九年级上直接开平方法教案
人教版数学九年级上册22.2.1《直接开平方法》教学设计
人教版数学九年级上册22.2.1《直接开平方法》教学设计一. 教材分析人教版数学九年级上册22.2.1《直接开平方法》是初中数学的重要内容,主要介绍了实数的开平方运算。
这一节内容是在学生学习了实数、有理数、无理数等基础知识后进行的,是学习更高级数学知识的基础。
教材通过简单的实例引入直接开平方法,让学生了解并掌握开平方运算的法则,为后续的学习打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于实数的概念和性质有一定的了解。
但是,学生在学习过程中可能对于抽象的开平方运算存在一定的困难,需要通过具体的实例和练习来加深理解。
三. 教学目标1.让学生了解直接开平方法的概念和意义。
2.让学生掌握直接开平方法的运算规则。
3.培养学生运用直接开平方法解决问题的能力。
四. 教学重难点1.重点:直接开平方法的概念和运算规则。
2.难点:对于复杂数的开平方运算的理解和应用。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题引导学生思考和探索。
2.使用多媒体辅助教学,通过动画和图形来形象地展示开平方运算的过程。
3.采用小组合作学习的方式,让学生在讨论和交流中共同解决问题。
六. 教学准备1.多媒体教学设备。
2.相关教学PPT。
3.练习题和学习资料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出直接开平方法的概念,例如:“一块土地的面积是4平方米,它的长和宽各是多少?”让学生思考并尝试解答。
2.呈现(15分钟)讲解直接开平方法的概念和运算规则,通过PPT展示相关的动画和图形,让学生直观地理解开平方运算的过程。
3.操练(15分钟)让学生进行一些简单的练习题,巩固直接开平方法的应用。
教师可以设置一些问题,引导学生运用直接开平方法解决问题。
4.巩固(10分钟)让学生进行一些复杂的练习题,加深对直接开平方法的理解。
教师可以给予学生一定的提示和指导,帮助他们解决问题。
5.拓展(10分钟)引导学生思考和探索直接开平方法在实际问题中的应用,例如:“一个立方体的体积是64立方米,求它的棱长。
人教版数学九年级上册21.2.1配方法第1课时直接开平方法教学设计
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-直接开平方法的概念及其在一元二次方程中的应用。
-运用直接开平方法解决实际问题,如面积计算、路程求解等。
2.在思维能力方面,九年级学生正处于形象思维向抽象思维过渡的阶段,对于直接开平方法的理解和运用需要借助具体实例,逐步引导他们从形象思维向抽象思维转变。
3.在学习方法方面,学生已经具备了一定的自主学习能力,但仍需教师在教学过程中给予适当的引导和指导,帮助他们总结解题规律,提高解题效率。
4.在情感态度方面,部分学生对数学学习存在恐惧心理,对难度较大的题目容易产生畏难情绪。因此,在教学过程中,教师应关注学生的情感需求,鼓励他们克服困难,增强自信心。
1.基础巩固题:完成课本第21.2.1节后的练习题,包括直接开平方法的应用和简单实际问题的求解。通过这些题目,让学生熟悉直接开平方法的解题步骤,提高解题技能。
-题目1:求解方程x^2 - 10x + 25 = 0,并解释解题过程。
-题目2:计算一个边长为3cm的正方形的对角线长度。
2.提高拓展题:设计一些具有一定难度的题目,旨在培养学生对直接开平方法的理解深度和灵活运用能力。
1.教学内容设计:
-设计不同难度的练习题,让学生独立完成。
-练习题涵盖直接开平方法的各个知识点,以便学生巩固所学。
2.教学过程:
-学生独立完成练习题,教师巡回指导。
-对学生完成情况进行评价,给予鼓励和指导。
-针对共性问题,进行集体讲解和讨论。
(五)总结归纳
苏科版数学九年级上册《直接开平方法》教学设计
苏科版数学九年级上册《直接开平方法》教学设计一. 教材分析《直接开平方法》是苏科版数学九年级上册的一部分,主要介绍了直接开平方法的概念、性质和应用。
本节内容是在学生已经掌握了实数、有理数、无理数等知识的基础上进行教授的,旨在帮助学生理解并掌握直接开平方法,进一步培养学生的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对实数、有理数、无理数等概念有一定的了解。
但是,学生对于直接开平方法的理解和应用还比较薄弱,需要通过本节课的学习来进一步巩固和提高。
三. 教学目标1.知识与技能:使学生理解直接开平方法的概念和性质,能够运用直接开平方法解决相关问题。
2.过程与方法:通过实例分析和练习,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.重点:直接开平方法的概念和性质。
2.难点:运用直接开平方法解决实际问题。
五. 教学方法1.讲授法:通过讲解直接开平方法的概念和性质,使学生掌握相关知识。
2.案例分析法:通过实例分析,引导学生运用直接开平方法解决问题。
3.练习法:通过课堂练习和课后作业,巩固学生的知识。
六. 教学准备1.课件:制作相关的课件,用于辅助教学。
2.练习题:准备一些相关的练习题,用于巩固学生的知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾实数、有理数、无理数等知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解直接开平方法的概念和性质,结合实例进行讲解,让学生理解和掌握。
3.操练(10分钟)让学生进行一些相关的练习题,巩固直接开平方法的知识。
4.巩固(10分钟)对学生的练习进行点评和讲解,解答学生的疑问,巩固所学知识。
5.拓展(10分钟)引导学生运用直接开平方法解决实际问题,提高学生的解决问题的能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生掌握直接开平方法的关键点。
直接开平方法--教学设计
22.2.1一元二次方程的解法——直接开平方法教学设计《直接开平方法解一元二次方程》教学设计一、内容和内容解析:1、内容:本节课选自华东师大版教材,九年级上册第22章第2节第1课时,直接开平方法解一元二次方程。
2、内容解析:本节课作为一元二次方程解法的起始课,以平方根的定义、性质及开平方运算为基础,以一元一次方程、二元一次方程组、可化为一元一次方程的分式方程的求解方法做铺垫进行的研究,这一方法的引入,也为后面学习解一元二次方程的方法以及研究二次函数与x轴交点等问题起到了铺垫作用。
因此本节课的学习不仅能够让学生掌握这一求解方法,还可以进一步体会类比、换元、转化这些重要的数学思想方法在解方程过程中的体现。
基于以上内容分析,确定本节课的教学重点:会用开平方法解形如2(0)=≥的一元二次方程。
x a a二、目标和目标解析1.目标:(1)经历课前自学、问题情境探究归纳的过程,理解直接开平方法解一元二次方程的思路;(2)通过自主研究、合作交流,深化对新知的理解;(3)通过解方程的过程,感悟类比、转化等重要的数学思想方法。
