二阶线性微分方程的分类
二阶微分方程解
二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。
在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。
二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。
求解过程如下:1. 特征方程:首先求出微分方程的特征方程。
特征方程为:r^2 - pr - q = 0其中,p、q为常数。
2. 求解特征方程:求出特征方程的两个根r1和r2。
可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。
4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。
举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。
需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。
非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。
此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。
二阶线性偏微分方程的分类与总结
物理学中的例子包括波动方程、热传导方程等。 力学中的例子包括弹性力学中的基本方程等。
按照应用分类
根据应用领域,可以 将二阶线性偏微分方 程分为工程、生物医 学、经济和环境科学 四类。
工程领域中的例子包 括电气工程中的传输 线方程、流体力学中 的Navier-Stokes方 程等。
生物医学领域中的例 子包括神经传导方程 、生物化学反应中的 质量传递方程等。
02
非奇异方程是指所有特征根均具有负实部的方程,而奇异方程至少存在一个具 有正实部的特征根。
03
在非奇异方程中,又可以根据波数和频率的关系分为稳定性、不稳定性、临界 稳定性和临界不稳定性的二阶线性偏微分分为物 理、几何和力学三类。
几何学中的例子包括拉普拉斯算子、热力学中的基本 方程等。
弹性力学
在弹性力学中,物体的位移和应力满足二阶线 性偏微分方程,该方程描述了物体的弹性变形 和应力分布及其随时间的变化。
在化学中的应用
化学反应速率
二阶线性偏微分方程可以描述化学反应的速率和反应过程的动态变化,以及反应条件对反 应速率的影响。
分子的振动
分子的振动运动满足一个二阶线性偏微分方程,该方程描述了分子振动频率和振幅随时间 的变化以及分子间的相互作用。
重点介绍了二阶线性偏微分方程在数学和物理学中的重要地 位和研究进展。
研究意义
研究二阶线性偏微分方程对于理解和研究自 然现象和实际问题具有重要意义。
对于数学和物理学的发展也具有重要价值, 同时对于解决实际问题提供理论支持和方法
指导。
研究目的
对二阶线性偏微分方程进行分类和总 结,梳理各种类型方程的特点和性质 。
要点三
结构力学
在结构力学中,物体的位移、应力和 变形满足二阶线性偏微分方程,该方 程描述了结构的力学行为随时间的变 化。
二阶线性偏微分方程的分类
1.双曲型
对于下列含常系数的第一种标准形式的双曲型标准方程还 可进一步化简
注:上式中用小写字母 大写字母代表某函数区别开来, 例如
代表常系数,以便与 .为了化简,
我们不妨令
从而有
(10.4.2)
其中
由第二种标准形式的双曲型偏微分方程(含常系数)可以进 一步化简
注:上式中的“*”号不代表共轭,仅说明是另外的函数。如
与 是两个不同的函数。
2.抛物型偏微分方程
因为抛物型偏微分方程的判别式 线是一族实函数曲线. 其特征方程的解为
,所以特征曲
(10.3.5)
因此令 进行自变量变换,则原偏微分方程变为
(10.3.6)
上式称为抛物型偏微分方程的标准形式.
3.椭圆型偏微分方程
(10.4.3)
式中
均为常系数.若令
(10.4.4)
则有 (10.4.5)
其中
2.抛物型
对于含常系数的抛物型偏微分标准方程(含常系数)
(10.4.6)
还可以进一步化简.上式中小写字母
均为常系数.为了化简,不妨令源自从而有(10.4.7)
3.椭圆型
对于下列第一种标准形式的椭圆型标准方程(含常系数)
(10.4.8)
还可以进一步进行化简.上式中小写字母的 为常系数.
