1.3尺规作图作一个角等于已知角课件

合集下载

《尺规作图》 优秀PPT课件2

《尺规作图》  优秀PPT课件2
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。
⑵了解作一个角等于已知角在尺规作图
中的简单应来画图,称 为 尺规作图 . 其中,直尺是 没有刻度 的; •直尺的功能:可以在两点间连接一条线段, 并向一方或两方延伸,因此可作 线段 、 射线 、 直线 。 圆规的功能:以任意点为圆心,任意长为半径作 一个圆或 一段弧 。 基本作图 •最基本,最常用的尺规作图,称为 . •一些复杂的尺规作图都是由 基本作图组成的.
⑵已知角α,β(β<α<90°)求作一个角,使它等于α+β.
A
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读教材,复习 巩固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3
第1、2
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰·鲁斯金]

《用尺规作角》课件

《用尺规作角》课件

2023《用尺规作角》课件•课程简介•尺规作角的基本概念•尺规作角的基本方法•尺规作角的实际应用•总结与回顾•本章重点难点•学习建议和拓展阅读目录01课程简介尺规作图是数学几何中的基本技能之一,也是初中数学的重要知识点。

通过学习用尺规作角,学生可以进一步理解角的概念和性质,为后续学习几何打下基础。

课程背景课程目标理解作图的原理和几何证明的方法。

掌握用尺规作角的方法和步骤。

激发学生对数学几何的兴趣和热情。

培养学生对几何图形的观察和推理能力。

02尺规作角的基本概念尺规作角是指使用无刻度的直尺和圆规进行图形绘制的一种方法。

尺规作角是一种精确的几何作图方法,可以用来构造各种几何图形,如线段、角、平行线等。

尺规作角的定义尺规作角的基本规则包括:以给定的两点为端点,使用直尺连接两点;以给定的点为圆心,使用圆规画弧与另一圆心相交;使用直尺连接两个交点。

在使用尺规作角时,必须按照基本规则进行作图,不能随意绘制,以确保所得图形符合几何原理和规律。

尺规作角的基本规则03尺规作角的基本方法总结词准确、直观、简单。

详细描述通过使用直尺和圆规,可以轻松地作出已知角的角平分线。

首先,将已知角用圆规划分为两个相等的部分,然后使用直尺将两个相等部分的角连接起来,得到的就是已知角的角平分线。

作已知角的角平分线总结词快速、准确、易于理解。

详细描述首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。

接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。

最后,连接这两点与已知角的顶点,即可得到已知角的补角。

操作简单、准确、实用性强。

总结词首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。

接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。

然后,分别连接这两点与已知角的顶点,即可得到两个等长的线段。

最后,将两条等长的线段分别作为半径,以已知角的顶点为圆心画弧线,这两个弧线相交于一点,这个点就是已知角的余角的顶点。

青岛版数学八上1.3《尺规作图》ppt精品优秀课件2

青岛版数学八上1.3《尺规作图》ppt精品优秀课件2

以AB的长为半径 画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’
B

C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使 A`O`B`= AOB B
O
A
画一画 作法与示范
作法
(1)作射线O′A′:
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
歌声像气势飞鸿的激水,不断从声源 扩大到 可远可 近的周 遭。被 沉睡中 人们的 闹钟似 得扰闹 着;刺 饶着早 起人们 的进行 曲一样 ;持续 着喜宴 人们的 激奋曲 。不同 生活宿 命的人 们,被 秋意带 动着不 同的变 迁。如 同悠扬 持续的 歌声, 唤示着 一种缔 结与生 命奥义 相关的 一种联 系或者 价值。 我也曾数十次地感受着秋意带来生活 特别的 感触, 以及带 来了生 活不同 的意义 。在过 去二十 二载的 秋季之 时,不 曾以笔 绘秋, 以文摹 凉。秋 季带给 除了童 年时候 与伙伴 一起嬉 戏的情 景,不 曾认真 的感受 秋真正 的面貌 和内涵 。 我就在电脑前,听着一曲《简单爱》 。凝思 举笔, 灵慧泼 墨。于 秋的感 触中, 牵引的 情绪, 以及秋 的哲学 意义是 怎么样 ?我不 知道怎 样继续 ,才能 构成秋 的一曲 歌谣, 一首诗 颂,一 纸佳文 。
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。 ⑵了解作一个角等于已知角在尺规作图 中的简单应用。
课前预习
•在几何里,把限定用直尺和圆规来画图,称为
其中尺,直规尺作是图
的;
•直尺的功能:没可有以刻在度两点间连接一条线段,
并向一方或两方延伸,因此可作 、

