湘教版八年级上学期数学期末考试试卷新版

合集下载

湘教版八年级数学上册期末考试及答案【新版】

湘教版八年级数学上册期末考试及答案【新版】

湘教版八年级数学上册期末考试及答案【新版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF512a =-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A.3 B.4 C.5 D.68.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.若x2+kx+25是一个完全平方式,则k的值是____________.3.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为____________.4.如图,在△ABC中,AC=BC=2,∠C=900,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则DF的长为 _________.5.如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则□ABCD 的周长等于__________.6.如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于12AB 长为半径作弧,两弧交于点P .若点C 的坐标为(,23a a -),则a 的值为________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.化简:x(4x +3y)-(2x +y)(2x -y)3.已知a 23+,求229443a a a a --+-4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、B6、C7、B8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、±10.3、32或424、4-5、206、3三、解答题(本大题共6小题,共72分)1、(1)1211x x==(2)3x=是方程的解.2、3xy+y23、7.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.若23(1)0m n -++=,则m -n 的值为________. 4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:(x+y )(x-y )-(4x 3y-8xy 3)÷2xy ,其中x=-1,y=12.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.-+的平方根.(1)求a,b,c的值;(2)求3a b c4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、D5、D6、B7、D8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、(3,7)或(3,-3)3、445、56、16三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、223x y -+,14-. 3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)略;(2)10.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

湘教版八年级数学上册期末试卷(完整)

湘教版八年级数学上册期末试卷(完整)

湘教版八年级数学上册期末试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.若分式1xx-的值为0,则x的值为________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是________.6.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径作弧,两弧交于点P.若点C的坐标为(,23a a-),则a的值为________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、D7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x≥23、1.4、a+c5、156、3三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2.3、(1)12b-≤≤;(2)24、(1)略;(25、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+43.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。

湘教版八年级上册数学期末试卷-(含答案)

湘教版八年级上册数学期末试卷-(含答案)