为了化简,不妨令
从而有
(10.4.9)
其中
10.5 线性偏微分方程解的特征
含有两个自变量的线性偏微分方程的一般形式也可以写成下 面的形式: 其中 L 是二阶线性偏微分算符,G是x,y的函数. 线性偏微分算符有以下两个基本特征:
其中
均为常数.进一步有如下结论:
二阶线性偏微分方程的分类与小结
第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程 1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ①它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。
设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。
取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。
=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+=xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。
并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。
二阶线性微分方程的分类
b1 a11 xx 2a12 xy a22 yy b1 x b2 y b 2 a11 xx 2a12 xy a22 yy b1 x b2 y c c, f f
如果选取合适的变换
1 (x, y),
2 ( x, y)
做变换
2 x y ) , 3
3 2
原方程化为
2u 1 u u 0. 6( )
2、微分方程一般分类
(1) 按自变量的个数,分为二元和多元方程; (2) 按未知函数及其导数是否线性(看其系数是否和未知函数有关),分为线性微分 方程和非线性微分方程;
a11 , a12 , a22 , b1 , b2 , c, f 都是变量 x, y 在区域 上的实函数
2、两个自变量方程的化简
令 ( x, y), ( x, y)
D( , ) x y 且 在( x0 , y0 )处不为零。 D( x, y) x y
由于
2
(1.7 ')
如果(1.7’)存在一个解 ( x, y ) c ,根据隐函数存在定理, 有
x dy dx y
2
所以(1.7’)可以化为
dy dy a11 2a12 a22 0, dx dx
这样(1.7)的求解就化为下述常微分方程在 积分曲线问题:
a12 a11 xx a12 ( x y yx ) a22 y y 0
方程化为:
u u Au Bu Cu D.
例2:将弦振动方程化为标准形式。
解:方程 utt
特征方程:
a uxx 0 的特征线族是
2
二阶线性偏微分方程的分类与总结
特点
1
偏微分方程的意义
2
3
描述现实问题中多个变量之间的动态关系。
建立数学模型,为解决实际问题提供理论支持。
通过求解偏微分方程,可以预测未来的发展趋势,为决策提供依据。
二阶线性偏微分方程的分类
02
特征方程为多项式形式
特征方程为三角函数形式
分离变量法
适用范围:积分变换法适用于具有特定边界条件的二阶线性偏微分方程,如周期性边界、狄利克雷边界等。基本思想:利用傅里叶变换、拉普拉斯变换等积分变换方法,将偏微分方程转化为常微分方程,从而简化求解过程。步骤选择适当的积分变换函数,如傅里叶变换、拉普拉斯变换等。对原方程进行积分变换,得到变换后的常微分方程。求解常微分方程,得到原方程的解。通过反变换得到原方程的通解。
二阶线性偏微分方程的展望与发展
05
有限差分法
通过离散化偏微分方程,将连续的空间离散为多个离散点,并使用差分近似公式来计算每个离散点处的数值解。
有限元法
将连续的空间离散为多个小的单元,每个单元内使用线性函数来近似解,从而将偏微分方程转化为线性方程组进行求解。
谱方法
利用傅里叶变换等函数变换方法,将偏微分方程转化为常微分方程进行求解,具有高精度和高分辨率的优点。
《二阶线性偏微分方程的分类与总结》
xx年xx月xx日
CATALOGUE
目录
二阶线性偏微分方程概述二阶线性偏微分方程的分类二阶线性偏微分方程的求解方法二阶线性偏微分方程的应用领域二阶线性偏微分方程的展望与发展二阶线性偏微分方程的案例分析
二阶线性偏微分方程概述
01
VS
二阶线性偏微分方程是包含未知函数及其偏导数的方程,且方程中未知函数的最高阶偏导数不超过二阶。
第二章 二阶线性偏微分方程的分类