2.目标解析:(1)学生通过“问题提纲”进行课前自学,课上小组梳理问题答案的过程发现新知,在已有平方根的定义、性质及开平方运算等知识的基础上,感悟开平方法所适应方程的形式,进行小组讨论深化新知,体验成功的喜悦。
(2)教师通过层层递进的相关问题,启发引导,让学生通过小组合作探究、进行成果展示、开展组间活动等形式的讨论,理解形式较为复杂的一元二次方程如何用直接开平方法求解。
(3)教师提出合适问题引发学生通过小组讨论,进行深入思考。
进而得出解一元二次方程的核心思想为降次,解方程及方程组的核心思想为转化(划归),即都转为为一元一次方程。
三、教学支持及条件分析:1、教学方式:采用自主探究,合作交流的学习方式,与问题式教学相结合的教学方式;2、教学支持:教师提供“问题提纲”,将6-8人分为一组,借助幻灯片、展台等电子设备辅助教学;3、教学思路:本节课以“问题提纲”为主线,由浅入深,从易到难,通过归纳、类比,进一步理解数学,把握数学。
人教版数学九年级上册21.2.1.1直接开平方法解方程教案
最后,针对学生在课堂上的反馈,我认识到教学过程中要关注每个学生的个体差异。对于学习有困难的学生,我会在课后给予个别辅导,帮助他们巩固知识点。同时,对于学习较好的学生,我会提供一些拓展性的问题,激发他们的学习兴趣和潜能。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直接开平方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论பைடு நூலகம்深了对直接开平方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直接开平方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
其次,关于教学难点,我注意到在讲解直接开平方法时,系数a不为1的情况和负数开平方的问题对学生来说是个挑战。我尝试通过反复强调和举例来帮助学生克服这个难点,但效果并不理想。因此,我决定在接下来的课程中,增加一些针对性的练习和讲解,让学生在实际操作中逐渐掌握这些难点。
此外,课堂上的小组讨论和实践活动对于提高学生的参与度和积极性起到了很好的效果。学生们在讨论中能够主动提出问题,并尝试解决实际问题。但同时,我也发现有些小组在讨论过程中偏离了主题,导致讨论效果不佳。为了改善这一点,我打算在下次课堂上明确讨论的主题和目标,并在讨论过程中给予适当的引导和监督。
苏科版数学九年级上册第1章《一元二次方程的解法直接开平方法》说课稿
苏科版数学九年级上册第1章《一元二次方程的解法直接开平方法》说课稿一. 教材分析《一元二次方程的解法直接开平方法》是苏科版数学九年级上册第1章的内容。
本节内容是在学生已经掌握了方程的解法、一元二次方程的定义和根的判别式的基础上进行学习的。
直接开平方法是一元二次方程的解法之一,它是通过直接对一元二次方程进行开平方运算,求出方程的解。
这部分内容在整个初中数学中占有重要的地位,是学生解决实际问题和进行进一步学习的基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于方程的解法和一元二次方程的定义已经有了一定的了解。
但是,对于直接开平方法的理解和运用还需要进一步的引导和培养。
在学生的学习过程中,他们可能对于开平方运算的理解不够深入,对于如何将一元二次方程转化为开平方形式还存在困惑。
因此,在教学过程中,我需要注重引导学生理解开平方运算的原理,并通过具体的例子让学生掌握如何将一元二次方程转化为开平方形式,从而求出方程的解。
三. 说教学目标1.知识与技能目标:使学生理解直接开平方法的原理,能够将一元二次方程转化为开平方形式,并求出方程的解。
2.过程与方法目标:通过具体例子,培养学生运用直接开平方法解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:使学生理解直接开平方法的原理,能够将一元二次方程转化为开平方形式,并求出方程的解。
2.教学难点:引导学生理解开平方运算的原理,以及如何将一元二次方程转化为开平方形式。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、讨论法等教学方法,结合多媒体教学手段,引导学生积极参与,共同探索一元二次方程的解法。
六. 说教学过程1.导入:通过复习一元二次方程的定义和根的判别式,引导学生进入新课。
2.讲解:讲解直接开平方法的原理,并通过具体例子引导学生理解如何将一元二次方程转化为开平方形式,求出方程的解。
华东师大版九年级上册数学精品教案第1课时直接开平方法
22.2 一元二次方程的解法1.直接开平方法和因式分解法第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x+3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2) 移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2= -2-3. 方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则b a=________.解析:∵ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab >0)的两个根分别是2与-2,∴b a =2,∴ba=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,则a=________.解析:∵一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,∴a+2≠0且a2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x=±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.。
九年级数学上册《直接开平方法和因式分解法》教案、教学设计
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生主动参与课堂,激发学生的学习兴趣。
(2)运用问题驱动的教学方法,让学生在实际问题中发现问题、提出问题,培养他们的探究能力。
(3)通过小组合作学习,培养学生的团队协作能力和交流表达能力。
2.教学策略:
2.提高题:针对学有余力的学生,布置第XX页的习题4、5,这两题具有一定的挑战性,需要学生灵活运用所学方法,并具有一定的推理能力。
3.实践题:结合生活实际,设计一道与直接开平方法或因式分解法相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。
例如:“某工厂生产的产品,每件产品的成本为100元,售价为200元。为了促销,工厂决定对售价进行打折,设折扣为x(0<x<1),问折扣为多少时,工厂能获得最大利润?”