湘教新版八年级上册数学期末试卷一.选择题(共10小题,满分40分,每小题4分)1.实数5不能写成的形式是()A.B.C.D.2.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣83.下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内,平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.54.下列各组的分式不一定相等的是()A.与B.与C.与D.与5.下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部;③三角形的一条中线把该三角形分成面积相等的两部分;④三角形的三条高都在三角形内部.A.①②B.②③C.③④D.②④6.不等式2(3+x)≥8的解集在数轴上表示正确的是()A.B.C.D.7.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递40件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.C.=﹣40D.=8.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS9.不等式组的整数解是()A.1,2B.1,2,3C.D.0,1,210.如图,已知线段AB=18米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走2米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.4B.6C.4或9D.6或9二.填空题(共8小题,满分32分,每小题4分)11.比较大小:.12.等腰三角形一腰上的高与另一腰的夹角为30度,则它的底角的度数为.13.已知,,则的值.14.若关于x的方程=1的解是负数,则a的取值范围是.15.若△ABC的三边长为a,b,c,并且满足|a﹣7|+(b﹣24)2+=0,则△ABC的面积是.16.如图,BC⊥ED于点M,∠A=27°,∠D=20°,则∠ABC=.17.如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为.18.如图,在数轴上,点A表示1.现将点A沿数轴做如下运动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右平移6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3…,按照这种规律移动第2019次移动到点A2019时,A2019在数轴上对应的实数是.三.解答题(共8小题,满分78分)19.(6分)计算:(1)﹣12+;(2)﹣+÷+(3.14﹣π)0.20.(8分)解方程﹣2.21.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.22.(10分)如图,△ABC等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出尽可能多的结论.(至少写出6个结论)23.(10分)锦潭社区计划对某区域进行绿化,经投标,由甲、乙两个工程队一起来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.5倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用2天.(1)求甲、乙两工程队每天各能完成的绿化面积.(2)若计划绿化的区域面积是1900m2,甲队每天绿化费用是0.5万元,乙队每天绿化费用为0.3万元.①当甲、乙各施工几天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元.②按要求甲队至少施工10天,乙队最多施工22天,当甲乙各施工几天,刚好完成绿化任务,又使得总费用最少(施工天数不能是小数),并求最少总费用.24.(10分)尺规作图:已知△ABC,在△ABC内求作一点P,使P到∠A的两边AB、AC 的距离相等,且PB=PA.25.(13分)观察下列各式及验证过程:2=验证:2===3=验证:3====(1)通过对上述两个等式及其验证过程的分析研究,你发现了什么规律?并证明你的发现.(2)自己想一个数,验证你的发现.26.(13分)已知△ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM 至点D,使DM=BM,连接AD.(1)如图①,求证:△DAM≌△BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:△BCM≌△ACN;②如图③,延长NA至点E,使AE=NA,连接DE,求证:BD⊥DE.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、=5,B、=5,C、()2=5,D、﹣=﹣5,故选:D.2.解:0.000000022=2.2×10﹣8.故选:D.3.解:①两条平行线被第三条直线所截,内错角相等,原命题是假命题.②三角形的内角和是180°,是真命题.③在同一平面内,平行于同一条直线的两条直线平行,是真命题.④相等的角不一定是对顶角,原命题是假命题.⑤两点之间,线段最短,是真命题;故选:B.4.解:∵A的分子分母都减去x,不满足分式的基本性质,两个分式不一定相等;B满足分式的符号法则,两个分式相等;C的分子分母都乘以了b2,满足分式的基本性质,两个分式相等;D的分子分母都除以了3x,满足分式的基本性质,两个分式相等.故选:A.5.解:①三角形的角平分线是线段,故①说法错误;②三角形的三条角平分线都在三角形内部,故②说法正确;③三角形的一条中线把该三角形分成面积相等的两部分,故③说法正确;④锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故④说法错误.故正确的有②③.故选:B.6.解:去括号,得6+2x≥8,移项,得2x≥8﹣6,合并同类项,得2x≥2,两边都除以2,得x≥1,故选:D.7.解:设原来平均每人每周投递快件x件,则更换了快捷的交通工具后平均每人每周投递快件(x+40)件,依题意得:=.故选:D.8.解:∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准,∴判定△OAB≌△OA′B′的理由是SAS.故选:A.9.解:,由①得,x<3,由②得,x>,不等式的解集为<x<3,其整数解是1,2.故选:A.10.解:当△APC≌△BQP时,AP=BQ,即18﹣x=2x,解得:x=6;当△APC≌△BPQ时,AP=BP=AB=9米,此时所用时间为9秒,AC=BQ=18米,不合题意,舍去;综上,出发6秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:∵≈1.7,∴﹣1<1,∴<.故答案为:<.12.解:分两种情况:①在左图中,AB=AC,BD⊥AC,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=(180°﹣∠A)=60°;②在右图中,AB=AC,BD⊥AC,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=(180°﹣∠BAC)=30°.故答案为:30°或60°.13.解:∵=,=,∴====2,故答案为:2.14.解:去分母得:2x+a=x+1,解得:x=1﹣a,由解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2,故答案为:a>1且a≠215.解:∵|a﹣7|+(b﹣24)2+=0,∴a﹣7=0,b﹣24=0,c﹣25=0,∴a=7,b=24,c=25,∵72+242=252,∴△ABC是直角三角形,=×7×24=84.∴S△ABC故答案为:84.16.解:∵在△AED中,∠A=27°,∠D=20°,∴∠BED=∠A+∠D=27°+20°=47°,又∵BC⊥ED于点M,∴∠B=90°﹣47°=43°.故答案为:43°17.解:∵BC边的垂直平分线交AB,∴BE=CE,∵△ACE的周长为12,∴AC+AE+CE=AC+AE+BE=AC+AB=12,∵BC=10,∴△ABC的周长为:AB+AC+BC=22.故答案为:22.18.解:由点A移动的方向和距离可得,点A1表示的数为﹣2=1+3×(﹣1),点A2表示的数为4=1+3×(﹣1)+3×2,点A3表示的数为﹣5=1+3×(﹣1)+3×2+3×(﹣3),点A4表示的数为7=1+3×(﹣1)+3×2+3×(﹣3)+3×4,……点A2019表示的数为1+3×(﹣1)+3×2+3×(﹣3)+3×4+…+3×2018+3×(﹣2019)=1+3×(﹣1+2﹣3+4﹣5+6+…+2018﹣2019)=1+3×(1009﹣2019)=1+3×(﹣1010)=﹣3029,故答案为:﹣3029.三.解答题(共8小题,满分78分)19.解:(1)原式=5﹣12×+×3=5﹣4+=2;(2)原式=﹣2﹣(﹣1)+3+1=﹣2﹣+1+3+1=2.20.解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:当x=3时,(x﹣3)=0,∴x=3是原分式方程的增根,原分式方程无解.21.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.22.解:如:①DB=DE;②BD⊥AC;③∠DBC=∠DEC=30°;④△ABD≌△CBD;⑤△DCE∽△BDE;⑥∠CDE=30°;⑦BD平分∠ABC;⑧DE2=BE•CE.23.解:(1)设乙队每天能完成绿化面积xm2,则甲队每天能完成绿化面积1.5xm2,由题意得:﹣=2,解得:x=50,经检验,x=50是该方程的根,1.5x=1.5×50=75(m2),∴甲、乙两工程队每天各能完成的绿化面积分别是75m2、50m2;(2)①设甲队施工a天,则乙队施工天刚好完成绿化任务,由题意得:0.5a+0.3×=12.2,解得:a=16,∴==14(天),∴甲队施工16天,乙队施工14天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元;②设甲队施工m(m≥10)天,则乙队施工天刚好完成绿化任务,由题意得:≤22,解得:m≥10,总费用y=0.5m+0.3×=,∵>0,∴y的值随m值的增大而增大,∵m是正整数,且两队施工的天数都是正整数,∴m=12时,总费用y为最小值,。

