第三章 位错理论
-位错理论公式
基于位错模型正演出地表的重力变化和重力梯度变化,是利用时变重力和梯度数据反演海底地震参数的基础。
在假定为各项同性的弹性半空间 (介质)中,设地下埋深 处有一点源(0,0, _3 ),如图2所示:()()()()()()()()()()21331133233333333333331233123233313313321;;2;;x R x G r G R R x R R R x x G r G R R x x R x r G R R x x r G Rερψερεεεεερψερεεψερεεψερ⎧⎡⎤+-⎪∆=--⎢⎥+-+-⎪⎢⎥⎣⎦⎪-⎪∆=-⎪⎨+-⎪∆''=-⎪+-⎪⎪⎪∆=⎩ (1.1)式中:R = , ρ为介质密度,G 为牛顿引力常数有了点源位错的结果,就可以将其扩展为有限矩形断层震源计算。
位错的滑动矢量和其法矢量可以表示为:12312323(,,)(,cos sin ,sin cos )u u u u U U U U U δδδδ∆=∆∆∆=---(1.2)123(,,)(0,sin ,cos )n n n n δδ==--(1.3)然后对断层面进行积分,即:'''''120(,cos ,sin )LLij i j d d d x x u n δδξηψξηη∆---∆⎰⎰(1.4)最后结果用双竖线约定符号标示为简洁模式:1111(,)||(,)(,)(,)(,)f f p f p W f L p f L p W x x x x ξη=----+--(1.5)所以得引力位变化和重力变化的最后计算公式如下: 引力位变化:()()()()1233123(,,){[,,,],}||G S D T G C U U U U x x x ψρξηξηξηρξη∆=+++∆(1.6)22010(,)tan 2sec tan S R qI I ξηδδξδ=-++(1.7) 30210(,)tan 2sin [lg()2tan ]D R x q I I I ξηξδδξδ=---++(1.8)2230120(,)sin lg()2()(,)tan tan T R C x q I I I ξηξδδξδξη=-++++ (1.9)2(,)lg()lg()2C R R q I ξηξηηξ=-+-+-(1.10)式中:(,)lg()sin lg()R R d Iξηξδ=+-⋅+(1.11)11cos (1sin )()(,)()cos tan q R I δδηξηξδ--+++=(1.12)12(,)()tan R qI ξηξη-++= (1.13)R =(1.14) 23sin ()cos q d x x δδ=--(1.15) 03cos q q x δ=-(1.16)sin cos d q ηδδ=-(1.17)空间固定点的重力变化:()()()()()123312,{[,,,],}||g g g g g G G U S U U U C D T x x ρξηξηξηρξη∆=+++∆(1.18)参数,(,,,)ggggS CD T 是对(,,,)S D T C 进行微分到的,即 (,,,)(,,,)g g g g S D T C S C D T =Γ(1.19)3333(,,)|xq p q x x x η=Γ=∂∂∂∂∂---∂∂∂∂∂(1.20)具体的表达式为2sin cos (,)()g q q R R R S δδξηη=-++ (1.21)2(,)2sin ()g qdD I R R ξηδξ==-+(1.22)2cos (,)2cos ()()g q y q T I R R R R ξδξηδξη==++++(1.23)2(,)2cos sin lg()g R C I ξηδδξ==-+(1.24)cos sin y q ηδδ=+(1.25)这里G即为式1.18,f有数据反演的参数包括:倾角 ,长度L,宽度W,深度d,滑动角等。
第3章 晶体缺陷(3)-位错的运动与弹性性质
2、位错的应变能
(1)位错能的概念
位错线周围的原子偏离了平衡位置,处于较高的能量状 态,高出的能量称为位错的应变能,简称位错能。
(2)位错是不平衡的缺陷,且具有尽量变直缩短的趋势 (3)位错能的计算公式(单位位错线-1.0 , 螺型位错α取下限0.5, 刃型位错取上限1.0。
(a)位错环
(b)位错环运动后产生的滑移
图 位错环的滑移
2、位错的攀移
(1)攀移的概念与本质
攀移的本质是刃型位错的半原子面向上或向下移 动,于是位错线就跟着向上或是向下运动,因此攀移 时位错线的运动方向正好与柏氏矢量垂直。
只有刃型位错才能发生攀移运动,螺型位错是不 会攀移的。
(2)攀移的分类及割阶概念
保持位错线弯曲所需的切应力与曲率半径成反比。
4、作用在位错上的力
刃型位错的切应力方向垂直与位错线; 螺型位错的切应力方向平行于位错线; 使位错攀移的力为正应力。
位错滑移时的力
F b
位错攀移时的力
F b
力的方向与位错线运动方向一致,垂直于位错线方向。
四、位错与其他缺陷的交互作用
1、位错与点缺陷的交互作用
图 位错的连续介质模型 (a)螺位错(b)刃位错
(1)螺位错的应力场
螺型位错周围只有一个切应变:γθz=b/2πr 相应的各应力分量分别为
用直角坐标表示
螺位错的应力场的特点:
只有切应力分量,正应力分量全为零,这表明 螺型位错不引起晶体的膨胀和收缩。 螺型位错所产生的切应力分量只与r有关(成 反比),而与θ,z 无关。只要r一定,τθz就为 常数。因此,螺型位错的应场是轴对称的,即与位 错等距离的各处,其切应力值相等,并随着与位错 距离的增大,应力值减小。 r→0时,τθz→∞,显然与实际情况不符,这 说明上述结果不适用位错中心的严重畸变区。