2.因式分解法:
(1)回顾因式分解的基本原理,引导学生理解其在二次方程求解中的应用。
(2)讲解因式分解法求解二次方程的步骤,结合具体例题进行分析。
(3)强调因式分解法在解决实际问题中的重要性。
(三)学生小组讨论
1.将学生分成小组,每组针对以下问题进行讨论:
(1)直接开平方法和因式分解法的适用场景。
(2)如何运用直接开平方法和合适的求解方法。
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计具有代表性的习题,涵盖直接开平方法和因式分解法的应用。
2.让学生独立完成习题,教师巡回指导,解答学生的疑问。
3.选取部分学生的解答进行展示和评价,引导学生从中发现问题、总结规律。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结直接开平方法和因式分解法的特点和适用范围。
2.2第1课时直接开平方法与配方法(教案)
-难点解析:配方法的关键是先将一元二次方程的一次项系数的一半平方,然后加减到方程两边,构造出完全平方公式。学生需要理解这一步骤的意义和操作方法。
(3)在实际问题中,如何将问题转化为适合用直接开平方法或配方法求解的一元二次方程。
-难点解析:学生在面对实际问题时,需要具备抽象和建模的能力,将问题中的关键信息提炼出来,形成适合用本节课所学方法解决的一元二次方程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直接开平方法和配方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两种方法的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.培养学生的数学建模能力:让学生在实际问题中运用直接开平方法和配方法建立数学模型,增强其数学建模能力。
5.培养学生的团队合作意识:设置小组讨论和合作完成习题,培养学生与人沟通、协作解决问题的能力。
6.培养学生的创新意识:鼓励学生在解决问题时,探索新的解题思路和方法,激发其创新意识。
三、教学难点与重点
五、教学反思
在今天的教学中,我发现学生们对直接开平方法和配方法的理解程度有所不同。有些学生能够迅速掌握这两种方法的步骤和要点,但也有一些学生在具体的操作过程中感到困惑。这让我意识到,在教授这些概念时,需要更加细致和耐心。
首先,我注意到在导入新课阶段,通过日常生活中的例子来引起学生兴趣的做法是有效的。学生们能够更直观地感受到数学知识在现实中的应用,这有助于提高他们的学习积极性。在今后的教学中,我会继续寻找更多贴近生活的例子,让数学变得更加有趣和实用。
华师大版-数学-九年级上册-22.2.1 直接开平方法和因式分解法 教案
22.2.1直接开平方法和因式分解法教学目标:1.会用直接开平方法解形如(a ≠0,a ≥0)的方程;2.会用因式分解法解简单的一元二次方程.3.使学生了解转化的思想在解方程中的应用.4.使学生经历探索解一元二次方程的过程.教学重点:会用直接开平方法解一元二次方程.教学难点:对不能直接用直接开平方法的方程能转化成用直接开平方法求解.教学过程:一.自学质疑1.解下列方程,并说明你所用的方法,与同伴交流.(1)x 2=4;(2)x 2-1=0;【答案】(1)2±;(2)1±30±2.如果x 2=a ,那么x 叫做a 的______,记作________;(复习平方根的定义)一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得12,x x这种解一元二次方程的方法叫做直接开平方法.分别解这两个一元一次方程,得x 1=1,x 2=-1.这种方法叫做因式分解法.二.交流展示:(1)方程x 2=4能否利用因式分解法来解,要用因式分解法解,首先应化成什么形式?(2)方程x 2-1=0能否利用直接开平方法来解,要用直接开平方法解,首先应化成什么形式?三.互动探究:x 2-900=0【答案】30±四.精讲点拨:例1.解下列方程:(1)x 2-2=0; (2)16x 2-25=0.【答案】(1)移项,得(2)移项,得x 2=2. 16x 2=25. b ax =2231056x 直接开平方,得x 2= . 直接开平方,得x =. 所以原方程的解是,. 所以原方程的解是 , . 例2.解下列方程:(1)3x 2+2x =0;(2)x 2=3x .【答案】(1)x (3x +2)=0. (2)x 2-3x =0.所以 x =0,或3x +2=0. x (x -3)=0.原方程的解是 x 1=0,x 2=. 所以x =0,或x -3=0, 原方程的解是x 1=0,x 2=3.说明:用因式分解法解一元二次方程的根据是:若.A .·B .=.0.,则..A .=.0.或.B .=.0.. 例3. 解下列方程(1)(x +1)2-4=0;(2)12(2-x )2-9=0.【解析】 两个方程都可以转化为(a ≠0,ab ≥0)的形式,从而用直接开平方法求解.【答案】(1)原方程可以变形为(x +1)2=4,直接开平方,得:x +1=±2.所以原方程的解是 x 1=1,x 2=-3.(2)x 1=4+√32x 2=4−√32说明:(1)这时,只要把看作一个整体,就可以转化为(≥0)型的方法去解决,这里体现了整体思想.五.矫正反馈:解下列方程:(1)2410x (2)2314x (3)22370x (4) 53311x x 226163921x x 【答案】(1) x 1=12x 2=-12 (2) x 1=−3+2√33x 2=−3−2√33 (3)x 1=3+√72x 2=3−√72(4)x 1=√106x 2=−√10616252±=x 45±21-=x 22=x 451-=x 452=x 32-b k x a =-2)()1(+x b x =2b(5)x 1=2√2x 2=−2√2(6)x 1=910x 2=-−152 六.小结七.布置作业。
2024年北师大版九年级上册教学设计第二章2.2 用配方法求解一元二次方程
