .
运算.
有理数关于相反数和绝对值的意义同样适用于实数.
正无理数
实数 零 上边的分数都可以写成有限小数或者无限循环小数的形式.

《实数》PPT课件6

《实数》PPT课件6

6、有志者事竟成。
7、耐心之树,结黄金之果。
8、百败而其志不折。
9、失败是块磨刀石。
10、忍耐和坚持是痛苦的,但它会逐给你好处。
11、骆驼走得慢,但终能走到目的地。
12、耐心是一切聪明才智的基础。
13、伟大的作品,不是靠力量而是靠坚持才完成的。
14、勤勉。不浪费时间,该做就做。
15、如果相信自己能够做到,你就能够做到。
1 少壮不努力,老大徒悲伤。—— 汉乐府古辞《长歌行》
2 业精于勤,荒于嬉。—— 韩 愈《进学解》
3 一寸光阴一寸金,寸金难买寸光阴。——《增广贤文》
4 天行健,君子以自强不息。——《周易·乾·象》
5 志不强者智不达。——《墨子·修身》
6 青,取之于蓝而青于蓝;冰,水为之而寒于水。 ——《荀子·劝学》
7 志当存高远。—— 诸葛亮《诫外生书》
8 丈夫志四海,万里犹比邻。—— 曹 植《赠白马王彪》
9 有志者事竟成。 ——《后汉书·耿 列传》
11 会当凌绝顶,一览众山小。 —— 杜 甫《望岳》
12 岁寒,然后知松柏之后凋也。——《论语·子罕》
13 天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为。——《孟子·告子下》
20 位卑未敢忘忧国,事定犹须待盖棺。—— 陆 游《病起》
1 人生的旅途,前途很远,也很暗。然而不要怕,不怕的人的面前才有路。—— 鲁 迅
2 人生像攀登一座山,而找寻出路,却是一种学习的过程,我们应当在这过程中,学习稳定、冷静,学习如何从慌乱中找到生机。 —— 席慕蓉
3 做人也要像蜡烛一样,在有限的一生中有一分热发一分光,给人以光明,给人以温暖。—— 萧楚女
坚持不懈的名言
1、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
被开方数
平方根的定义
如果一个数X的平方等于a,即X2=a,那么这个数X 叫做a的平方根(二次方根)
a的平方根表示为
a
读 作 : 正 , 负 根 号 a
a
表 示 a的 算 术 平 方 根
- a
表 示 a的 算 术 平 方 根 的 相 反 数
a
x2 = a
表 示 a的 平 方 根
X= a

有理数集合 无理数集合

3、说出下列数的相 1.7
2 3
32
1.4 2
1.
64 64 9
3
2007 2 (1) 9 2 3
2.
3.
2 3
4.
32 2 2 3 2 3
练习
1.如果一个数的平方根为a+1和2a-7, 求这个数
自然数
无理数
无限不循环小数
正无理数 负无理数
1.圆周率 及一些含有

的数
一般有三种情况 2.开不尽方的数
3.有一定的规律,但不循环的无限小数
把下列各数分别填入相应的集合内:
3
2,
20 , 3
1 , 4
4 , 9
7,
,
0,
5 , 2
5,
2,
3 8,
0.3737737773
(相邻两个3之间的7的个数逐次加1)
七年级
第六章
实数的复习
乘方
互 为 逆 运 算
有理数
开方
实数
无理数
平方根
立方根
定义
一般地,如果一个正数 x 的平方等于 a(x2 = a),那么这个正数 x 就叫做 a 的 算术平方根 a 的算术平方根记作 读作 “ 根号a ”
a
根号
规定:0的算术平方根等于0 如102 = 100 则100的算术平方根 100 = 10
(a 0)
a 0
a
3
3
a a为任何数
a
a
3
a为任何数
1.说出下列各数的平方根和算术平方根:
(1) 169 (2) 0.16
13和13
0.4和0.4 7 5 5 2 (4) 10 10和10 (5) 2 和 9 3 3
2.说出下列各数的立方根:
14 8 8 ( 3) 2 和 25 5 5
1 2x 1 1 2x 2
2.已知y= 的平方根
求2(x+y)
3.已知5+ 11 的小数部分为 m, 7的小数部分为n,求m+n的值 4.已知满足 3 a a 4 a ,求a的值
23
5 2
无限不循环的小数 叫做无理数. 有理数和无理数统称实数.
实数与 数轴 上的点是一一对应的 在实数范围内,相反数、倒数、绝对值的意义 和有理数范围内的相反数、倒数、绝对值的意 义完全一样 在进行实数的运算时,有理数的运算法则及 运算性质同样适用。
有限小数及无限循环小数
整数
有理数
实 数
分数
正整数 0 负整数 正分数 负分数
求一个数a的平方根的运算叫做开平方
3.立方根的定义:
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的 三次方根.记作 3 .a 其中a是被开方数,3是根指数,符号 3 “ ”读做“三次根号”.
5.立方根的性质:
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
(1)立方根的特征 正数有立方根吗?如果有,有几个? 负数呢? 零呢? 一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。 (2)平方根和立方根的异同点 被开方数 正数 负数 零 平方根 立方根 有两个互为相反数 有一个,是正数 有一个,是负数 无平方根 零 零
你知道算术平方根、平方根、立方根联系和区别吗? 算术平方根
(1) -0.008
27 (3) 64
0.2
3 4
(2) 0.512 0.8
5 5 (4) -15 8 2
3.说出下列各式的值:
(1) - 81
2
9
(4)
3
125
5
3 ( 5 ) 0.027 0.3 (2) (-25) 25
(3)
25 36
5 125 3 (6) - 8 6
1.平方根的性质: 正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
正数 ,负 2、正数的立方根是一个______ 负数 ,0 的立 数的立方根是一个_______ 0 ;立方根是它本身的数 方根是____ 、-1、0 平方根是它本身的数是__ 是1 ______. 0 0、1 算术平方根是它本身的数是______.
表示方法
平方根
立方根
3
a的取值

正数 0 负数
a≥
0
a
0
a a≥ 0
0 没有
a 是任何数
0 负数(一个)
a
正数(一个) 互为相反数(两个) 正数(一个)

没有
开方 是本身
0,1
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
0
0,1,-1
a a=
2
a
a
3
2
a
a
0
a 0 a 0
相关文档
最新文档