位错理论(3)
5.位错密度
位错密度是指单位体积内位错线的总长度。 其表达式为 LV L / V
式中:LV是体位错密度; L是位错线的总长度; V是晶体的体积。
经常用穿过单位面积的位错数目来表示位错密度。
A n / A
式中:是穿过截面的位错数;是截面面积。 位错密度的单位是cm-2。
5.3.2 位错的运动
位错线
正刃型位错
负刃型位错
透射电镜下观察到的位错线
2. 螺型位错 设想在简单立方晶体右端施加一切应力,使右端 ABCD滑移面上下两部分晶体发生一个原子间距的相对切 变,在已滑移区与未滑移区的交界处,AB线两侧的上下 两层原子发生了错排和不对齐现象,它们围绕着AB线连 成了一个螺旋线,而被AB线所贯穿的一组原来是平行的 晶面则变成了一个以AB线为轴的螺旋面。 此种晶格缺陷被称为螺型位错。螺旋位错分为左旋 和右旋。 以大拇指代表螺旋面前进方向,其他四指代表螺旋 面的旋转方向,符合右手法则的称右旋螺旋位错,符合 左手法则的称左旋螺旋位错。
刃型位错和螺型位错的特征。
柏氏矢量的确定。 理解滑移的过程及刃型位错和螺型位错滑移的 特点。 单位长度位错的应变能表示 U=αGb2。
(1)螺型位错的应力场
采用圆柱坐标系。在离开中心r处的切应变为 b Z Z 2r 其相应切应力
Z Z G Z
Gb 2r
式中,G为切变模量。由于圆柱只在Z方向有位移,X,Y方 向无位移,所以其余应力分量为零。 螺型位错应力场是径向对称的,即同一半径上的切 应力相等。且不存在正应力分量。
Gb 2 R WS ln 4 r0
对于刃型位错,单位长度的弹性应变能为
Gb 2 R WE ln 4 (1 ) r0
材料科学基础位错理论
材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。
本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。
首先,位错是固体晶体结构中的一种缺陷。
当晶体晶格中发生断裂、错位或移动时,就会形成位错。
位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。
根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。
直线位错是沿晶体其中一方向上的错排,常用符号表示为b。
直线位错一般由滑移面和滑移方向两个参数来表征。
滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。
直线位错可以进一步分为边位错和螺位错。
边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。
面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。
面位错通常由面位错面和偏移量来描述。
面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。
体位错是沿体方向上的排列不规则导致的位错。
体位错通常是由滑移面间的晶体滑移产生的。
位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。
位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。
这一理论为后来的位错理论奠定了基础。
位错理论的应用非常广泛。
在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。
通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。
同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。
此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。
通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。
位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。
总结起来,位错理论是材料科学基础中的重要内容。
位错理论
铝合金生产中的冷热变形微观组织绪论:铝及铝合金在实际生产中,主要以挤压形式进行生产,随着加工工艺和生产技术得到飞速发展,人们对铝及铝合金轧板的要求日益增多。
对于变形铝合金来说,由于所含的合金元素不同,需要不同的变形方式:冷变形和热变形。
这里简单介绍在这两种变形的微观组织。
关键词:铝及铝合金,变形铝合金,冷变形和热变性。
目录铝合金生产中的冷热变形微观组织 (1)绪论 (1)一、冷变形中铝合金微观组织 (3)1.1亚结构 (3)1 .2变形织构 (3)二、热变形中的纤维组织 (5)2.1铝合金热变形中的动态回复 (5)2.2铝合金热变形中的再结晶 (6)三、铝合金变形微结构的分类 (6)参考文献 (8)一、冷变形中铝合金微观组织铝材冷加工后,随着外形的改变.晶粒皆沿最大主变形发展方向被拉长、拉细或压扁。
冷变形程度越大,品粒形状变化也越大。
在晶粒被拉长的同时,晶间的夹杂物也跟着拉长,使冷变形后的金属出现纤维组织。
1.1亚结构亚结构包括两种类型:较低温度下产生的胞状结构以及变形后因回复形成的亚晶[1]。