第1课时直接开平方法和配方法课时目标1.能根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.理解配方法,能用配方法解二次项系数为1的一元二次方程,体会转化等数学思想.学习重点用直接开平方法解形如x2=p或(x+n)2=p(p≥0)的方程;配方法解二次项系数为1的一元二次方程.学习难点把方程化为x2=p或(x+n)2=p(p≥0)的形式;理解并掌握用配方法解二次项系数为1的一元二次方程.课时活动设计知识回顾1.平方根的定义:如果x2=a(a≥0),那么x叫做a的平方根.2.如果一个数的平方等于4,那么这个数是±2;如果一个数的平方等于7,那么这个数是±√7;如果x2=a,那么x=±√a.3.用字母表示因式分解的完全平方公式:(a±b)2=a2±2ab+b2.4.练一练:x2-4x+4=(x-2)2;x2+6x+9=(x+3)2.设计意图:通过以上题目的练习,引导学生复习开平方和完全平方公式,为本课时的学习作铺垫.新知引入怎样解x2=2?解:根据平方根的定义,x是2的平方根,即x=±√2,记为x1=√2,x2=-√2.这种直接通过求平方根来解一元二次方程的方法叫做直接开平方法.设计意图:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作铺垫.典例精讲 1.解下列方程:(1)x 2- 4=0; (2)4x 2-1=0.分析:x 2- 4=0先将-4移项,再直接开平方;4x 2-1=0也同样先移项,在两边同时除以4,化为x 2=p 的形式,再用直接开平方法直接计算.解:(1)x 2-4=0,x 2=4,x =±2,即x 1=2,x 2=-2. (2)4x 2-1=0,4x 2=1,x 2=14,x =±12,即x 1=12,x 2=-12. 2.解方程:(x +1)2=2.分析:只要把(x +1)看成是一个整体,就可以用直接开平方法求解. 解:(x +1)2=2 x +1=±√2即x 1=-1+√2, x 2=-1-√2.设计意图:通过例题讲解,引导学生用直接开平方法解一元一次方程,提高学生分析问题、解决问题的能力.探究新知1.做一做:(填空配成完全平方式,体会如何配方) 填上适当的数,使下列等式成立.(1)x 2+12x + 36 =(x +6)2;(2)x 2-6x + 9 =(x -3)2; (3)x 2+8x + 16 =(x + 4 )2;(4)x 2-4x + 4 =(x - 2 )2. 2.想一想,解方程x 2- 12x -15=0的流程是怎样的?↓移项,把常数项移到方程的右边↓两边都加36[即(b 2)2]使左边配成x 2-2bx +b 2的形式↓使等式左边写成完全平方式↓ 两边开平方√51↓√51↓ 解一元一次方程√51设计意图:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方公式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解等式的左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方公式中常数项与一次项系数的关系.典例精讲解方程:x2+8x-9=0.(师生共同解决)解:可以把常数项移到方程的右边,得x2+8x=9.两边都加上42(一次项系数8的一半的平方),得x2+8x+42=9+42,即(x+4)2=25.两边开平方,得x+4=±5,即x+4=5或x+4=-5.所以x1=1,x2=-9.小结:例题中,我们通过配成完全平方式的方法得到了一元二次方程的根.这种解一元二次方程的方法称为配方法.用这种方法解一元二次方程的思路是什么?关键又是什么?(小组合作交流) 设计意图:通过对上述题目的讲解,规范配方法解一元二次方程的过程,让学生充分理解用配方法解一元二次方程的关键是将方程转化成(x+m)2=n(n≥0)的形式.同时提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍.巩固训练解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1;(4)x2+2x+2=8x.解:(1)方程可转化为(x-5)2=7,开平方得x-5=±√7,即x-5=√7或x-5=-√7.所以x1=5+√7,x2=5-√7;(2)两边都加上72得x2-14x+49=8+49,即(x-7)2=57.两边开方得x-7=±√57,即x-7=√57或x-7=-√57.所以x1=7+√57,x2=7-√57;(3)两边同时加上(32)2,得x 2+3x +(32)2=1+(32)2,即(x +32)2=134.两边开平方得x +32=±√132,即x +32=√132或x +32=-√132.所以x 1=-3+√132,x 2=-3-√132;(4)移项得x 2+2x -8x =-2,两边都加9得x 2-6x +9=-2+9,即(x -3)2=7.两边开平方得x -3=±√7,即x -3=√7或x -3=-√7.所以x 1=3+√7,x 2=3-√7.设计意图:通过巩固练习,学生可以更好地掌握本节课的知识点,并为后续的学习打下坚实的基础.同时,教师也可以根据学生的练习情况,及时了解学生的学习状况,为后续的教学做好充分的准备.课堂小结师生互相交流、总结配方法解一元二次方程的基本思路和关键步骤,以及应用配方法时应注意的问题.设计意图:培养学生及时反思的习惯,归纳本节课的收获.让学生养成自主梳理知识要点的习惯,逐渐培养出独立思考和自主学习的能力.课堂8分钟.1.教材第37页习题2.3第1,2,3题. 2.七彩作业.第1课时 直接开平方法和配方法解一元二次方程的方法: 例(略) 1.直接开方法(略). 2.配方法(略).教学反思第2课时 用配方法求解二次项系数不为1的一元二次方程课时目标1.经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想.2.能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.学习重点用配方法求解二次项系数不为1的一元二次方程.学习难点将二次项系数不为1的一元二次方程转化为二次项系数为1的一元二次方程.课时活动设计回顾旧知1.回顾配方法解二次项系数为1的一元二次方程的基本步骤.例如,x2-6x-40=0.解:移项,得x2-6x=40.方程两边都加上9(一次项系数一半的平方),得x2-6x+32=40+32,即(x-3)2=49.开平方,得x-3=±7,即x-3=7或x-3=-7.所以x1=10,x2=-4.2.将下列各式填上适当的项,配成完全平方式.(口头回答)(1)x2+2x+1=(x+1)2;(2)x2-4x+4=(x-2)2;(3)x2+12x +36=(x+6)2;(4)x2+10x+25=(x+5)2;(5)x2-x+14=(x-12)2.