第二章 二阶线性偏微分方程的分类1.把下列方程化为标准形式:(1)02=+++++u cu bu au au au y x yy xy xx 解:因为022211212=⋅-=-a a a a a a所以该方程是抛物型方程,其特征方程为122=-±=aa a a dx dy 。
它只有一族实的特征线 c x y =-在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。
方法一:用抛物型方程的标准形式][12122F Cu u B u B A +++-=ηξηηη 先算出:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-====⋅+⋅+⋅+⋅+⋅=++++=⋅+-+⋅+⋅+⋅=++++==⋅+⋅+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 22122121122122121112221221122ηηηηηξξξξξηηηη ∴])[(1u bu u c b au +++--=ηξηη即01=++-+u au a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出⎪⎩⎪⎨⎧=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη(2)06232=++--y x yy xy xx u u u u u ,解:因为042211212>=-a a a ,所以该方程是双曲型的其特征方程为 ⎩⎨⎧-=+±-=311311dx dy ,特征线为1c y x =-和23c y x =+。
微分方程二阶线性微分方程
微分方程二阶线性微分方程微分方程是数学中的一个重要分支,它研究的是函数与函数的导数(或微分)之间的关系。
其中,二阶线性微分方程是微分方程中的一种常见形式。
在本文中,我们将从定义、特征解和常系数二阶线性微分方程等方面进行详细介绍。
一、定义二阶线性微分方程是指形如 y''(x) + p(x)y'(x) + q(x)y(x) = f(x) 的微分方程,其中 p(x)、q(x) 和 f(x) 都是已知函数。
其中,y''(x) 表示 y(x) 的二阶导数,y'(x) 表示 y(x) 的一阶导数,y(x) 表示未知函数,p(x)、q(x) 和 f(x) 表示已知函数。
二、特征解对于二阶线性微分方程,我们可以找到一组特解和一组通解。
特解是指特定形式的解,可以通过代入法或常数变异法等方法求解。
通解是指一组解的集合,包括特解和齐次线性微分方程的解。
齐次线性微分方程是指当 f(x) = 0 时的微分方程。
特解和通解的求解方法可以根据具体的二阶线性微分方程的特点选择不同的方法,如常数变异法、待定系数法等。
求解过程中需要注意初始条件的限制,以确保解的唯一性。
三、常系数二阶线性微分方程常系数二阶线性微分方程是指系数 p(x) 和 q(x) 都是常数的微分方程,即 y''(x) + py'(x) + qy(x) = f(x)。
对于常系数二阶线性微分方程,可以通过特征方程来求解其通解。
特征方程的形式为 r^2 + pr + q = 0,其中 r 是未知的。
特征方程的根决定了通解的形式。
当特征方程有两个不相等的实根时,通解可以表示为 y(x) = C1e^r1x + C2e^r2x,其中 C1 和 C2 是常数。
当特征方程有两个相等的实根时,通解可以表示为 y(x) = (C1 +C2x)e^rx,其中 C1 和 C2 是常数。
当特征方程有两个共轭的复根时,通解可以表示为 y(x) =e^(αx)(C1cosβx + C2sinβx),其中 C1 和 C2 是常数,α 和β 是复数。
第二讲二阶线性偏微分方程及其分类
例题2:把方程 解:该方程的
特征方程:
§5-1 二阶线性偏微分方程的分类
分类并化为标准形式 故该方程是抛物型的。
特征的解:
从而得到方程的一族特征线为:
作自变量代换
(由于ξ和η必须函数无关,所以η宜取最 简单的函数形式,即η=x 或η=y)
于是,原方程化简后的标准形式为:
例题3:判断下面偏微分方程的类型并化简
a122 a11a22 4 0
故该方程为双曲型偏微分方程,其特征方程
( dy)2 2 dy 3 0 dx dx
dy 1 dx
或
dy 3 dx
故有 y 3x C1 或 y x C2
取新变量 3x y x y 则
u 3 u x
s , t ξ-η
例4:判定下列二阶方程的类型 (1)u xx 4u xy 3u yy 2u x 6u y 0 (2)(1 x2 )uxx (1 y2 )uyy xux yuy 0 (3)u xx xu yy 0
一阶偏微分方程(3-4)的求解可以转化为常微分 方程的求解,将(3-4)改写成:
a11 (
zx zy
)2
2a12 (
zx zy
) a22
0
如果将 z(x, y) c 看作定义隐函数y y(x) 的方程,则
dz zxdx z ydy 0
dy zx dx z y
dx
dx
特征方程的解:
dy cosx 2, dy cosx 2
dx
特征线:
y sin x 2x C1, y sin x-2x C2
微分方程的分类
微分方程的分类微分方程是数学中非常重要的一部分,它是研究变化的数学工具。
微分方程可以分为很多种,下面将详细介绍几种常见的微分方程及其应用。
一、一阶微分方程一阶微分方程是指方程中只有一阶导数的微分方程,比较常见的形式是dy/dx=f(x),其中f(x)是x的函数。
一阶微分方程的求解需要使用分离变量法、齐次方程法、一阶线性微分方程法等方法。
一阶微分方程的应用非常广泛,如物理学中的运动方程、化学反应动力学方程等。
二、二阶线性微分方程二阶线性微分方程是指方程中只有二阶导数的微分方程,常见的形式是y''+p(x)y'+q(x)y=f(x),其中p(x)、q(x)、f(x)都是x的函数。
二阶线性微分方程的求解需要使用常系数齐次线性微分方程法、常系数非齐次线性微分方程法等方法。
二阶线性微分方程的应用非常广泛,如物理学中的谐振子方程、电路中的振荡电路方程等。
三、偏微分方程偏微分方程是指方程中包含多个自变量的微分方程,常见的形式是u_t=k(u_xx+u_yy),其中u是未知函数,t是时间,x、y是空间坐标,k是常数。
偏微分方程的求解需要使用分离变量法、变量代换法、特征线法等方法。
偏微分方程的应用广泛,如热传导方程、波动方程、扩散方程等。
四、常微分方程组常微分方程组是指包含多个未知函数的微分方程组,比较常见的形式是x' = f(x, y), y' = g(x, y),其中x、y是未知函数,f(x,y)、g(x,y)是x、y的函数。
常微分方程组的求解需要使用线性代数、矩阵论等方法。
常微分方程组的应用非常广泛,如经济学中的IS-LM模型、生态学中的捕食-被捕食者模型等。
五、随机微分方程随机微分方程是指微分方程中包含随机项的微分方程,常见的形式是dx=f(x,t)dt+g(x,t)dw,其中dw是随机项,f(x,t)、g(x,t)是x、t 的函数。
随机微分方程的求解需要使用随机分析等方法。
二阶线性偏微分方程的分类与总结
要点一
要点二
信号处理
在信号处理中,信号的传递和处理往往涉及到二阶线性偏微分方程,例如差分方程、卷积等,通过求解可以得到信号的频谱、滤波效果等性质。
在工程中的应用
二阶线性偏微分方程的求解方法
在物理中的应用
化学反应速率
二阶线性偏微分方程可以描述化学反应的速率,例如反应速度与反应物浓度的关系,通过求解可以得到反应速率常数等参数。
化学振荡
某些化学反应会经历振荡现象,即反应物浓度周期性地变化,二阶线性偏微分方程可以描述这种现象,通过求解可以得到振荡的频率、幅度等性质。
Hale Waihona Puke 在化学中的应用控制工程
要点三
Laplace变换法是一种通过将时域问题转换到复域问题来求解二阶线性偏微分方程的方法。
概述
Laplace变换法
适用于具有初始条件、冲击激励等特殊性质的二阶线性偏微分方程,如RLC电路中的电压电流关系等。
适用范围
将原方程中的未知函数进行Laplace变换,得到复域中的解析解,再通过反变换得到时域中的解。
04
概述
适用范围
步骤
行波法
分离变量法
要点三
概述
分离变量法是一种通过将多变量问题分解为多个单变量问题来求解二阶线性偏微分方程的方法。
要点一
要点二
适用范围
适用于具有周期性、边界条件等特殊性质的二阶线性偏微分方程,如Sturm-Liouville方程等。
步骤
将原方程中的未知函数按照某种方式分解为多个单变量函数,通过对每个单变量函数分别求解,最终得到原方程的解。
第三章二阶线性偏微分方程的分类化简
n e m
f o t
t a M
a m he
, s c ti
T I H
D
t r a ep
n e m
f o t
t a M
a m he
, s c ti
T I H
D
t r a ep
n e m
f o t
t a M
a m he
, s c ti
T I H
D
t r a ep
n e m
f o t
t a M
a m he
au xx bu xy cu yy du x eu y fu g
D
t r a ep
t a b 4ac 0 则称方程(1)是双曲型方程 m 在区域D内,如果 e h b 4ac 0 t如果 a 则称方程(1)是抛物型方程 M f o 如果 b 4ac 0 则称方程(1)是椭圆型方程 t n e m二)二阶线性偏微分方程的化简
( x, y ).