金属晶体经过较大的冷塑性变形后,由于位错密度增大和发生交互作用,大量的位错堆积在局部区域,并相互缠结形成不均匀的分布,在晶粒内部出现了许多取向不同、大小约为10-3~10-6cm 的小晶块,这些小晶块(或小晶粒间)的取向差不大(小于1°),所以它们仍然维持在同一个大晶粒范围内,这些小晶块称为亚晶[2],这种组织称为亚结构。
在冷轧变形中,随着应变量的增加,晶粒发生分裂,内部就生成亚结构[3]。
亚晶的大小、完整程度、取向差与材料的纯度及形量和变形温度有关。
当材料中含有杂质和第二相时,在变形量大和变形温度低的情况下,所形成的亚晶小,亚晶间的取向差大,亚晶的完整性差(即亚晶内晶格的畸变大)。
冷变形过程中,亚晶结构对金属的加工硬化起重要作用,由于各晶块的方位个同,其边界又为大量位错缠结,对晶内的进一步滑移起阻碍作用。
金属位错理论
金属位错理论位错的概念最早是在研究晶体滑移过程时提出来的。
当金属晶体受力发生塑性变形时,一般是通过滑移过程进行的,即晶体中相邻两部分在切应力作用下沿着一定的晶面晶向相对滑动,滑移的结果在晶体表面上出现明显的滑移痕迹——滑移线。
为了解释此现象,根据刚性相对滑动模型,对晶体的理论抗剪强度进行了理论计算,所估算出的使完整晶体产生塑性变形所需的临界切应力约等于G/30,其中G为切变模量。
但是,由实验测得的实际晶体的屈服强度要比这个理论值低3~4数量级。
为解释这个差异,1934年,Taylor,Orowan和Polanyi 几乎同时提出了晶体中位错的概念,他们认为:晶体实际滑移过程并不是滑移面两边的所有原子都同时做刚性滑动,而是通过在晶体存在着的称为位错的线缺陷来进行的,位错再较低应力的作用下就能开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对滑移。
按照这一模型进行理论计算,其理论屈服强度比较接近于实验值。
在此基础上,位错理论也有了很大发展,直至20世纪50年代后,随着电子显微镜分析技术的发展,位错模型才为实验所证实,位错理论也有了进一步的发展。
目前,位错理论不仅成为研究晶体力学性能的基础理论,而且还广泛地被用来研究固态相变,晶体的光、电、声、磁和热学性,以及催化和表面性质等。
一、位错的基本类型和特征位错指晶体中某处一列或若干列原子有规律的错排,是晶体原子排列的一种特殊组态。
从位错的几何结构来看,可将他们分为两种基本类型,即刃型位错和螺型位错。
1、刃型位错刃型位错的结构如图1.1所示。
设含位错的晶体为简单立方晶体,晶体在大于屈服值的切应力 作用下,以ABCD面为滑移面发生滑移。
多余的半排原子面EFGH犹如一把刀的刀刃插入晶体中,使ABCD 面上下两部分晶体之间产生了原子错排,故称“刃型位错”。
晶体已滑移部分和未滑移部分的交线EF就称作刃型位错线。
图1.1 含有刃型位错的晶体结构刃型位错结构的特点:(1)刃型位错有一个额外的半原字面。
材料科学基础-§3-3 位错的运动
二. 螺型位错的应力场
如图,在圆柱体中心挖去r0圆柱形中心区后,然后沿XOZ 面切开,并沿Z轴滑移一个柏氏矢量b,再把两个面粘结。
应变为: Z Z
b 2r
Gb 2r
应力为: Z Z G Z
rr zz r rz 0
τ
F F
τ
τ
τ
Fd b
二. 位错的运动
刃型位错的运动
滑 移 攀 移
位错的运动 滑 移 螺型位错的运动 交滑移 位错在滑移面上受到垂至于位错线的作用力,当此力 足够大,足以克服运动阻力时,位错便可以沿着作用力方 向移动,这种沿着滑移面移动的位错运动称为滑移。 刃型位错的位错线还可以沿着垂直于滑移面的方向移 动,刃型位错的这种运动称为攀移。
zz v( xx yy )
xz zx yz zy 0
xy yx D
x( x 2 y 2 ) (x2 y 2 )2
其中: D Gb / 2 (1 )
刃位错周围应力场的特点: 1)应力的大小与r呈反比,与G、b呈正比。 2)有正、切应力,同一地点 |σxx|>|σyy|,σyy较复杂,不作 重点考虑。 3)y>0, σxx<0,为压应力 y<0, σxx>0,为拉应力 y=0, σxx=σyy=0,只有切 应力。
y=±x,只有σxx、σzz 。
四. 位错的弹性应变能 位错的存在引起点阵畸变,导致能量增高,此增量称 为位错的应变能,包括位错核心能与弹性应变能。其中弹 性应变能约占总能量90%。 由弹性理论可知:弹性体变形时,单位体积内的应变 能等于应力乘以其相应的应变的二分之一。 ☺对于螺型位错,单位长度螺旋位错的弹性应变能为:
东北大学材料科学基础_第三章__晶体的缺陷(五)位错的弹性性质
复习 应力
一、应力:
受力物体截面上内力的集度,即单位面积上的内力。
P1 P2 2 mΔ A
K
ΔF
P P3 3
P P4 4
K
Fk
s
m
F Fk A0 A lim
控制 Fk 复杂,按理论力学上分成两个分量
Fk
剪应力 MPa=N/mm2 = 10 6 Pa kg/cm2 = 0.1 MPa
(a) 直角坐标系(xyz)
3个正应力分量(σxx, σyy σzz) 和 6个切应力分量 (τxy=τyx, τyz=τzy , τxz=τzx ) ; 下标中第1个字母表示应力 作用面的外法线方向 ,第 2字母表示应力的指向。
(b) 圆柱坐标系(
r z )
3 个正应力分量 (σθθ、
σzz、σrr) 和六个切应力分量
c. 单位长度混合位错的应变能:3.15式(P99)
简化上述各式得3.16式
结论:(P100)
(1) -(5)
(1) 刃型位错We 假设 x→x+dx ,那么 b'→ b'+db'.