设计意图:回顾配方法解二次项系数为1的一元二次方程的基本步骤,为本节课研究二次项系数不为1的一元二次方程的解法奠定基础.探究新知请同学们比较下列两个一元二次方程的联系与区别.(1)x2+6x+8=0;(2)3x2+18x+24=0.解:两个方程之间的区别是方程(2)的二次项系数为3,不符合上节课解题的基本形式;联系是当方程(2)的两边同时除以3以后,这两个方程式为同解方程.探讨方程(2)应该如何求解呢?设计意图:学生们做了方程的变形以后,对二次项系数不为1的方程的解法有了初步的感受和思路.典例精讲解方程:3x 2+8x -3=0.解:方程两边同时除以3,得x 2+83x -1=0, 移项,得x 2+83x =1.配方,得x 2+83x +(43)2=1+(43)2,即(x +43)2=259.两边开平方,得x +43=±53,即x +43=53,或x +43=-53.所以x 1=13,x 2=-3.注意事项:(1)当一次项系数为分数时,所要添加常数项仍然为一次项系数一半的平方,理解这样做的原理,树立解题的信心.(2)得到x +43=±53后,在移项得到x +43=53与x +43=-53的过程中,要注意符号问题,这一步在计算过程中容易出错. 设计意图:通过上述例题的讲解,继续规范配方法解一元二次方程的过程.让学生充分理解并掌握用配方法解一元二次方程的基本思路,理解配方法解一元二次方程的关键是将方程转化成(x +m )2=n (n ≥0)形式.扩展应用一个小球从地面以15 m/s 的初速度竖直向上弹出,它在空中的高度h (m)与时间t (s)满足关系:h =15t -5t 2,小球何时能达到10 m 的高度? 解:根据题意,得15t -5t 2=10. 方程两边都除以-5,得t 2-3t =-2. 配方,得t 2-3t +(32)2=-2+(32)2,即(t -32)2=14.两边开平方,得t -32=±12,即t -32=12或t -32=-12.所以t 1=2,t 2=1.所以当t =1或2时,小球能达到10 m 的高度.设计意图:在前边学习的基础上,通过上述试题进一步提高学生分析问题、解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用.巩固训练 1.解下列方程:(1)3x 2-9x +2=0; (2)2x 2+6=7x ; (3)4x 2-8x -3=0.解:(1)移项,得3x 2-9x =-2. 方程两边同时除以3,得x 2-3x =-23. 配方,得x 2-3x +(32)2=-23+(32)2,即(x -32)2=1912.两边开平方,得x -32=±√576. 所以x 1=32+√576,x 2=32-√576; (2)移项,得2x 2-7x =-6.方程两边同时除以2,得x 2-72x =-3. 配方,得x 2-72x +(74)2=-3+(74)2,即(x -74)2=116.两边开平方,得x -74=±14. 所以x 1=2,x 2=32;(3)移项,得4x 2-8x =3. 两边同时除以4,得x 2-2x =34. 配方,得x 2-2x +12=34+12,即(x -1)2=74. 两边开平方,得x -1=±√72. 所以x 1=1+√72,x 2=1-√72.2.印度古算术中有这样一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起”大意是:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题.解:设总共有x 只猴子,由题意,可得(18x)2+12=x.解得x 1=16,x 2=48.答:总共有16只或48只猴子.设计意图:对利用一元二次方程解决实际问题进行巩固练习,培养学生的阅读能力和数学建模能力.课堂小结1.解一元二次方程的基本步骤.2.利用一元二次方程解决实际问题的思路.设计意图:让学生养成及时总结的习惯,反思学习的过程和收获的知识点,积累学习经验,在归纳总结的过程中,了解自己对本节课内容还有哪些困惑并解决.课堂8分钟.1.教材第40页习题2.4第1,3题.2.七彩作业.第2课时用配方法求解二次项系数不为1的一元二次方程解一元二次方程的方法:配方法.教学反思。
人教版数学九年级上册21.2.1《直接开平方法》教学设计
人教版数学九年级上册21.2.1《直接开平方法》教学设计一. 教材分析人教版数学九年级上册21.2.1《直接开平方法》是初中数学的重要内容,主要介绍了实数的开平方运算。
这一节内容是在学生已经掌握了实数、有理数、无理数等相关知识的基础上进行讲解的,旨在让学生掌握开平方运算的方法,进一步理解无理数的概念。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和运算能力,对于实数、有理数、无理数等概念已经有了初步的认识。
但是,学生对于无理数的理解仍然存在一定的困难,尤其是对于无理数的运算,因此,在教学过程中,需要引导学生理解无理数的概念,并通过实例让学生感受无理数的存在。
三. 教学目标1.让学生掌握直接开平方法,能够正确进行开平方运算。
2.引导学生理解无理数的概念,能够正确识别无理数。
3.培养学生的运算能力,提高学生的数学素养。
四. 教学重难点1.重点:直接开平方法,无理数的概念。
2.难点:无理数的识别和运算。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握开平方运算的方法。
2.采用实例教学法,通过具体的例子让学生理解无理数的概念。
3.采用小组合作学习法,让学生在小组内进行讨论和交流,提高学生的合作能力。
六. 教学准备1.准备相关的教学PPT,包括开平方运算的步骤和实例。
2.准备一些有关无理数的实际问题,用于课堂讨论。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如测量物体长度、计算物体面积等,引导学生思考这些问题与开平方运算的关系。
2.呈现(15分钟)介绍直接开平方法的具体步骤,并通过PPT展示相关的实例,让学生理解开平方运算的方法。
3.操练(15分钟)让学生独立完成一些开平方运算的练习题,教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生分组讨论,总结开平方运算的规律和方法,并分享各自的经验和心得。
5.拓展(10分钟)介绍无理数的概念,并通过实例让学生识别无理数。
苏科版数学九年级上册《直接开平方法》说课稿