用尺规作角(课件)七年级数学下册(北师大版)

用尺规作角(课件)七年级数学下册(北师大版)

D C
A/ C/
∵∠EO'F在∠AOB的内部 ∴∠AOB>∠EO'F
探究新知
例2: 已知:∠1. 求作:∠MON,使∠MON=2∠1.
1
探究新知
作法:(1)作射线OM; (2)以点B为圆心,以任意长为半径画弧,交BA于点P,交BC
于点Q; (3)以点O为圆心,以BP长为半径画弧,交OM于点D ;
(4)以点D为圆心,以PQ长为半径画弧,交前面弧于点E ;
(5)过点O作射线OF,得到 ∠MOF=∠1.
C
F
Q
E
B1
P
A
D
O
M
探究新知
(6)以点B为圆心,以任意长为半径画弧,交BA于点R, 交BC于点S;
(7)以点O为圆心,以BR长为半径画弧,交OF于点G ; (8)以点G为圆心,以SR长为半径画弧,交前面弧于点H ;
随堂练习
2. 画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内 部画一条射线OC,使∠AOC=90°,正确的图形是( D )
随堂练习
3. 下列作图语句正确的是( D ) A. 过点P作线段AB的中垂线 B. 在线段AB的延长线上取一点C,使AB=BC C. 过直线a,直线b外一点P作直线MN使MN∥a∥b D. 过点P作直线AB的垂线
随堂练习
7.已知∠α,∠β (∠α>∠β),如图。 求作∠AOB,使∠AOB=∠α-∠β.
随堂练习
作法:先作∠AOC,使∠AOC=∠α; 再以OC为一边,作∠COB,使∠COB=∠β ,并且使射线OB落在 ∠AOC的内部,则∠AOB就是所要求作的角.
课堂小结
1.作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相同,而第三次

1.3尺规作图作一个角等于已知角课件

1.3尺规作图作一个角等于已知角课件
α β
• ⑶过直线外一点P作已知直线l 的平行线。
【读一读】 :尺规作图
他幼年时就表现出超人的数学天才。1795 年进入格丁根大学学习。第二年他就发现 正十七边形的尺规作图法。并给出可用尺 规作出的正多边形的条件,解决了欧几里 得以来悬而未决的问题。
通过这节课的学习活动你有 哪些收获?
作业巩固
4007156688恒谦教育教学资源库教师备课备考伴侣专注中国基础教育资源建设复习怎样作一条线段等于已知线段利用直尺和圆规可以作出很多几何图形你想知道我们是如何用圆规和直尺作一条线段等于已知线段的吗
复习
怎样作一条线段等于已知线段
利用直尺和圆规可以作出很多几何图形,你想知道我 们是如何用圆规和直尺作一条线段等于已知线段的吗? 已知:线段AB. 求作:线段A’ B’,使A’ B’=AB. 作法与示范:
A
B
•作

•示

•(1) 作射线A’C’ ;
(2) 以点A’为圆心, 以AB的长为半径画弧, 交射线A’ C’于点B’, A’B’ 就是所求作的线段。
A’
B’
C’
利用尺规,作一个角等于 已知角. 已知:∠AOB(如图). 求作:∠AˊOˊBˊ,使 ∠ AˊOˊBˊ=∠AO⑵讨论:按怎 么样的顺序画 比较方便; ⑶画角时特别 应注意什么?
议一议
⑴这样作法正确吗?你应如何检验? ⑵量一量,剪一剪,比一比。 (3)如果在角O外部另有一点C,你能用 尺规画∠COD,并使 ∠AOB=∠COD吗?
B
O
A
随堂练习: (任选一题)
AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
• ⑴已知∠
B

尺规作图(作一个角等于已知角)

尺规作图(作一个角等于已知角)

§1。

3尺规作图(作一个角等于已知角)预习目标:1、掌握尺规作图的基本技能,能完成两种基本作图.2、对于尺规作图,会写出已知、求作和作法3、会利用基本作图完成已知两边及夹角、两角及夹边和三边作三角形预习重点:熟练掌握两种基本作图预习难点:利用基本作图作三角形预习新知任务一:自学课本p18-19 完成下列问题:1、尺规作图是指:任务二:尺规作图:(1)已知∠AOB,作一个角∠AOB(2)、已知:三条线段a、b、c,作⊿ABC,使BC=a,AB=b,AC=b。