Gb x( x 2 y 2 ) xy 2 (1 ) ( x 2 y 2 ) 2
zx zy 0
xy
Gb x( x 2 y 2 ) 2 (1 ) ( x 2 y 2 )2
zx zy 0
y2 ) )2
zx zy 0
刃位错应力场特点: ① 正应力分量和切应力分量同时存在。 ② 各应力分量都是x、 y的函数,而与z无关。 ③ 应力场以多余半原子面对称。 ④ y=0时, σ=0只有切应力而无正应力,切应力最大值Gb/[2(1υ)x] ⑤ y>0 时, σxx<0;y<0时, σxx>0 。说时正刃位错滑移面上部 受压,下部分受拉。 ⑥ 应力场中任意一点位置, |σxx| > |σyy| ⑦ x = ±y时及y轴上 σyy = τxy = 0,说明在直角坐标系中的对 角线处只有σxx ,而且在每条对角线的两侧, τxy及σyy 的符号相 反。 ⑧ 上述公式不能适用于刃位错的中心区。
位错理论3-位错的弹性性质
31
Line tension of dislocation
位错的线张力:
因为位错的总应变能与位错线的长度成 正比; 所以为了降低系统的能量,必须有位错 线由曲变直,由长变短的自发倾向。
该倾向视为:一个张力沿位错线作用 位错线张力T定义:使位错线增长一 定长度dl所做的功W,即:
3 s E Ee 2
e e
所以,刃位错的弹性应变能比螺位错大50%
24
Strain energy of mixed dislocation
混合位错:
因为: b b b b cosq b sin q m e s
所以
2 2 2 2 Gb sin q R Gb cos q R m s e Ee Ee Ee ln ln 4 (1 ) r0 4 r0
20
Strain energy of screw dislocation 单位长度的螺位错的应变能Eess:
Gb R E ln 4 r0
S e
2
21
Strain energy of edge dislocation 刃位错Eee:
位错在滑移面上 (x方向)只有切 应力分量sqr 且q=0
对于位错,除了位错中心严重畸变区外, 均适用于上述模型。
晶体缺陷理论位错的萌生与增殖PPT课件
过饱和空位
空位片
空位坍塌、刃位错
1.2 棱柱位错机制
(a)最大切应力在夹杂物的π/4处; (b)界面处夹杂物与基体的膨胀系数差造成应力集中, 基体晶格错动松弛,形成一段小的位错; (c)切应力作用下,刃位错部分沿背离夹杂物方向, 在圆柱面上运动,螺位错部分沿柱面的两边圆周方向向 下运动;
(d)运动过程,位错拉长。在接近圆柱面的底部附近,螺位 错异号;
晶体缺陷理论
第3章 位错的萌生与增殖
❖ §1 位错的萌生 ❖ §2 位错的增殖机制 ❖ §3 螺旋线位错的形成机制
第3章 位错的萌生与增殖
§1位错的萌生
1.1 空位机制
(a)快冷形成过饱和空位; (b)空位在某些特定面上聚集可以降低体系的能量; (c)一定数量的空位形成空位片; (d)空位片达到一定的尺寸后,坍塌形成了空位环; (e)如图为一刃型位错。
3.1位错形状的改变
影响曲线形状的因素: 1.空位或间隙原子的过饱和度; 2.空位或间隙原子向位错线扩散速度(Vd)的大小; 3.空位或间隙原子在位错线上重新排列的速度(Vr) ; 4.位错在柱面上发生滑移的难易程度; 5.晶体的各向异性(不同方向上的位错能量不同)
写在最后
成功的基础在于好的学习习惯
1
4
┬ ↑b
左
右
右左
2
3┴┴5源自★见位错增殖swf2.2 Frank-Read空间源 (1)位错增殖
★见L型位错swf
(2)CD段旋转运动
位错有弹性能和线张
2.3 极轴机制位错源
2.4 Bardeen-Herring位错源
2.5 交滑移位错源
★见双交滑移swf
§3螺旋线位错的形成机制