湘教版八年级数学上册期末考试卷【参考答案】

湘教版八年级数学上册期末考试卷【参考答案】

湘教版八年级数学上册期末考试卷【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图,等边△ABC 的边长为4,AD 是边BC 上的中线,F 是边AD 上的动点,E 是边AC 上一点,若AE=2,则EF+CF 取得最小值时,∠ECF 的度数为( )A .15°B .22.5°C .30°D .45°9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x =,则x=__________2.因式分解:22ab ab a -+=__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.(1)已知x 35y 352x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:商品甲乙进价(元/件)60x+x售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a ),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B5、D6、B7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、()21a b -3、32或424、425、186、(10,3)三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、(1)42,(2) 3、(1)略(2)1或24、(1)略;(2)2.5、(1)略(2)略6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。

湘教版八年级数学上册期末试卷及完整答案

湘教版八年级数学上册期末试卷及完整答案

湘教版八年级数学上册期末试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3 B.-3 C.5 D.-52.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤33.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.184.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,56.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′为( ).A .70°B .65°C .50°D .25°10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.已知15x x +=,则221x x +=________________. 3.计算:()()201820195-252+的结果是________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=________厘米.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是________.6.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________。

湘教版八年级数学上册期末考试题及答案【完美版】

湘教版八年级数学上册期末考试题及答案【完美版】

湘教版八年级数学上册期末考试题及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36- 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。

湘教版八年级数学上册期末考试(附答案)

湘教版八年级数学上册期末考试(附答案)

湘教版八年级数学上册期末考试(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.如图,若x为正整数,则表示()2221441xx x x+-+++的值的点落在()A.段①B.段②C.段③D.段④3.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.94.已知三角形三边长为a、b、c,且满足247a b-=,246b c-=-,2618c a-=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=,90C∠=,45A∠=,30D∠=,则12∠+∠等于()A.150B.180C.210D.2709.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.计算:16=_______.3.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______. 4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为______.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE . 1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、A5、D6、B7、C8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、43、54、8.5、26、1三、解答题(本大题共6小题,共72分)1、x=12、20xy-32,-40.3、∠=.4、()1略;()2BEF67.55、(1)略(2)90°(3)AP=CE6、(1)2400个, 10天;(2)480人.。

湘教版八年级数学上册期末考试卷(新版)

湘教版八年级数学上册期末考试卷(新版)

湘教版八年级数学上册期末考试卷(新版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0 B .a >0,b >0 C .a <0,b >0D .a >0,b <0 5.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.如图,等边△ABC 的边长为4,AD 是边BC 上的中线,F 是边AD 上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15°B.22.5°C.30°D.45°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为__________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、A5、C6、A7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、30°或150°.3、14、113y x =-+5、36、12三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、x 2-,32-. 3、(1)11x -;(2)1 4、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)A 型学习用品20元,B 型学习用品30元;(2)800.。