2 2 C a x b x y c y 0
经过证明可以上述一阶偏微分方程的解等价于常微分方程: ady 2 bdxdy cdx2 0 ( a( dy )2 b dy c 0 )
dx dx
(3)
D
t r a ep
xx xy yy
2 x x y 2 y x x x y y x y y 2 x x y 2 y xx xy yy x y xx xy yy x y
x
Eu y Fu G
(2)
F f Gg
假设abc不等于零,我们希望选取一个变量替换使得方程(2)中A和B都等 2 2 ( x, y ), 使得 于零.选择变换, A a x b x y c y 0
第二讲二阶线性偏微分方程及其分类
标准形式
2u 2u f x2 y 2
u 2u f
x y2 2u 2u
f x2 y2
例1:判断下面偏微分方程的类型并化简
u xx 2u xy 3u yy 2u x 6u y 0
解:∵ a11 1
a12 1
故 a22 3
C c, F f
从(3-3)中可以看出,如果取一阶偏微分方程
a11
z
2 x
2a12 zx z y
a22
z
2 y
0
的一个特解作为 ,则
a11
2 x
2a12x y
a22
2 y
0
(3-4)
从而A11=0。如果取(3-4)的另外一个特解作为
则A22=0,这样方程(3-2)就可以简化。
,u
y
u
2u x 2
2u
9 2
6
2u
2u
2
2u 2u 2 2u 2u
y 2 2 2
代入原方程得: 16
2u
12
u
4 u
0
即:
2u 3 u 1 u
4 4
s , t ξ-η
例4:判定下列二阶方程的类型 (1)u xx 4u xy 3u yy 2u x 6u y 0 (2)(1 x2 )uxx (1 y2 )uyy xux yuy 0 (3)u xx xu yy 0
a11u xx 2a12u xy a22u yy
若方程(3.1)的主部系数 满足
二阶线性偏微分方程的分类与小结6页word文档
第六章 二阶线性偏微分方程的分类与小结一 两个自变量的二阶线性方程 1 方程变换与特征方程两个自变量的二阶线性偏微分方程总表示成fcu u b u b u a u a u a y x yy xy xx =+++++212212112 ①它关于未知函数u 及其一、二阶偏导数都是线性的,其中fu c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。
设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。
取自变量变换),(y x ξξ=,),(y x ηη=其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。
=∂∂),(),(y x ηξyx yx ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换,),(ηξx x =,),(ηξy y =因为x x x u u u ηξξξ+=,y y y u u u ηξξξ+= xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)(将代入①使其变为F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。
并可验证222112122211212))((x y y x a a a A A A ηξηξ--=-这表明,在可逆变换下22211212A A A -与2211212a a a -保持相同的正负号。
数学物理方程 练习题
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2
−
∂2u ∂y2
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2
−
∂2u ∂y2
解: 特征方程:
α21 − α22 = 0.
特征方向 l 满足:
2012-10-3 13 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
齐海涛 (SDU)
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
解: 特征方程:
α20 = α21 + α22 + α23.
特征方向 l 满足:
α20 = α21 + α22 + α23,
α20 + α21 + α22 + α23 = 1.
√√
√
√
解得:
l
=
(±
2 2
,
2 2
sin
θ
sin
β,
2 2
sin
θ
cos
β,
2 2
cos
θ),
其中
θ,
β
为任意参数.
齐海涛 (SDU)
(1.2)
ξ = α1x + α2y, η = α3x + α4y,
第八章 二阶线性微分方程
8.2 二阶线性微分方程一.二阶线性微分方程的概念形如)()()(x f y x q y x p y =+'+'' ①的方程,称为二阶线性方程(关于y 及y '、y ''的一次方程。
)(x p 、)(x q 、)(x f 均为已知函数)。
特别的,0)(=x f 时,相应的方程0)()(=+'+''y x q y x p y ②称为二阶齐次线性方程。
0)(≠x f 时,方程①称为二阶非齐次线性方程。
如果方程①中的)(x p 、)(x q 恒为常数,即)(x f qy y p y =+'+'' ③称为二阶常系数线性方程。
二.二阶线性微分方程解的结构三.二阶常系数齐次线性微分方程的解二阶常系数线性微分方程③中,若0)(=x f ,则相应的方程0=+'+''qy y p y ④称为二阶常系数齐次线性微分方程。
1.特征方程 特征根02=++q p λλ称为方程④的特征方程,特征方程的根称为方程④的特征根。
2.二阶常系数齐次线性微分方程④解的情况(i )特征方程有两个不等的实根21λλ、时,齐次方程④有通解:xxeC eC y 2121λλ+=;(ii )特征方程二重实根λλλ==21时,齐次方程④有通解:x e x C C y λ)(21+=;(iii )特征方程有共轭虚根βαλi ±=2,1时,齐次方程④有通解:)sin cos (21x C x C e y x ββα+=;例1 以xx xe C eC y 3231--+=为通解的二阶常系数线性微分方程为 。
解:由通解知,3-=λ是特征方程的二重根,所以特征方程为0)3(2=+λ,即 0962=+-λλ。
故相应的二阶常系数线性微分方程为096=+'-''y y y 。
例2 求方程032=-'-''y y y 的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 , a12 , a22 , b1 , b2 , c, f 都是变量 x, y 在区域 上的实函数
2、两个自变量方程的化简
令 ( x, y), ( x, y)
D( , ) x y 且 在( x0 , y0 )处不为零。 D( x, y) x y
由于
方程为抛物型.其余 0, 方程为双曲型.