任务三:1、已知:线段a、b、∠α求作⊿ABC,使BC=a,AB=b,∠B=α.2、已知:线段a、∠α,∠β求作⊿ABC,使BC=a,∠B=α,∠C=β预习检测1.用尺规作图,不能作出惟一三角形的()A。

已知两角和夹边; B。

已知两边和其中一边的对角C.已知两边和夹角;D.已知两角和其中一角的对边2。

下列画图语言表述正确的是( )A。

延长线段AB至点C,使AB=BC;B.以点O为圆心作弧C。

以点O为圆心,以AC长为半径画弧;D。

在射线OA上截取OB=a,BC=b,则有OC=a+b3、如图3点C在∠AOB的边OB上,用尺规作出了CN∥OA,作图痕迹中,弧FG是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.如图,已知∠ABC边BC上有一点P,过P作平行于AB的直线。

A.PCB。

1.3+尺规作图+第1课时课件2023-2024学年青岛版八年级数学.上册

1.3+尺规作图+第1课时课件2023-2024学年青岛版八年级数学.上册

典型例题
当堂检测
课堂总结
用尺规作角的步骤:
①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两 弧相交于点×、×.
课堂总结
3.已知: ∠1, ∠2
求作:(1)∠3,使得∠3= ∠2-∠1;
1
(2)∠4,使得∠4=∠1+∠2.
解:(1)作法:
①作射线OA;
②以OA为边做∠AOB=∠1;
③以O为顶点,以射线OA为边,
O
在∠AOB内部作∠AOD=∠2.
则∠BOD即为所求的∠3.
2
B D A
学习目标
概念剖析
典型例题
当堂检测
学习目标
概念剖析
典型例题
当堂检测
课堂总结
2.已知∠AOB和∠CDE如下图所示,如何将两个角重叠在一起? F
以点D为顶点,DE为一边,作∠EDF=∠AOB
学习目标
概念剖析
典型例题
当堂检测
课堂总结
(二)作角的和、差、倍数关系 例2:如图,已知∠α和∠β(∠α>∠β),求作∠AOB,使∠AOB=∠α-∠β.
课堂总结
归纳总结:
最基本、最常用的尺规作图,称为基本作图.“一条线段等于已 知线段”和“作一个角等于已知角”都是基本作图.
学习目标
概念剖析
典型例题
当堂检测
课堂总结
1.下列属于尺规作图的是( D )
A.用刻度尺和圆规作△ABC
B.用量角器画一个300度的角
C.用圆规画半径2cm的圆
D.作一条线段等于已知线段

1.3尺规作图(1)课件

1.3尺规作图(1)课件

C A B B’ ’
牛刀小试 你们会做一条线段等于所给线段的和或差吗?
已知线段a和b,求做线段a+b、b-a
a b
独立思考、合作交流;口述作法、保留作图痕迹。
1、已知: ∠AOB。 利用尺规作: ∠A’O’B’ 使∠A’O’B’=2∠AOB.
作法一: B’
C B B’
法二:
DB
C
O E
C’
O A’ A O’ A
A’
B’
C’
新知学习
(2)作一个角等于已知角 已知: ∠AOB。 求作: ∠A’O’B’ 使∠A’O’B’=∠AOB。
B
(1) 作射线O’A’; (2) 以点O为圆心, 任意长为半径 画弧, 交OA于点C, 交OB于点D;
D
O
(3) 以点O’为圆心, D’ 同样(OC)长为半径画弧, 交O’A’于点C’; (4) 以点C’为圆心, CD长为半径画弧, O’ C’ 交前面的弧于点D’ , (5) 过点D’作射线O’B’. 则∠A’O’B’就是所求的角.
用尺规作优美的图案
右面的“邹菊图案”漂亮吗? 你想自己画出它来吗? 那就让我们从最初的步骤开始吧! 1、 以点O为圆心, r 为半径作圆O; 以圆O上任意一点为圆心, 2、 r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去, 在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗
∠A’O’B’为所求.
∠A’O’B’为所求.
你能行
• 1.已知如图,在∠AOD的内部作 射OB,使∠AOB=∠COD
D C
O
A
倍 速 课 时 学 练
尺规作图: 已知 和 ,求作∠ABC, 使 ∠γ =