湘教版八年级数学上册期末考试【附答案】

湘教版八年级数学上册期末考试【附答案】

湘教版八年级数学上册期末考试【附答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人8.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.2.计算1273-=___________.3.若23(1)0m n-++=,则m-n的值为________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.6.已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的方程x 2 -(m+1)x+2(m-1)=0,(1)求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、D6、A7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、723、44、145、:略6、32三、解答题(本大题共6小题,共72分)1、x=12、-3.3、()1略()24和24、()1略;()2BEF67.5∠=.5、(1)略;(2)略.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

湘教版八年级数学上册期末考试卷(新版)

湘教版八年级数学上册期末考试卷(新版)

湘教版八年级数学上册期末考试卷(新版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为()A.-6 B.6 C.16-D.162.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4) 6.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13207.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A .15B .18C .21D .248.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.分解因式:3x -x=__________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:(x -1)÷(x -21x x-),其中x 2+13.已知关于x 的一元二次方程22(21)10x m x m +++-=有两不相等的实数根. ①求m 的取值范围.②设x 1,x 2是方程的两根且221212170x x x x ++-=,求m 的值.4.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、A6、B7、A8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、13、x (x+1)(x -1)4、55.5、406、(-10,3)三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、1+3、①54m >-,②m 的值为53.4、(1)略;(2)3.5、略.6、(1)A 型号家用净水器每台进价为1000元,B 型号家用净水器每台进价为1800元;(2)则商家购进A 型号家用净水器12台,购进B 型号家用净水器8台;购进A 型号家用净水器13台,购进B 型号家用净水器7台;购进A 型号家用净水器14台,购进B 型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。

湘教版八年级数学上册期末考试卷及答案【新版】

湘教版八年级数学上册期末考试卷及答案【新版】

湘教版八年级数学上册期末考试卷及答案【新版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.48.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E 是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15°B.22.5°C.30°D.45°9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为________.2.若最简二次根式1a +与8能合并成一项,则a =__________. 3.64的算术平方根是________.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________. 6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分) 1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩并将解集在数轴上表示.4.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.5.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、A5、A6、B7、C8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、13、4、705、186、32°三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、11a-,1.3、﹣4≤x<1,数轴表示见解析.4、(1)略;(2)S平行四边形ABCD=245、(1)略;(2)4.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

湘教版八年级数学上册期末考试卷及答案【新版】

湘教版八年级数学上册期末考试卷及答案【新版】

湘教版八年级数学上册期末考试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab = 2.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.计算:16=_______.3.若28n 是整数,则满足条件的最小正整数n 为________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x y x y =-⎧⎨+=⎩ (2)353123x y x y -=⎧⎪⎨-=⎪⎩2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.已知:在ABC ∆中,AB AC = ,D 为AC 的中点,DE AB ⊥ ,DF BC ⊥ ,垂足分别为点,E F ,且DE DF =.求证:ABC ∆是等边三角形.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、52、43、74、55.5、50°6、82.︒三、解答题(本大题共6小题,共72分)1、(1) 47x y =-⎧⎨=⎩;(2) 831x y ⎧=⎪⎨⎪=⎩2、12x x +-,55+3、(1)23m -<≤;(2)12m -;(3)1m =-4、略.5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1)2元;(2)至少购进玫瑰200枝.。

湘教版八年级数学上册期末考试及答案【新版】

湘教版八年级数学上册期末考试及答案【新版】

湘教版八年级数学上册期末考试及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.若实数m、n满足40-,且m、n恰好是等腰△ABC的两条边的+=2nm-边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 5.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.21273=___________.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是________.三、解答题(本大题共6小题,共72分)1.解方程组:20 346 x yx y+=⎧⎨+=⎩2.先化简,后求值:(5a5a(a﹣2),其中12+2.3.解不等式组()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、A5、B6、D7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、83 33、如果两条直线平行于同一条直线,那么这两条直线平行.4、180°5、206、8 5三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、224-3、非负整数解是:0,1、2.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)略(2)等腰三角形,理由略--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