g此过程周而复始源源不断地放出位错环产生变形效位错的增殖机制用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感21frankread平面源用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感见位错增殖swf用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感22frankread空间源1位错增殖用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感2cd段旋转运动位错有弹性能和线张用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感23极轴机制位错源用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感24bardeenherring位错源用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感25交滑移位错源用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感见双交滑移swf用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感3螺旋线位错的形成机制31位错形状的改变用一
ch3.2 晶体缺陷--线缺陷(位错)(07级)
第三章 晶体缺陷
• 完整晶体滑移和实际晶体滑移:完整 晶体滑移的理论剪切强度要远高于实 际晶体滑移的对应强度,实验上所测 得的临界切应力远小于计算值。理论 值 大 了 约 1000~10000 倍 。 从 而 促 进 了 位错理论的产生和发展。
• Orowan把晶体的滑移过程比喻为蠕虫 的运动。
• 位错理论是上世纪材料科学最杰出成 就之一
行也不垂直于滑移方向,即滑移矢量与位错线成任意角度,这 种晶体缺陷称为混合型位错(mixed dislocation)
(2) 混合位错特征:混合位错可分为刃型分量和螺型分量,它们
分别具有刃位错和螺位错的特征。刃:ξ⊥b ; 螺: ξ∥b ;
第三章 晶体缺陷 位错环(dislocation loop)是一种典型的混合位错。
晶体局部滑移造成的刃型位错
2.螺型位错
第三章 晶体缺陷
(1)螺型位错的形成:
(2) 螺 型 位 错 ( screw dislocation)的图示
晶体中已滑移区与未滑移 区的边界线(即位错线) 若平行于滑移方向,则在 该处附近原子平面已扭曲 为螺旋面,即位错线附近 的原子是按螺旋形式排列 的,这种晶体缺陷称为螺 型 位 错 ( screw dislocation)。
对纯刃型位错而言,位错的滑移沿位错线的法线方 向进行。滑移面同时包含柏矢量b和位错线。
∥b、b⊥、滑移方向⊥、滑移方向∥b,单一滑
移面。
第三章 晶体缺陷
(2) 螺型位错的滑移过程(Lwcyd)
∥b、b ∥ 、滑移方向⊥ 、滑移方向⊥ b ,非 单一滑移面。
对于螺型位错,由于所有包含位错线的晶面都可以 成为它的滑移面,因此当某一螺型位错在原滑移面上 运动受阻时,有可能从原滑移面转移到与之相交的另 一滑移面上继续滑移,这一过程称为交滑移。
位错反应理论
位错反应
谢 谢!
bi b j
(2)能量条件 从能量角度要求,位错反应必须是一个伴随着能量降低 的过程。由于位错的能量正比于其柏氏矢量的平方,所以, 反应后各位错的能量之和应小于反应前各位错的能量之和, 即 2 bi b j 2
说明:
分析位错反应时,一般先用几何条件确定位错反应是 否可以进行,然后再利用能量条件来判定位错反应的方向。
. . . . 氏矢量是反映位错 周围点阵畸变总和的参数。因此,位错的合并实际上 是晶体中同一区域两个或多个畸变的叠加,位错的分 解是晶体内某一区域具有一个较集中的畸变,松弛为
两个或多个畸变。
三、位错反应的条件:
(1)几何条件 根据柏氏矢量的守恒性,反应后诸位错的柏氏矢量之 .... 和应等于反应前诸位错的柏氏矢量之和,即
位错反应(Dislocation Reaction)
概念
实质
条件
实例
一、位错反应的概念:
位错反应就是位错的合并(Merging)与分 解(aissvciativn)即晶体中不同柏氏矢量的位
. . . . . .
错线合并为一条位错线或一条位错线分解成两条 或多条柏氏矢量不同的位错线。
三、实例分析
三、实例分析
位错反应对位错导致微裂纹产生的解释
在体心立方晶体中,若沿(1 0 1)
晶面上具有柏氏矢量为a/2[-1 -1 1]的
位错理论(复习)
3.
