绝对值比较大小用.ppt

合集下载

《绝对值》ppt课件

《绝对值》ppt课件
4
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培

《绝对值》PPT课件 (公开课)2022年北师大版 (11)

《绝对值》PPT课件 (公开课)2022年北师大版 (11)

7.若数轴上的点M和N表示的两个数互为相反数,并且这两点间 的距离是10,则这两个点所表示的数分别是__________. 【解析】因为数轴上的点M和N表示的两个数互为相反数,所以 M,N分别位于原点的两侧,且到原点的距离相等;又因为这两 点间的距离是1案:5和-5
3 绝对值
1.会求一个数的相反数.(重点) 2.会求一个数的绝对值.(重点) 3.能用绝对值比较两个负数的大小.(重点、难点) 4.能结合数轴理解绝对值的几何意义,并解决实际问题.(难点)
一、相反数的定义 符号
1.代数定义:如果两个数只有_____不同,那么称其中一个数是
另一个数的相反数.也称这两个数互为相反数,特别地,0的相反
【思路点拨】先确定各个点表示的数,然后求出其相反数. 【自主解答】点A表示-3,它的相反数是3;点B表示-1,它的 相反数是1;点C表示0,它的相反数是0;点D表示2,它的相反 数是-2.
【总结提升】求一个数的相反数的两个步骤
知识点 2 绝对值的概念及应用
【例2】比较 1 0 与 1 1 的大小. 11 12
提示:求相反数时对多重符号的化简出现错误,最后导致比较 大小也出现错误.
【归纳整合】有关相反数的知识小结 1.互为相反数的两个数在数轴上的位置特征: (1)分别在原点的两侧. (2)到原点的距离相等. 2.有理数a的相反数是-a,由此可以得-2的相反数是-(-2)=2. 的相反数是b-a.
8.已知数a,b表示的点在数轴上的位置如图所示,
(1)在数轴上表示出数a,b的相反数的位置. (2)若数b与其相反数相距20个单位长度,则数b表示的数是多少? (3)在(2)的条件下,若数a与数b的相反数表示的点相距5个单位 长度,求数a表示的数是多少?

《绝对值》PPT课件

《绝对值》PPT课件

(4)绝对值是同一个正数的数有两个,且
它们是互为相反数。
()
做一做
( 1 )在数轴上表示下列各数,并 比较它们的大小: - 1.5 , - 3 , - 1 , - 5
( 2 ) 求出(1)中各数的绝对值, 并比较它们的大小
( 3 )你发现了什么?
解:(1)
- 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | =3;
小结:
绝对值(1. 几何定义):在数轴上,一个数所对应的
点与原点的距离叫做该数的绝对值.
(2.代数定义) 正数的绝对值是它本身; 负数的绝对值是它的相反数; 0 的绝对值是 0.
会利用绝对值比较两个负数的大小: 两个负数,绝对值大的反而小.
再见
想一想
数轴上表示相反数的两个点和原点 有什么关系?
在数轴上表示相反数的两 个点位于原点的 两侧 ,且与原 点的距离 相等.
练习.数轴上到原点距离相等的点表示的数的关
B 系(

A、互为倒数 C、相等
B、互为相反数 D、没有关系
小结:
1.相反数的定义: 2.a的相反数是: 3.互为相反数的两个点有什么特点?
负数公司能招到职员吗? 0能找到工作吗?
总结:任何一个数的绝对值一定是非负数。
想一想: 2和-2是什么关系,绝对值有什么关系? 3和-3呢?1.5和-1.5呢?
你可以得到什么结论?
互为相反数的两个数的绝对值相等。
小结:
1.绝对值的几何定义: 2.绝对值的代数定义:
3.互为相反数的两个数的绝对值的关系
请两位同学背靠背,一人向前走5步,一 人向后走5步。 如果向前为正,向前走5步,向后走5步, 分别记作什么?