最新湘教版八年级数学上册期末考试卷

最新湘教版八年级数学上册期末考试卷

A BC DEFB湘教版八年级数学上册期末考试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算2的结果是( )A . 2B .2±C . 4D . 4± 2. 分式22+-x x 有意义,则x 的取值范围为( ) A . 2x ≠± B .2x = C .2x ≠- D . 2x ≠ 3.不等式226x +<的解集在数轴上表示正确的是 ( )4. 若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形的一个内角的度数是( ) A . 20︒ B . 40︒ C . 90︒ D . 120︒5.3.如果203x y ⎛⎫++-= ⎪ ⎪⎝⎭,则(xy )3等于( )A .3B .-3C .1D .-16.如图,AB AC =,要说明ADC AEB ∆≅∆,需添加的条件不可能...是 ( ) A .B C ∠=∠B .AD AE =C .ADC AEB ∠=∠D .DC BE =7. 已知2111=-b a ,则b a ab-的值是( ) A .21 B .-21C .2D .-2 8. 如图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭 到草坪三条边的距离相等,凉亭的位置应选在( )A . △ABC 三条角平分线的交点B . △ABC 三边的中垂线的交点 C . △ABC 的三条中线的交点D . △ABC 三条高所在直线的交点9. 某市出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).小王乘出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A.5千米B.7千米C.8千米D.15千米BDAC10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯=;32102(1011)12021212802111=⨯+⨯+⨯+⨯=+++=.按此方式,将二进制(1001)2换算成十进制数和将十进制数13转化为二进制的结果分别为 ( ) A.9,2(1101) B.9,2(1110) C.17,2(1101)??D.17,2(1110)二、 填空题: (本大题共8小题,每题3分,共24分. 请把答案填在题中横线上.) 11.使23-+x x 有意义的x 的取值范围是 . 12.若解分式方程441+=+-x mx x 产生增根,则_______.13.命题“全等三角形的面积相等”的逆命题是 .14. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可画出三角形的个数是 . 15.如右上图,点D 、E 分别在线段AB,AC 上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 (只写一个条件即可). 16. 如果关于x 的方程3(4)25x a +=+的解大于关于x 的方程(41)(34)43a x a x +-=的解,则a 的取值范围为 .17、如图:已知在ABC ∆中,AB 的垂直平分线分别交AB 、BC 于点D 、E , ︒=∠36B ,︒=∠80BAC ,则=∠CAE .18、 如图:已知ABC ∆中,︒=∠50A ,BO 、CO 分别平分ABC ∠、ACB ∠, 且相交于点O ,则=∠BOC .三、计算题: 本大题共18分.计算应有演算步骤. 19.计算:(4分)-;B(18题)(17题)20.解分式方程(每小题4分,共8分)123)1(-=x x 211213)2(++=+-x x x21.(本小题满分6分) 求不等式组26623212x xx x -<-⎧⎪⎨++>⎪⎩的整数解.四、解答题: 本大题共5小题,共30分.解答应写出文字说明、证明过程或演算步骤.22.先化简,再求值:.25624322+-+-÷+-a a a a a 选一个你所喜欢的数带入求值.23.(本小题满分6分)为了充分保护乘客的安全,从2011年8月16日起,部分高铁实行了不同程度降速. 京沪高铁全长1400km ,平均速度降低了17,行驶的时间比原来增加了40分钟,求京沪高铁降速后的速度.DOC24. (本小题满分6分)小明同学准备暑假和爸爸妈妈去香港迪士尼和西安世界园艺博览会进行为期8天的旅游,他们先乘飞机从北京到香港,每人票价2000元,再乘飞机从香港到西安,每人票价1400元,最后从西安坐火车回到北京,三人火车票共1400元. 若在香港、西安每天三人的基本费用(生活费、住宿费、交通费及各种门票)共分别为1200元、800元,求小明一家在西安至少旅游几天总费用不会超过旅游总预算20000元?25.((本题满分6分)已知,如图:AE 平分DAC ∠,BC AE //.求证:AC AB =.26、(本小题满分7分) 如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可) (2)请选择(1)中你所添加的一个条件,利用全等....证明OC OD =.B(第26题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版八年级上学期数学期末考试试卷新版
一、单选题 (共10题;共20分)
1. (2分)﹣27的立方根为()
A . ±3
B . 3
C . -3
D . 没有立方根
2. (2分)在,1.01001000100001,2 ,
3.1415,- ,,0,,这些数中,无理数共有()
A . 2个
B . 3个
C . 4个
D . 5个
3. (2分)如图,由Rt△ABC的三边向外作正方形,若最大正方形Q的边长为13,正方形N的边长为12,则正方形M的面积为()
A . 5
B . 17
C . 25
D . 18
4. (2分)-22 ab 2 与下面哪个单项式是同类项()
A . -πab2
B . 3a2b
C . 21ab
D . a2b2
5. (2分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1.现对72进行如下操作:72 [ ]=8 [ ]=2 [ ]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行()次操作后即可变为1.
A . 2
B . 3
C . 4
D . 5
6. (2分)规定用符号[m]表示一个实数m的整数部分,例如:[ ]=0,[3.14]=3.按此规定[ ]的值为()
A . 3
B . 4
C . 5
D . 6
7. (2分)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图
所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().
A . h≤17cm
B . h≥8cm
C . 15cm≤h≤16cm
D . 7cm≤h≤16cm
8. (2分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()
A . 5
B . 6
C . 7
D . 8
9. (2分)若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()
A . k>3
B . 0<k≤3
C . 0≤k<3
D . 0<k<3
10. (2分)下列图形中,是中心对称图形,但不是轴对称图形是()
A . 正方形
B . 矩形
C . 菱形
D . 平行四边形
二、填空题 (共8题;共9分)
11. (2分)81的平方根是________;的算术平方根是________.
12. (1分)到原点的距离等于4的点是________ .
13. (1分)已知 +|3x+2y﹣15|=0,则的算术平方根为________.
14. (1分)命题“两直线平行,同位角相等.”的条件是________.
15. (1分)如图,△ABC的中位线DE=6cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A,F两点间的距离是8cm,则△ABC的面积为________ cm2 .
16. (1分)如图,⊙O的半径为5,P为⊙O上一点,P(4,3),PC、PD为⊙O的弦,分别交y轴正半轴于E、F,且PE=PF,连CD,设直线CD为y=kx+b,则k=________.
17. (1分)从﹣1,1,2这三个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是________.
18. (1分)按一定的规律排列的两行数:
n(n是奇数,且n≥3)3 5 7 9 …
m(m是偶数,且m≥4)4 12 24 40 …
猜想并用关于n的代数式表示m=________.
三、解答题 (共7题;共70分)
19. (20分)计算
(1)﹣ +
(2)(3+2 )(2 ﹣3)
(3)﹣3
(4)| ﹣2|+ ﹣(﹣3)0 .
20. (5分)张老师担任初一(2)班班主任,她决定利用假期做一些家访,第一批选中8位同学,如果他们的住处在如图所示的直角坐标系中,A(-1,-2),B(0,5),C(-4,3),D(-2,5),E(-4,0),F(1,5),G(1,0),H(0,-1),请你在图中的直角坐标系中标出这些点,设张老师家在原点O,再请你为张老师设计一条家访路线。