,常用金属材料的约为1/3,故螺型位错
的弹性应变能约为刃型位错的2/3。
4.位错的存在均会使体系的内能升高,使晶体处于 高能的不稳定状态,位错是热力学上不稳定的晶 体缺陷。
线张力
位错应变能与位错线长度成正比。为降 低能量,位错线具有尽量缩短其长度的倾向, 从而使位错产生线张力。
其作用是使位错变直—降低位错能量 类似于液 体为降低表面能产生的表面张力。
与位错的畸变相对应,位错的能量也可分为两部分: 1. 位错中心畸变能Ec; 2. 位错中心以外的能量即弹性应变能Ee。 假设其为一个单位长度位错线,为造成这个位错克服切应力 τθr所做的功为单位长度刃型位错的应变能:
进一步简化得单位长度位错的总应变能:
1.位错的能量包括两部分:Ec和Ee。 2.位错的应变能与G和b成正比。
原子扩散离开(到)位错线—半原子面缩 短(伸长)—正(负)攀移空位扩散离开 (到)位错线—半原子面伸长(缩短)— 负(正)攀移
刃型位错的攀移
位错的正攀移过程
位错攀移的驱动力及产生
化学力:如晶体中有过剩的点缺陷,如空位,单位时 间内跳到位错上的空位(原子)数就要超过离开位错 的空位(原子)数,产生驱动力;
位错滑移时的晶格阻力
处于1或2处的位错,其两侧原子处于对称状态,作用在位错上 的原子互相抵消,位错处于低能量状态,而位错由1→2 经过不 对称状态,位错必越过一势垒才能前进。
位错移动受到一阻力——点阵阻力,又称派—纳力(Peirls- nNabarro), 此阻力来源于周期排列的晶体点阵。派—纳力(τp)实质上是周期点阵中移 动单个位错所需的临界切应力,近似计算得:
1.位错理论
刃型位错
特征: 有一个多余的半原子面; 是晶体中已滑移区和未滑移区的边界线,
位错理论.ppt
1.5 位错与溶质的交互作用
• 溶剂原子、溶质原子体积不同,晶体中的
溶质原子会使周围晶体发生弹性畸变,产
生应力场。 • 位错与溶质原子的弹性相互作用-应力场
发生作用。
科氏气团
• 位错与溶质原子交互作用-溶质原子相位 错线聚集-溶质原子气团。
• 位错更加稳定。
1.6 位错的增殖与塞积
Heterogeneous Nucleation Frank-Reed Source F-R源的形核
• 位错中心处原子严重错排,周围原子偏离 中心位置-位错周围产生应力场,晶体的 内能也增加。
• 因晶体中存在位错而使晶体增加内能-位 错的应变能。
线张力
位错应变能与位错线长度成正比。为降 低能量,位错线具有尽量缩短其长度的倾向, 从而使位错产生线张力。 其作用是使位错变直—降低位错能量 • 相当于 物质弹性—称之为位错的弹性性质 • 类似于液体 为降低表面能产生的表面张力。
• F-R源的开动条件:
推动力(外力)> 位错运动点阵摩擦力和障 碍物阻力
当外力作用在两端不能自由运动的位错上 时,位错将发生弯曲。
Dislocation Loop: Frank ed
m
Left & right screw intersects at m => cancellation 螺位错相消
全位错与不全位错(1)实际晶体中的 位错类型
简单立方:b≡点阵矢量—只有全位错
实际晶体:b > = <点阵矢量 b=点阵矢量整数倍— 全位错 其中b=点阵矢量——单位位错 b≠点阵矢量整数倍——不全位错 其中b <点阵矢量——部分位错
位错反应
— 位错的合并与分解
• 几何条件:反应前后柏氏矢量和相等(方向、大 小);
材料科学基础 第 三 章 晶 体 缺 陷 (二)资料讲解
综合而言刃型位错具有以下几个重要特征:
(1) 刃形位错有一个额外半原子面;
(2) 刃形位错线是一个具有一定宽度的细长 晶格畸变管道,其中既有正应变,又有切应变;
(3) 位错线与晶体滑移的方向垂直,即位错 线运动的方向垂直于位错线。
➢ Burgers vector b is perpendicular to line dislocation vector ξ. ➢ The slip plane is unique.
➢ Burgers vector b is parallel to the line vector ξ of the dislocation. ➢ The slip plane cannot be defined uniquely. ➢ Slip direction is parallel to b. ➢ Dislocation line moves perpendicular to b.
完整晶体滑移的理 论剪切强度要远高于实 际晶体滑移的对应强度, 从而促进了位错理论的 产生和发展。
刃位错的原子模型
(2) 刃型位错定义
晶体中已滑移区与未滑移区的边界线(即位错线)若垂 直于滑移方向,则会存在一多余半排原子面,它象一把刀刃 插入晶体中,使此处上下两部分晶体产生原子错排,这种晶 体缺陷称为刃型位错(edge dislocation)。多余半排原子面在 滑移面上方的称正刃型位错,记为“┻”;相反,半排原子 面在滑移面下方的称负刃型位错,记为“┳”。
滑移矢量
*滑移矢量之 伯氏矢量表示法
➢用来描述位错区域原子的畸变特征(包括畸 变发生在什么晶向以及畸变有多大)的物理 参量,称为伯氏矢量(Burgers Vector);
➢它是一个矢量,1939年由伯格斯(J. M. Burgers)率先提出。
材料科学基础位错部分知识点
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
第三章-断裂的微观机制
式中, 为取向因子, 接近于1; a 为施加于滑移面的外加切应力。
则垂直与OP面的正应力为:
=_x001A__x001B__x001B__x001A__x001A__x001A__x001
B__x001B__x001B__x001B__x001A__x001B__x001B__x001
或在高应变条件下, 第二相与基体变形不
第3章 断裂的微观机制
3.1 微裂纹形核方式
3.1.2 微孔聚合形成微裂纹
微孔成核与长大的位错模型: 第二相的强度高不可变形
第3章 断裂的微观机制
3.1 微裂纹形核方式
3.1.2 微孔聚合形成微裂纹
微孔形成并逐渐长大后, 微孔与微孔之间的横截面面
积减小, 使得材料所受的应力增大。
形核都是局部应力集中等于原子键合力的结果。
位错塞积应力等于原子键合力从而形成微裂纹是可
能的, 但实验上很难观察到。
裂尖无位错区中应力集中形成微裂纹适合于各种断
裂方式, 而且很容易有透射电镜原位拉伸来证实。
第3章 断裂的微观机制
3.2 位错发射和无位错区
3.2.1 裂纹和位错的交互作用
位错像力
当晶体中存在位错时, 不但在位错
金属材料中的夹杂物大多属于脆性相, 在比较
低应力下便与基体脱开或本身开裂而形成
微孔。
金属中的第二相是起强化作用的, 通常称为强
化相, 如钢中的碳化物、铝合金中时效强
化相。
在外应力作用下, 外应力足够大时启动位错,
位错沿滑移面运动, 与第二相离子相遇, 一
方面对位错运动产生阻力, 即强化作用, 另
一方面位错在强化相处塞集引起应力集中,
目增大到等于某一临界值时, 所产生的应力集中达到
第三章 位错理论1
(f) Enlargement of the typical foam structure of mmS90, showing the equilibrium grain shapes and generally tight structure without pervasive porosity. The porosity distribution is, however, heterogeneous—although most grain boundaries are almost pore-free, local pockets exist where grain boundaries are covered in scattered fine pores, e.g. in the centre-right of the photograph (see also Fig. 6a and b), XY surface.