尺规作图.作一条线段等于已知线段;.作一个角等于已知角 大赛获奖教学课件

尺规作图.作一条线段等于已知线段;.作一个角等于已知角   大赛获奖教学课件

13.4.1 作一条线段等于已知线段 13.4.2 作一个角等于已知角
活动2
教材导学
理解尺规作图 完成下列填空,想一想直尺和圆规有什么用途? 无数条直线,需要的工具是 (1)已知点 A,经过点 A 可以画____ ____ 直尺; (2)已知不同的两点 A, B, 经过点 A, B 可以画____ 一 条直线, 具体画法是用 ____的边缘靠紧 A,B 两点画线; 直尺 (3)已知线段 A,要求不用刻度尺画一条线段 AB,使 AB= A.其画法是先用直尺 ____画射线 AC, 再用圆规 ____在射线 AC 上截取 AB =A. 你知道只用直尺和圆规还可以画出哪些图形? ◆ 知识链接——[新知梳理]知识点一
13.4.1 作一条线段等于已知线段 13.4.2 作一个角等于已知角

知识点二
尺规作图的步骤及作图语言的规范
1.尺规作图的步骤 (1)已知:当作图题是用文字语言叙述的,要根据文字语言用数学语言 写出题目中的条件; (2)求作:根据题目写出要求作出的图形及此图形应满足的条件; (3)作法:根据作图的过程写出每一步的操作过程.当不要求写作法时 ,要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的 图形大致相同,然后借助草图寻找作法. 2.作图语言的规范叙述 用直尺作图时的规范语言主要有:(1)过点×作直线××,作线段×× ,以点×为端点作射线××;(2)连结××,以点×为端点作线段××,延 长线段××到点×;延长线段××到点×,使××=××. 用圆规作图时的规范语言主要有:(1)以点×为圆心,××为半径作圆;(2) 以点×为圆心,××为半径作弧交××于点×;(3)在××上截取一点×, 使××=××.
探究问题二
作一个角等于已知角
例 2 如图 13-4-4 所示,已知线段 A 和∠α,∠β , 求作△ABC,使 AB=A,∠A=∠α,∠B=∠β.

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

《尺规作图》(ppt)》课件 2022年人教版省一等奖PPT

《尺规作图》(ppt)》课件 2022年人教版省一等奖PPT
:∠AOB, 求作:∠A'o'B',使:∠A'o'B'=∠AOB
1、作任一射线oA' 2、以点O为圆心,适当长为半径作弧交OA、OB于点M、N,
3、以点o'为圆心,同样的长为半径作弧交o'B'于点P 4、以点P为圆心,以MN为半径作弧交前弧于点A
5、过点A'作射线O'A'.
那么∠A'o'B'=∠AOB
图 31-2
解:(1)略. (2)对折,使点 A 与 B 重合,则折痕所在的直线为线段 AB 的垂直 平分线.
第31讲┃ 尺规作图
4.已知:有一块三角形空地,若想在空地中找到一个点,使 这个点到三边的距离相等,试找出该点.(保留画图痕迹)
图 31-3
解:作两个内角的角平分线,角平分线相交于点 P,点 P 就是所 求,如图.
证明的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好;
②三角形全等书写三步骤: 写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
AC=FE,BC=DE,点A,D,B,F在一条 直线上,AD=FB〔如图〕,要用“边边边〞 证明△ABC ≌△ FDE,除了中的AC=FE, BC=DE以外,还应该有什么条件?怎样才能 得到这个条件?
第31讲┃ 尺规作图
8.如图 31-6 所示,把一张矩形纸片 ABCD 沿对角线 BD 折叠, 将重合部分△BFD 剪去,得到△ABF 和△EDF.
(1)判断△ABF 与△EDF 是否全等,并加以证明;
图 31-6 (2)把△ABF 与△EDF 不重合地拼在一起,可拼成特殊三角形和特 殊四边形,在图 31-7 中,按要求将拼图补画完整.要求:①任选一图 用尺规作图,保留作图痕迹;②其余两图画图工具不限.