21. (7分)某校的科技节比赛设置了如下项目:A﹣船模;B﹣航模;C﹣汽模.右图
为该校参加科技比赛的学生人数统计图.
(1)该校报名参加B项目学生人数是________人;
(2)该校报名参加C项目学生人数所在扇形的圆心角的度数是________°;
(3)为确定参加区科技节的学生人选,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙2名候选人中选出1人代表学校参加区科技节B项目的比赛,每人进行了4次试飞,对照一定的标准,判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教练,你打算安排谁代表学校参赛?请说明理由.
22. (5分)如图所示,军舰A在军舰B的正东方向上,且同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,
(1)试画出这艘敌舰的位置(用字母C表示).(2)求∠BCA=?
23. (5分)列方程或方程组解应用题:
为祝贺北京成功获得2022年冬奥会主办权,某工艺品厂准备生产纪念北京申办冬奥会成功的“纪念章”和“冬奥印”.生产一枚“纪念章”需要用甲种原料4盒,乙种原料3盒;生产一枚“冬奥印”需要用甲种原料5 盒,乙种原料10 盒.该厂购进甲、乙两种原料分别为20000盒和30000盒,如果将所购进原料正好全部都用完,那么能生产“纪念章”和“冬奥印”各多少枚?
24. (13分)甲乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲
比乙先出发,乙出发一段时间后速度提高为原来的2倍.两机器人行走的路程y(cm)与时间x(s)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:
(1)乙比甲晚出发________秒,乙提速前的速度是每秒________cm, =________;
(2)已知甲匀速走完了全程,请补全甲的图象;
(3)当x为何值时,乙追上了甲?
25. (15分)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B 两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q 从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共9分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共70分)
19-1、
19-2、
19-3、
19-4、
20-1、21-1、
21-2、21-3、22-1、
23-1、24-1、
24-2、24-3、
25-1、
25-2、
25-3、。

相关文档
最新文档