苏科版数学九年级上册《直接开平方法》说课稿一. 教材分析《苏科版数学九年级上册》中的《直接开平方法》是本册教材的重要内容之一。
这部分内容主要介绍了直接开平方的方法,旨在让学生掌握开平方的基本概念和方法,能够运用直接开平方法解决实际问题。
在教材中,直接开平方法是继平方根之后的进一步拓展,学生需要理解并掌握如何将一个数的平方根再平方,得到原数。
这部分内容对于学生来说是一个新的知识点,也是解决实际问题的重要工具。
二. 学情分析九年级的学生已经掌握了平方根的概念和方法,对于基本的数学运算也有一定的掌握。
但是,学生在运用平方根解决实际问题时,可能会遇到一些困难,如计算复杂,容易出错等。
因此,在教学直接开平方法时,需要引导学生理解并掌握开平方的基本概念和方法,提高他们解决实际问题的能力。
三. 说教学目标1.知识与技能:让学生掌握直接开平方的概念和方法,能够运用直接开平方法解决实际问题。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的观察、分析、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:让学生掌握直接开平方的概念和方法,能够运用直接开平方法解决实际问题。
2.教学难点:如何引导学生理解并掌握直接开平方的方法,以及如何运用直接开平方解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主学习、合作交流,提高学生解决问题的能力。
2.教学手段:利用多媒体课件、实物模型等,帮助学生直观地理解直接开平方的概念和方法。
六. 说教学过程1.导入:通过一个实际问题,引入直接开平方的概念,激发学生的学习兴趣。
2.自主学习:学生自主探究直接开平方的概念和方法,理解并掌握如何将一个数的平方根再平方,得到原数。
3.合作交流:学生分组讨论,分享各自的学习心得,互相解答疑问。
4.案例教学:教师通过具体的案例,引导学生运用直接开平方解决实际问题。
九年级数学上册教案直接开平方法
九年级数学上册教案:直接开平方法一、教学目标:1.理解直接开平方法的定义和意义。
2.掌握直接开平方法的运用技巧。
3.能够熟练使用直接开平方法解决一元二次方程问题。
4.培养学生分析问题和解决问题的能力。
二、教学重难点:1.直接开平方法的定义和意义。
2.直接开平方法的运用技巧。
三、教学内容:1. 直接开平方法概述直接开平方法是解决一元二次方程的一种方法。
它的核心思想是将一元二次方程化为完全平方。
2. 直接开平方法的基本步骤使用直接开平方法,需要进行以下步骤:1.首先将一元二次方程的项按照相同的项分类,化为标准形式,即ax2+bx+c=0。
2.再将方程两边同时加上一个常数k,使得方程变为ax2+bx+c+k=0。
3.将ax2+bx部分使用配方法化为一个完全平方,即$(\\sqrt a x+\\frac{b}{2\\sqrt a})^2$。
4.把 $(\\sqrt a x+\\frac{b}{2\\sqrt a})^2$ 的形式代入ax2+bx+c+k=0中,进行化简。
5.化简以后,解出方程。
考虑到方程已经化为完全平方,解的个数不会超过1个。
例如,题目为:解x2+4x−5=0。
我们可以先将x2+4x−5=0化为标准形式(1)x2+(4)x+(−5)=0。
然后,我们在方程的两边同时加上9,即x2+4x−5+9=9。
接着,我们可以将x2+4x部分进行配方法,得到$(\\sqrt 1 x+\\frac{4}{2\\sqrt 1})^2$,即(x+2)2。
这样就化为一个完全平方。
将(x+2)2的形式代入x2+4x−5+9=9中,即(x+2)2=14。
解这个完全平方后,得到 $x=\\pm\\sqrt{14}-2$,这就是原方程的解。
3. 直接开平方法的练习练习题目:1.解x2+6x+5=0。
2.解x2+10x+9=0。
3.解4x2−4x−15=0。
四、教学方法:1.示范授课法。
教师通过举一反三的方式,以示范为主导,引导学生理解直接开平方法的基本理论和应用技巧。
九年级数学上册第22章一元二次方程的解法1直接开平方法教案(含教学反思)新版华东师大版
九年级数学上册新版华东师大版:21.2.1 直接开平方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标知识与技能理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.过程与方法提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.情感态度与价值观历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.重、难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?BCAQ P 老师点评:问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )22p.问题2:设x 秒后△PBQ 的面积等于8cm 2则PB=x ,BQ=2x 依题意,得:12x ·2x=8x 2=8根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程12x ·2x=8的两根,但是移动时间不能是负值.所以秒后△PBQ 的面积等于8cm 2.二、探索新知上面我们已经讲了x 2=8,根据平方根的意义,直接开平方得x=±,如果x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±即,方程的两根为t 1-12,t 212例1:解方程:x 2+4x+4=1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材P6练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=(mx+n)2=p(p≥0),那么mx+n=,达到降次转化之目的.六、布置作业1.教材P16复习巩固1.2.选用作业设计:。
人教版九年级数学上册21.2.1《用直接开平方法解一元二次方程》教学设计
人教版九年级数学上册21.2.1《用直接开平方法解一元二次方程》教学设计一. 教材分析人教版九年级数学上册21.2.1《用直接开平方法解一元二次方程》是本册教材中关于一元二次方程解法的一个知识点。
学生在学习本节课之前,已经掌握了一元一次方程的解法、不等式的解法以及二次根式的性质和运算。