北师大七年级数学上册《绝对值》课件(共25张PPT)

北师大七年级数学上册《绝对值》课件(共25张PPT)

A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的

人教版初一数学 1.2.4 绝对值PPT课件

人教版初一数学 1.2.4  绝对值PPT课件

-1 5
= 1; 5
|-2.8|=2.8.
当堂训练
能力提升题
化简: | 0.2 |=__0_.2___;
-2 3 7
=__2_73___;
| b |=__-_b___ (b<0); | a – b | =__a_-_b__(a>b).
当堂训练
拓广探索题 正答式:排第五球个比排赛球对的所质用量的好一排些球,重因量为是它有的严绝对格值规最定小的,,也现就检是离查标5个准排重 球量的的重克数量最,近超.过规定重量的克数记作正数,不足规定重量的克数 记作负数,检查结果如下:
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
学习目标
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
导入新课
两辆汽车从同一处O出发分别向东、西方向行驶10km,到 达A、B两处.
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
-3 -4.5
0
5
0 3.5 0
0
01
探究新知
知识点 2 绝对值的性质 观察这些表示绝对值的数,它们有什么共同点?
|5|=5 |100|=100 |-4.5|=4.5
|-10|=10 |-3|=3 |-5000|=5000
探究新知
例如,下图所示:
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5.
-6
-5
-4
-3
-2
0 1
|-5| = 5
-1
0到原点的距离是0,所以 0的绝对值是0,记作

《绝对值》ppt课件

《绝对值》ppt课件

随堂练习
1.如果a=-4,且|a|=|b|,求|b+4|的值.
解:因为a=-4,所以|b|=|a|=|-4|=4. 所以b=4或b=-4. 当b=4时,|b+4|=|4+4|=8; 当b=-4时,|b+4|=|-4+4|=0. 所以|b+4|的值是8或0.
2.把有理数 -1,11,0,-31,-5,31 按从小到
哈尔滨 北京 上海 武汉 广州 -20℃ < -10℃ < 0℃ < 5℃ < 10℃
哈尔滨 北京 上海 武汉 广州 -20℃ < -10℃ < 0℃ < 5℃ < 10℃
越来越大





-20
-10
05
10
这五个数的大小与它们在数轴上的位置有什么关系?
有理数大小的比较方法: 1.数轴比较法: 在数轴上表示的两个数,右边的数总比左边的数大.
(2) -|8-6|=-|2|=-2.
(3) |−2.4| = 2.4 = 0.8.
3
3
(4) |-2|×|− 3|=2×3=识点2 有理数的大小比较 下面是某一天我国5个城市的最低气温:武汉5 ℃;北 京-10℃;上海0℃;广州10℃;哈尔滨-20℃. 你能将上述五个城市的最低气温按从低到高的顺序依 次排列吗?
绝对值的相关概念 (1) 在数轴上,表示一个数的点离原点越近,这个数 的绝对值越小;离原点越远,这个数的绝对值越大.
(2) 绝对值是它本身的数是非负数,即若|a| =a,则 a≥0;绝对值是其相反数的数是非正数,即若|a|=-a, 则a≤0.
(3)绝对值是某个正数的数有两个,它们互为相反数,

绝对值PPT教学课件

绝对值PPT教学课件

绝对值不等式
若a和b为实数,则有|a||b|≤|a+b|≤|a|+|b|成立。
绝对值的几何意义
数轴上的绝对值
在数轴上,一个数到原点的距离等于该点与原点之间的距离。例如,点A表 示的数为-3,则点A到原点的距离为3,即|-3|=3。
绝对值的几何解释
绝对值还可以理解为在数轴上,一个点到任意一个点之间的距离。例如,点B 表示的数为x,点C表示的数为y,则|x-y|表示点B到点C的距离。
对于形如“|x| > a”或“|x| < a”的 不等式,可以通过去掉绝对值符号, 将不等式转化为若干个不等式组来解 决。
要点三
绝对值不等式的应用
绝对值不等式可以用来解决一些实际 问题,例如在物理、化学、生物等领 域中,常常需要使用绝对值不等式来 解决一些限制条件或优化问题。
在函数中的应用
绝对值函数的定义
3. 根据以上两点,进行 化简求值。
习题二:绝对值的比较大小
详细描述
2. 比较两个负数的绝对值大小: 先取它们的相反数,再比较大小 。
总结词:掌握比较两个数的绝对 值大小的方法,能够根据两个数 的绝对值判断它们的大小关系。
1. 比较两个正数的绝对值大小: 直接比较它们的绝对值即可。
3. 比较两个数的绝对值大小:先 分别求出它们的绝对值,再比较 大小。
3
绝对值的定义也可以理解为:一个数a的绝对值 就是a和0之间的距离。
绝对值的意义
01
绝对值的意义在于它反映了数在数轴上的位置离原点的远近程 度。
02
对于任何有理数a,它都有一个对应的绝对值|a|,这个绝对值
表示了a离原点的距离。
通过比较两个数的绝对值大小,我们可以知道它们在数轴上的