x2 y2 x2 y2 0, 方程为抛物型.特征方程 解:3(2)因为 是 dy 2 2 dy 2 x ( ) 2 xy y 0, dx dx dy y y cx 解之得: dx x, y 作变换 x x,
(3) 按方程中未知函数导数的最高阶数,分为一阶、二阶和高阶微分方程。
3、线性偏微分方程的分类
(1)按未知函数及其导数的系数是否变化分为常系数和变系数微分程 (2) 按自由项是否为零分为齐次方程和非齐次方程
1.指出下列方程的类型
(1).utt a uxx 0.
2
二阶线性齐次双曲方程 二阶线性齐次抛物方程 二阶线性齐次椭圆方程
作变换:
2 2 a12 a12 a11a22 a12 a12 a11a22 y x, y x. a11 a11
把方程化成关于 , 的方程即可.
u Au Bu Cu D.
2 a12 a11a22 0. (2) 抛物型方程特征曲线:
所以特征曲线: 令
x at c. x at c, x at c.
x at,
2
x at.原方程化为
u 0.
例3:将特里克米方程化为标准形式。
解:方程 的特征方程是
ydy dx 0. 在椭圆型区域 y 0 内,它可以化为
2 2
所以
有u( x, y) u( (x, y), ( x, y))
u x u x u x u u u y y y u xx u x2 2u x x u x2 u xx u xx u xy u x y u ( x y y x ) u x y u xy u xy 2 2 u yy u y 2u y y u y u yy u yy
作业
2(1)(2),3(3)
解:1(1)因为 x2 y2 0, 若 x 0, y 0, 有 0, 即在坐标轴
上方程为抛物型. 若x 0, y 0, 有 x2 y 2 0,方程为双曲型.
解:1(2)因为 ( x y)2 0, 在直线 x y 0, 有 0, 即
做变换
2 x ( y ) , 3
3 2
2 x ( y ) , 3
3 2
原方程化为
2u 1 u u 0. 6( )
2、微分方程一般分类
(1) 按自变量的个数,分为二元和多元方程; (2) 按未知函数及其导数是否线性(看其系数是否和未知函数有关),分为线性微分 方程和非线性微分方程;
2 作变换: a y a x, 11 a11a22 a12 x. 12 则 i 满足(1.7),代入,并将实部虚部分开:
a11 a 2a12 x y a a 2a12x y a a 22
2 11 x 2 22 y 2 11 x 2 22 y
a 2a12x y a22 0,
2 11 x 2 y
(1.7)
变为:
( a11x a22 y )2 0 a11 0.
( a11 x a22 y )( a11x a22 y ) 0 a12 0.
取
2 a12 a12 a11a22 y x. a11 另取一个与此量线性无关的量 即可把方程变为最简
有
u u y u ( 2 ) x x 2u 2u y 2 2u y u 2 y 2u 2 ( 2 ) 2 ( 2 ) 2 2 3 x x x x u u 1 y x 2u 2u 1 2 2 2 y x 2u 2u y 1 u 2 ( 3 ) 2 xy x x
有隐函数定理,则一般的二阶线性方程可以化为
a11u 2a12u a 22u b1u b2u cu f ,(1.4)
所以
a11 a11 x2 2a12 x y a22 y2 a12 a11 x x a12 ( x y y x ) a22 y y 2 a 22 a11 x2 2a12 x y a22 y
方程化为:
1 u (u u ) 0. 2( )
当 y 0 为双曲型.方程已经标准形式. y 0 为椭圆型.特征方程 ( dy ) 2 y 0. 当 dx dy
解之得: 变换得: 有:
dx yi, 2 y xi c .
x 2 y
1、特征概念:
(1)
(2) (3)
a a11a22 0.