本节课通过实例引入直接开平方法解一元二次方程,让学生掌握一元二次方程的解法,为后续学习一元二次方程的应用和更深入的数学知识打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于方程、不等式等知识有一定的了解。
但学生在解一元二次方程时,仍存在一定的困难,尤其是对于开平方法的运用和理解。
因此,在教学过程中,需要教师引导学生通过观察、分析、归纳等方法,深入理解直接开平方法解一元二次方程的原理和步骤。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的直接开平解法,能运用该方法解一元二次方程。
2.过程与方法:通过观察、分析、归纳等方法,让学生学会用数学思维解决问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元二次方程的直接开平解法。
2.难点:对直接开平方法解一元二次方程的理解和运用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生发现规律。
2.实例分析法:教师通过具体实例,讲解一元二次方程的直接开平解法。
3.小组讨论法:学生分组讨论,交流解题心得,共同解决问题。
六. 教学准备1.教材:人教版九年级数学上册。
2.课件:教师根据教材内容制作课件。
3.练习题:针对本节课内容,准备适量的一元二次方程练习题。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程的解法,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过课件展示一元二次方程的直接开平解法,让学生观察、分析,引导学生发现解题规律。
3.操练(15分钟)教师给出具体的一元二次方程实例,让学生分组讨论,运用直接开平方法解方程。
九年级数学上册 21.2.1 配方法教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案
配方法第1课时直接开平方法1.了解降次将一元二次方程转化为一元一次方程.2.能用直接开平方法解x2=p(p≥0)或(mx+n)2=p(p≥0)形式的方程.【重点难点】会用直接开平方法解一元二次方程.【新课导入】1.你能求出方程x2=16中的未知数吗?2.把方程(x-1)2=9中的x-1看作一个整体,你能转化为两个一元一次方程吗? 【课堂探究】一、用直接开平方法解形如x2=p的一元二次方程1.一元二次方程2x2-6=0的解为x1=,x2=-.2.解方程4x2=9.解:由4x2=9,得x2=,两边直接开平方,得x=±,所以原方程的解为:x1=,x2=-.二、用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程3.解方程2(x+3)2-4=0.解:x1=-3+,x2=-3-.4. 解方程(2x+1)2=(x-1)2.解:两边直接开平方,得到2x+1=±(x-1),即2x+1=x-1或2x+1=-(x-1), 解得x1=-2,x2=0.1.只有二次项和常数项的方程x2=p(p≥0),方程两根为x=±.2.方程左边是完全平方式,右边是常数的方程(mx+n)2=p(m≠0,p≥0)方程可转化为两个一元一次方程mx+n=±p,解得x1=,x2=.1.方程x2-4=0的根是(C)(A)x=2 (B)x=-2(C)x1=2,x2=-2 (D)x=42.(2013某某)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)(A)x-6=-4 (B)x-6=4(C)x+6=4 (D)x+6=-43.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为(B)(A)14 (B)12(C)12或14 (D)以上都不对4.关于x的一元二次方程(x-k)2+k=0,当k>0时的解为(D)(A)k+ (B)k-(C)k±(D)无实数解5.解方程:2y2=8.解:两边同除以2,得y2=4,所以y1=2,y2=-2.6.解方程:4(3x-2)2-32=0.解:移项,得4(3x-2)2=32,方程两边同除以4,得(3x-2)2=8.两边直接开平方,得3x-2=±2,所以3x-2=2或3x-2=-2.因此,原方程的解是:x1=,x2=.第2课时配方法1.会用配方法解数字系数的一元二次方程.2.掌握配方法的推导过程,熟练地用配方法解一元二次方程. 【重点难点】配方法解一元二次方程.【新课导入】1.将x2+6x配成完全平方式且原整式不变(x+3)2-9.2.你能将方程x2-2x-5=0的左边配成完全平方式吗?【课堂探究】一、多项式的配方1.填空: x2-8x+16=(x-4)2.2.应用配方法把关于x的二次三项式x2-4x+6变形,然后证明:无论x取任何实数值,二次三项式的值都是正数.解:x2-4x+6=x2-4x+4-4+6=(x-2)2+2,无论x取任何实数值,(x-1)2≥0,则(x-1)2+2>0.所以无论x取任何实数值,二次三项式的值都是正数.二、配方法解一元二次方程3.解方程x2-2x-1=0.解:移项,得x2-2x=1,配方,得(x-1)2=2,两边开平方,得x-1=±,所以x1=1+,x2=1-.4.用配方法解方程4x2-12x-1=0.解:二次项系数化为1,得x2-3x-=0,移项,得x2-3x=,配方,得x2-3x+-2=+-2,得到x-2=,则x-=±,∴x1=+,x2=-.小结:配方法解一元二次方程的关键一步是:配方,即方程两边同时加上一次项系数一半的平方,化成(x+m)2=n(n≥0)的形式.1.配方法:通过配成完全平方式来解一元二次2.配方法解一元二次方程的步骤方程的方法. (1)移项:方程右边只有常数项,(2)化1:二次项系数化为1,(3)配方:方程化为(x+m)2=n形式,(4)开方:n≥0时,方程两边直接开方,n<0时,无解,(5)求解:解两个一元一次方程得原方程解.1.(2013某某)用配方法解方程x2-2x-1=0时,配方后所得的方程为(D)(A)(x+1)2=0 (B)(x-1)2=0(C)(x+1)2=2 (D)(x-1)2=22.用配方法解方程x2-x-1=0应该先变形为(C)(A)x-2= (B)x-2=-(C)x-2= (D)x-2=03.方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为(B)(A)12 (B)15(C)12或15 (D)不能确定4.解方程:x(x+4)=21.解:原方程即x2+4x=21,配方,得(x+2)2=25,两边开平方,得x+2=±5,所以x1=-7,x2=3.5.解方程:-2x2+2x+1=0.解:化二次项系数为1,得x2-x-=0,移项,配方, 得x2-x+=+即x-2=,两边开平方, 得x-=±,所以x1=,x2=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上直接开平方法教