尺规作图.作一条线段等于已知线段;.作一个角等于已知角 大赛获奖教学课件

尺规作图.作一条线段等于已知线段;.作一个角等于已知角   大赛获奖教学课件
图 13-4-5
13.4.1 作一条线段等于已知线段 13.4.2 作一个角等于已知角
[归纳总结] 注意:(1)求作两角和或差时,一定要注明“外 部”或“内部”;
(2)求作三角形,一般情况下先作线段再作角,并结合全等 三角形的判定方法作图;
(3)本题实质是已知两角及其夹边作三角形.由“角边角” 定理,在此条件下所作的三角形是唯一的.一般情况下先作线 段,再作两个角,必须指明在线段的同侧,否则不会相交.基 本作图的“作法”不必再详说,如作线段 AB 的步骤,作∠BAM =∠α 的步骤,但必须保留作图痕迹.
13.2.5 边边边
[归纳总结] 证明三角形全等的步骤: 第一步:从已知出发,探究要证明的相等的线段或角分别 在哪两个全等三角形中; 第二步:分解图形——将所证全等三角形从“复合”图形 中分离出来; 第三步:“移植”条件——将已知条件转移到图形中,再 根据已知条件及隐含条件寻求恰当的证明方法.
可以确定△ABC 与△A′B′C′的关系是
全等

你能用一句话概括出三角形全等的这种判定方法吗?
◆知识链接——[新知梳理]知识点一
13.2.5 边边边
新知梳理
► 知识点一 “S.S.S.”基本事实及运用 基本事实:三__边__分别相等的两个三角形全等.简记为 S.S.S.(或边边边).
13.2.5 边边边
13.4.1 作一条线段等于已知线段 13.4.2 作一个角等于已知角
► 知识点二 尺规作图的步骤及作图语言的规范
1.尺规作图的步骤 (1)已知:当作图题是用文字语言叙述的,要根据文字语言用数学语言 写出题目中的条件; (2)求作:根据题目写出要求作出的图形及此图形应满足的条件; (3)作法:根据作图的过程写出每一步的操作过程.当不要求写作法时 ,要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的 图形大致相同,然后借助草图寻找作法. 2.作图语言的规范叙述 用直尺作图时的规范语言主要有:(1)过点×作直线××,作线段×× ,以点×为端点作射线××;(2)连结××,以点×为端点作线段××,延 长线段××到点×;延长线段××到点×,使××=××. 用圆规作图时的规范语言主要有:(1)以点×为圆心,××为半径作圆;(2) 以点×为圆心,××为半径作弧交××于点×;(3)在××上截取一点×, 使××=××.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)阅读作业:通读教材,复习巩 固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3第1、2
A’
B’
C’
利用尺规,作一个角等于 已知角. 已知:∠AOB(如图). 求作:∠AˊOˊBˊ,使 ∠ AˊOˊBˊ=∠AOB.
B
交流提纲: ⑴你是怎样思 考的; ⑵讨论:按怎 么样的顺序画 比较方便; ⑶画角时特别 应注意什么?
O
A
画一画
作法
(1)作射线O′A′:
作法与示范
示范
(2)以点O为圆心,以OC长为半径 画弧,交OA于点C,交OB于点D; (3)以点O′为圆心,以OC长为半径 画弧,交O′ A′于点C′; (4)以点C′为圆心,以CD长为半 径画弧,交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .
议一议
⑴这样作法正确吗?你应如何检验? ⑵量一量,剪一剪,比一比。 (3)如果在角O外部另有一点C,你能用 尺规画∠COD,并使 ∠AOB=∠COD吗?
B
O
A
随堂练习: (任选一题)
AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
• ⑴已知∠
B

A O ⑵已知角α,β(β<α<90°)求作一个角,使 它等于α+β.
复习
怎样作一条线段等于已知线段
利用直尺和圆规可以作出很多几何图形,你想知道我 们是如何用圆规和直尺作一条线段等于已知线段的吗? 已知:线段AB. 求作:线段A’ B’,使A’ B’=AB. 作法与示范:
A
B

•作

•示

•(1) 作射线A’C’ ;
(2) 以点A’为圆心, 以AB的长为半径画弧, 交射线A’ C’于点B’, A’B’ 就是所求作的线段。
α β
• ⑶过直线外一点P作已知直线l 的平行线。
【读一读】 :尺规作图
他幼年时就表现出超人的数学天才。1795 年进入格丁根大学学习。第二年他就发现 正十七边形的尺规作图法。并给出可用尺 规作出的正多边形的条件,解决了欧几里 得以来悬而未决的问题。
通过这节课的学习活动你有 哪些收获?
作业巩固
相关文档
最新文档