绝对值PPT课件精品

绝对值PPT课件精品

例5 化简:|1-3x|+|1+2x|.
1 解: (1)当x<- —时,1-3x>0,1+2x< 2 0, ∴原式=(1-3x)+[-(1+2x)]=-5x; 1 1 (2)当- —≤x<—时,1-3x>0,1+2x≥0, 2 3 ∴原式=(1-3x)+(1+2x)=2-x. 1 (3)当x≥—时,1-3x≤0,1+2x>0, 3 ∴原式=-(1-3x)+(1+2x)=5x.
(3)如果a=0,那么|a|=0
不论数a取何值,它的绝对值总是正数或0。 即对任何有理数a,总有|
a|≥ 0.
a
(a>0) (a=0)
即:︱a︱=
或者:
0
- a (a<0)
a (a 0) a (a 0) a a - a (a 0) - a (a 0)
练习题
1.字母 a 表示一个数,-a 表示什么?-a一 定是负数吗? 解:字母 a 表示一个数, -a 表示 a 的相 反数,- a 不一定是负数. 2.如果| a | = 4,那么 a 等于__________. 4或-4 3.一个数的绝对值是它本身,那么这个数一 正数或零 定是__________. 9 个,分别是 4.绝对值小于5的整数有___ _______________ 4,3,2,1,0,-1,-2,-3,-4
C.正数或零; D.负数或零.
4.求绝对值不大于2的整数.
-2, -1, 0, 1, 2.
D
7.如果|x|=-x ,那么x的值是( )。
A.正数;
B.负数;
C.非负数; D.非正数.
9.若两个数的和是正数,则这两个数 ( ). A.都是正数 ; D B.只有一个是正数; C.有一个必为0; D.一定至少有一个是正数.

《绝对值》PPT优秀教学课件2

《绝对值》PPT优秀教学课件2

③0的绝对值是0.
复习回顾 几何方法:数轴上左边的点表示的数比右边的
按照这个顺序将这些数表示在数轴上,可以看到这些数对应的点的顺序是从左到右的.
二、比较两个有理数大小的方法
结合数轴回答下列问题:若|x|=3,则x=

从每轻一重 个的有角理度数看都,是哪由个它球的最符3接号.近和标绝任准对?值何组成一的.个有理数a的绝对值总是非负数.
课堂小结
二、比较两个有理数大小的方法 几何方法:数轴上左边的点表示的数比右边的
点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数. (2)两个正数比较大小,绝对值大的大;
两个负数比较大小,绝对值大的反而小.
课堂小结
三、在总结有理数比较大小的方法过 程中,同样借助了数轴这个工具帮助 我们直观的理解法则,这又一次体现 了数形结合的思想;在解决例4的过程 中,我们也体会了数形结合的思想方 法的作用.
-a<0,|-a|>|b|,所以-a<b<0.
(1)正数大于0,0大于负数,正数大于负数.
按照这个顺序将这些数表示在数轴上,可以看到这些数对应的点的顺序是从左到右的.
从轻重的角度看,哪个球最接近标准?
-a b 结合数轴回答下列问题:若|x|=3,则x=

(1)正数大于0,负数小于0,正数大于负数.
0
每一个有理数都是由它的符号和绝对值组成的.
异号两数比较大小,要考虑它们的正负;
检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数.
二、比较两个有理数大小的方法
数学符号表示为:|a|≥0.
(1)正数大于0,负数小于0,正数大于负数.
生活实例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档