案
This manuscript was revised by the office on December 10, 2020.
直接开平方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 重难点关键
1.重点:运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──
转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x 2=n ,知识迁移到根据平方根的意义解形如(x+m )2=n (n ≥0)的方程.
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2;
(3)x 2+px+_____=(x+______)2.
问题2.如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2
B
C
A
Q
P 老师点评: 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )2 2
p . 问题2:设x 秒后△PBQ 的面积等于8cm 2
则PB=x ,BQ=2x
依题意,得:12
x ·2x=8 x 2=8
根据平方根的意义,得x=±
即x 1,x 2
可以验证,和12
x ·2x=8的两根,但是移动时间不能是负值.
所以PBQ 的面积等于8cm 2.
二、探索新知
上面我们已经讲了x 2=8,根据平方根的意义,直接开平方得x=±,如果x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢 (学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±
即
方程的两根为t 1-
12,t 2-12
例1:解方程:x 2+4x+4=1
分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x 1=-1,x 2=-3
例2.市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )2
解:设每年人均住房面积增长率为x ,
则:10(1+x )2=
(1+x )2=
直接开平方,得1+x=±
即1+x=,1+x=
所以,方程的两根是x 1==20%,x 2=
因为每年人均住房面积的增长率应为正的,因此,x 2=应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.
三、巩固练习
教材P 36 练习.
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为万元,求该公司二、三月份营业额平均增长率是多少
分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是
(1+x)2.
解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=
把(1+x)当成一个数,配方得:
(1+x+1
2
)2=,即(x+
3
2
)2=2.56
x+3
2
=±,即x+
3
2
=,x+
3
2
=
方程的根为x
1=10%,x
2
=
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握:
由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接
开平方法解形如(mx+n)2=p(p≥0),那么mx+n=
的.
六、布置作业
1.教材P
45
复习巩固1、2.
2.选用作业设计:
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是().
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().
A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2-2
3
x+1=0正确的解法是().
A.(x-1
3
)2=
8
9
,x=
1
3
±
3
B.(x-1
3
)2=-
8
9
,原方程无解
C.(x-2
3
)2=
5
9
,x
1
=
2
3
+
3
,x
2
=
2
3
D.(x-2
3
)2=1,x
1
=
5
3
,x
2
=-
1
3
二、填空题
1.若8x 2-16=0,则x 的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a 、b 2-12b+36=0,那么ab 的值是_______.
三、综合提高题
1.解关于x 的方程(x+m )2=n .
2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .
(1)鸡场的面积能达到180m 2吗能达到200m 吗
(2)鸡场的面积能达到210m 2吗
3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗
答案:
一、1.B 2.D 3.B
二、1 2.9或-3 3.-8
三、1.当n ≥0时,x+m=,x 1-m ,x 2-m .当n<0时,无解
2.(1)都能达到.设宽为x ,则长为40-2x ,
依题意,得:x (40-2x )=180
整理,•得:•x 2-20x+90=0,x 1x 2
同理x (40-2x )=200,x 1=x 2=10,长为40-20=20.
(2)不能达到.同理x (40-2x )=210,x 2-20x+105=0,
b 2-4ac=400-410=-10<0,无解,即不能达到.
3.因要制矩形方框,面积尽可能大,
所以,应是正方形,即每边长为1米的正方形.。