(h) Enlargement of the K-feldspar domain in (g), showing the similar polygonal grain shape as for quartz and the generally tight, pore-free grain boundaries, with only local development of isolated pores on twograin boundaries, XY surface (mmS90c).
(1).点缺陷 晶格内某一结点上原子排列的 周期性的破坏或中断,叫点缺 陷(0-D known as point defects )有: A 空位; B.间 隙原子;替换原子 A 空位,结点上原子缺失; 形成负压中心,晶格畸变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想晶体
含有位错晶体
• 刃型位错的布格矢量与位错线垂直.刃型位错分 可分为正、负刃型位错。布格矢量顺时针为正, 反之为负.
正刃性位错
负刃性位错
• 螺型位错的布格矢量与位错线方向平行, 可以分为左型和右型.
a-右螺型位错
b-左螺型位错
3.位错的一些基本性质
• (1)位错是一种线状缺陷,可以是直线,也可以是 曲线. • (2)一个位错只有一个唯一的柏格斯矢,且不会 为零. • (3)布格矢量是贯穿整个晶体的滑移矢量,所以 位错线不能终止于晶体内部,或出露晶体表面,或连 接于另一个位错线,也可以自行封闭形成位错环. • (4)当位错线交叉时,即数个位错线交汇于一点时, 则指向位错交叉点的布格斯矢量之和等于背向交 叉点的布格斯矢量之和 • (5)位错线附近原子能量大,不稳定,易于被杂质 原子所取代或侵蚀,这就是采用化学侵蚀法和氧化 缀饰法来观察位错的基础.
Schottky空位
Frank 空位,它与间隙原子数相同
• B.间隙原子 • 在晶格结构中非结 点位置出现的原子 和其它杂质,称为 间隙原子,有自间 隙原子(selfinterstitials)和间 隙杂质(interstitial impurities)两类。 • 自间隙原子与周围 原子一样,属于错 排原子。 • 间隙杂质其半径可 以比周围原子半径 大或小都使晶格发 生畸变。
螺型位错滑:移滑动方向与b垂直,由于位错线 与b平行,没有固定滑移面
混合型位错滑移:滑动方向与b成一斜交角度
(a).位错运动可以导致位错消失
正、负刃性位错在同一滑移面上向遇,相互 抵消,导致位错消失Βιβλιοθήκη (b).位错运动可以形成空位
正、负刃性位错在相隔滑移面上向遇,形成空位
• (c).位错运动可以位错塞积 • 当位错滑动时遇到障碍时,如粒内晶界,气泡,杂质等,运 动受阻,产生位错塞积或位错缠结. • 符号相反的两个刃型位错在滑动过程中相遇时,会相互 抵消,导致位错消失.
C. 替换原子 晶格结点上出 现了外来的原 子,替换原来 的原子。 (Substitutional impurities)
(2).线状缺陷(Linear defects)
是指晶格内质点排列周期性被破坏成一条线,也称为位 错,是晶体中最为常见的缺陷,位错及其运动在岩石和矿物 塑性流动过程中起着重要作用。
(b)Irregular Qtz2,1 surrounded by fine, equigranular Qtz2,2, XZ surface (mmS80).
(c) Enlargement of the transition from Qtz2,1 to Qtz2,2 grains as seen in (b). Note the polygonal form, the fine grain size (2–3 mm), and the typical pore-free grain boundaries, XZ urface (mmS80).
Fig. 4. SEM secondary electron images of broken surfaces of dry Mont Mary quartzfeldspar mylonites.