2 12 2 12 2 12
两条特征线。双曲型。
一条特征线。抛物型。 没有特征线。椭圆型。
a a11a22 0. a a11a22 0.
弱间断解:一个函数 u 在某一个 n 维区域内有连续的 一阶偏导,在除了一个 (n 1) 维曲面 S 上外有二阶连续的 偏导,且处处满足方程,同时 u 的二阶偏导在 S 上左 右极限存在。 特征线(面):满足此条件的曲线(曲面)。
dx i ydy 0. 3 2 2 x i y c. 3
做变换
x,
2 y , 3
3 2
原方程化为
u u 1 u 2 0. 2 3
2 2
在双曲型区域
y 0 内,特征方程可以化为
dx ydy 0. 3 2 x ( y ) 2 c. 3
(1.7'')
( x, y ) 平面上的
a11dy2 2a12dxdy a22dx2 0,
(1.8)
a 2a12x y a 0,
2 11 x 2 22 y
(1.7)
称(1.8)为(1.7)的特征方程. 为求得(1.8)的积分曲线,将其分解为
2 a12 a12 a11a22 dy , dx a11 2 a12 a12 a11a22 dy . dx a11
第四章
第四章
二阶线性偏微分方程的分类与总结
一、 二阶线性方程的分类 二、 二阶线性方程的特征理论
三、三类方程的比较
四、先验估计
一、 二阶线性方程的分类
1、两个自变量的方程
一般二阶线性方程
a11uxx 2a12uxy a22u yy b1ux b2u y cu f ,(1.1)
u u u u 1 , y2 x y 2u 2u 2u 2u 1 u 1 3 2, 2 y ( y 2 ) x2 y 2 2
化简为:
1 u u u 0.
二、二阶线性方程的特征理论
a12 a11 xx a12 ( x y yx ) a22 y y 0
方程化为:
u u Au Bu Cu D.
例2:将弦振动方程化为标准形式。
解:方程 utt
特征方程:
a uxx 0 的特征线族是
2
2 2 2
dx 0dxdt a dt 0 dx adt 0
2
(1.7 ')
如果(1.7’)存在一个解 ( x, y ) c ,根据隐函数存在定理, 有
x dy dx y
2
所以(1.7’)可以化为
dy dy a11 2a12 a22 0, dx dx
这样(1.7)的求解就化为下述常微分方程在 积分曲线问题:
2 2
的类型。 解:特里克米方程中 a11 所以 即
y, a12 0, a22 1, 2 a12 a11a22 y
y 0 双曲, y 0 抛物, y 0 椭圆。
利用特征方程化简方程. (1) 双曲型方程特征曲线:
2 2 a12 a12 a11a22 a12 a12 a11a22 y x C, y x C. a11 a11
代入可得
x2u 0 u 0
( x 0)
解:3(3)因为
0 4 y 0 0
y0 y0 y0
当 y 0 为双曲型.特征方程
解之得:
变换得: 有:
dy y, dx
dy ( ) 2 y 0. dx
2 y x c .
(1) 双曲型:
(2) 抛物型: (3) 椭圆型:
(4) 混合型:
a a11a22 0. a a11a22 0. a a11a22 0.
2 12 2 12 2 12
在某一区域每一部分类型不同。
例1:讨论特里克米(Tricomi)方程
u u y 2 2 0. x y
u u u , x
x 2 y x 2 y
1 1 u u u (( y) 2 ) ( y) 2 y
2u 2u 2u 2u 2 2 2 2 x 3 3 2u 2u 2u 2u u 1 u 1 2 ( y)1 2 (( y)1 ) 2 ( y)1 ( ( y) 2 ) ( y ) 2 y 2 2 2
b1 a11 xx 2a12 xy a22 yy b1 x b2 y b 2 a11 xx 2a12 xy a22 yy b1 x b2 y c c, f f