(a) Thin K-feldspar band (with Kfs1 porphyroclasts embedded in tails of fine recrysallized Kfs2 grains) surrounded by larger elongate Qtz2,1 grains with mantles of fine polygonal Qtz2,2, XZ surface (mmS80).
b.螺型位 错:
位错线平 行于剪切 方向,但 是由垂直 于剪切方 向的位移 来实现的。 没有附加 半原子平 面。
c.混合型位错:兼有刃性位错和螺型位错的特点,称为混合位错
d. 位错环:闭合于晶体内部的环型位错,其任 何一部分都可以进一步分解为刃性位错、螺型 位错或混合型位错
2.布格矢量
• 位错的形成与晶格的滑动密切相关.滑动包括了 滑动方向和距离两个要素,滑动方向和距离统称 为滑动矢量,即 布格(Burgers)矢量,一般用b来表 示. • 布格矢量是由柏格斯回路引出来的,柏格斯回路 就是在含位错的晶体中,以完好晶区内取一原子 作为起点,绕位错线作一闭合的回路,每一步都 连接着相邻的等同原子.理想晶体与含位错晶体 结构上的闭合差即为布格矢量.
Strong kinking in biotite and quartz, indicating solid-state deformation, though much of the igneous microstructure remains, in the form of euhedral plagioclase laths. Hillgrove Adamellite, New England Batholith, New South Wales, Australia. Crossed polars; base of photo 1.75 mm.
(g) Recrystallized quartz and finer-grained K feldspar, showing the marked difference in grain size but otherwise similar grain microstructure, XY surface (mmS90c).
• 金属物理学家、在研究金属变形时发现晶体 缺陷与金属的变形行为和力学性质有密切关 系,后来材料科学家发现这类缺陷不仅控制 材料的力学性质,而且对材料物理性质有直 接影响。人们发现一些晶体的实际强度要比 理论强度小的多,其原因是由晶体缺陷引起 的,为此Taylor(1934)提出位错理论,后来的 实验证明了位错理论。1964年Christie等首次 将位错理论引入矿物变形领域,地质学家开 始应用晶体缺陷理论来研究岩石和矿物的变 形特征、动力学机制和环境条件。晶体缺陷 影响晶体塑性变形。
(f) Enlargement of the typical foam structure of mmS90, showing the equilibrium grain shapes and generally tight structure without pervasive porosity. The porosity distribution is, however, heterogeneous—although most grain boundaries are almost pore-free, local pockets exist where grain boundaries are covered in scattered fine pores, e.g. in the centre-right of the photograph (see also Fig. 6a and b), XY surface.
(3).面状缺陷(Planar defects)
是指晶格内质点排列周期被破坏成一个面,也称为二维 缺陷。 如晶体表面、晶体颗粒边界、亚晶粒边界、双晶面、不同相 的界面。
A.晶体表面(grain surfaces)
晶体表面的几个原子层,其结构与性质与晶体内部不同, 它们受到质点间的作用力是不对称的,具有表面能。
•第三章 矿物晶体缺陷和位错(2)
4.位错运动与增殖
位错运动造成了岩石和矿物 塑性变形,而位错运动实质 是上就是原子运动,只涉及 位错周围原子,所以位错运 动所需要的临界值比理想的 晶体要小的多。与岩石和矿 物变形有关的位错运动主要 有以下主要几种类型:
刃性位错滑移:滑动方向与b平行
A 位错滑动 是指位错沿 滑移面的运动, 在没有干扰的 情况下,各类 位错均可最终 移出晶界,形 成台阶. 所有的位错线 的滑动方向均 与位错垂直。
• B 刃型位错攀移 • 刃型位错除了可以沿滑动面发生滑动外,还可以垂直于滑动面发
(d) Transition from Qtz2,1 to Qtz2,2 new grains. Note again the general lack of porosity on the new grain boundaries, XZ surface (mmS88).
(e) Typical foam structure of recrystallized quartz grains developed in mmS90 (see Fig. 1e). Note the low overall porosity on most grain boundaries, XY surface.
(h) Enlargement of the K-feldspar domain in (g), showing the similar polygonal grain shape as for quartz and the generally tight, pore-free grain boundaries, with only local development of isolated pores on twograin boundaries, XY surface (mmS90c).
一、晶体缺陷及其分类
• 1. 晶体缺陷 (imperfections in the structure of a crystal ) 理想晶体格架 内结点上的质点以一定规律周期性排列,如 果结点上质点的周期性遭到破坏,这就是晶 体缺陷。它们可以在晶体生长过程中 出现, 也可以在变形过程中出现。晶体缺陷按其在 晶体中的几何分类,可以分为点缺陷、线缺 陷、面缺陷和体缺陷。
B.晶粒间界(grain boundaries)
光性方位不同的相邻晶粒或亚晶粒间的界面称为晶粒间界。 按相邻颗粒位向差的大小可将晶粒间界分为大角度晶界和小角 度晶界。大于12℃为大角度晶界,小于12 ℃为小角度晶界,也 称为亚晶界