2021考研数学基础复习关于求极限的16种方法

合集下载

求极限的若干方法

求极限的若干方法

求极限的若干方法求极限是数学中的重要内容之一,它在微积分、数学分析、几何等诸多领域中都有广泛的应用。

在数学中,我们经常使用各种方法来求解极限,以下是一些常见的方法。

1. 代入法:当出现极限中的变量可以直接代入某个值时,可以利用代入法求解。

当求lim(x→0) (sinx/x)时,我们可以将x代入0,得到lim(x→0) sinx/0 = lim(x→0) (sin0)/0 = 1/0 = ∞。

2. 抵消法:当极限存在但不易计算时,可以通过抵消法将其化简为易计算的形式。

当求lim(x→∞) (x^2 + 2x + 3)/(x + 1)时,可以利用抵消法将分子的x^2项与分母的x 项抵消,得到lim(x→∞) (x^2 + 2x + 3)/(x + 1) = lim(x→∞) (x + 2 + 3/x)/(1 + 1/x) = ∞/1 = ∞。

4. 夹逼法:当极限存在但不易直接计算时,可以利用夹逼法将其夹在两个已知的极限之间,从而求出极限的值。

当求lim(x→0) x*sin(1/x)时,可以利用夹逼法,由于-1 ≤ sin(1/x) ≤ 1,所以有-lim(x→0) x ≤ lim(x→0) x*sin(1/x) ≤ lim(x→0) x,即-0 ≤ lim(x→0) x*sin(1/x) ≤ 0。

根据夹逼定理,由-lim(x→0) x = 0及lim(x→0) x = 0可知,lim(x→0) x*sin(1/x) = 0。

5. 利用特殊函数的性质:当极限涉及到特殊函数时,可以利用特殊函数的性质来求解。

当求lim(x→∞) (1 + 1/x)^x时,可以利用自然对数函数的性质,将极限转化为lim(x→∞) e^(x*log(1 + 1/x)) = e^lim(x→∞) (x*log(1 + 1/x)) = e^lim(x→∞) (log(1 + 1/x))/((1/x)) = e^lim(x→∞) ((log(1 + 1/x))/((1/x))),再利用洛必达法则,得到lim(x→∞) ((log(1 + 1/x))/((1/x))) = lim(x→∞) (1/((1 + 1/x)(-1/x^2))) = 1。

考研:求数列极限的十五种解法

考研:求数列极限的十五种解法

求数列极限的十五种方法1.定义法;-N 定义:设{a .}为数列,a 为定数,若对任给的正数;,总存在正数 N ,使得当n . N 时,有a . -a | .;:「,则称数列{a .}收敛于a ;记作:l im a^a ,否则称{a .}为发散数列.例1 •求证: 1nim:a —1,其中a 0.证:当a =1时,结论显然成立.III当 a >1 时,记 a =a n_1,则 a >0 ,由 a =n+a $ K 1 +n a =1 + n(c^ _1),得_1 兰王,v‘ n彳 1 1 1任给E >0,则当n >口 =N 时,就有—1 ,即a 下一1 c 呂,即lim=1 .1综上, lim a n =1,其中 a >0 .例2 .求: 7nlim—.M^n!解: 变式: 7n_7 77 7 77 7 .7 7 771 .. n7--0 7丄丄n! 1 27 8 9 n —1 n 7! n 6! nn! 6! n2•利用柯西收敛准则由柯西收敛准则,数列 {x,}收敛.1丄当—时,令b 蔦,则b 1,由上易知:”呻1lim a nn丄-11 —1lim b 下n ::0,N 丄6!则当n . N 时, •••lim 7=0.f n!柯西收敛准则:数列{a n }收敛的充要条件是: 一;・0 , T 正整数N ,使得当n 、m • N 时,总有:|a n -a m I ■:"'成立.例3 •证明:数列x n 八§n当(n 才,2, 3,)为收敛数列. k 2±2证:X n -X m =sin(m 勺)-2m +当n • m • N 时,有有二丄「;6! n例4 .(有界变差数列收敛定理 )若数列{x }满足条件:(n =1, 2,),则称{人}为有界变差数列,试证:有界变差数列一定收敛.=0, y n 二 X n —X nJ —%1—X n 』"| X ? - X ’那么{y n }单调递增,由已知可知: {y n }有界,故{%}收敛, 从而0, -I 正整数N ,使得当n .m . N 时,有y n -y m :::;; 此即X n -X m _X n -X n 』"|X n 丄^/"| X m 1 - X m |八;由柯西收敛准则,数列{ X,}收敛.注:柯西收敛准则把 ;—N 定义中的a n 与a 的关系换成了 a n 与a m 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性.3 •运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5 •证明:数列 x n = J a +J a +''描 (n 个根式,a >0,n =1, 2, 11|)极限存在,并求l i ^X n • 证:由假设知X n = a • X n1 ;①用数学归纳法可证: X n 1 X, , ^ N :② 此即证{X,}是单调递增的.事实上,0 ::: Xn 1 • ..=a • Xn •;: J a • a • 1 :::、'( :a • 1)2二 a 1 ;由①②可知: {X n }单调递增有上界,从而 lim X^ =1存在,对①式两边取极限得:1二JFR ,解得: 1」1如和|/-1 4a(舍负);.・.limX 」1如.22F 24.利用迫敛性准则(即两边夹法)迫敛性:设数列{a n }、{b n }都以a 为极限,数列{C n }满足:存在正数 N ,当n • N 时,有:1*2 n "郭 n 2 +n 勺 n 2+2n 2+n +n)卫j <X ^n (n 1);从而lim 単』亠m 吵"2(n ②) 2(n 5 1) "一斗2 (n 2n) 2 r :2( n n 1)•••由迫敛性,得:朝人+冷…冷弓.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.证:令力 a^lC n 乞b ,则数列{C n }收敛,且l nim Cn =a .例6 .求:解:记:X n备?■生,则:....1 2 小“丘 n ; 21 n 2n 1亠 % - x ,| M5•利用定积分的定义计算极限黎曼积分定义:设为f(x)定义在[a, b ]上的一个函数,J 为一个确定的数,若对任给的正数g >0 ,总存在某一正数 5,使得对[a, b ]的任意分割T ,在其上任意选取的点集 {©},1X 」,x ],n只要—就有送f(©)织—J £ ■则称函数f(x)在[a, b ]上(黎曼)可积,数J 为f(x)在[a, b ]i J_.兀 .2兀 sin — sin —— lim------ + ---- - +"f 1n 1< 22n2n2n .sin — sinsin sin — sinsin si n — sin sin-n nn ____ n . ___ 亠 亠 n ... n nnnn注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时, 可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积 分定义可能比较困难,这上的定积分,记作 bJ f (x)dx •=exp "li 琴瓦 ^In(1 +丄)卜exp(』ln(1 +x)dx )=exp(2ln2 —1例8.求: 解:因为:又:.兀亠• 2兀亠亠.n 兀sin — sin sin -n n nn +1 n 1 =lim — ■- y :n 1 二二 二 2 二 n 二 -—(sin — sin — ■ ■■-sin —) •兀丄• 2兀丄亠• nn sin sin sin 一 •- lim n nJnY :n -1■nsin同理:sin — si n — s in 」由迫敛性,得:例7.求:1112 n n+評+廿1+討2兀时需要综合运用迫敛性准则等方法进行讨论.6•利用(海涅)归结原则求数列极限(x )=A=对任何人必(n 宀),有 ”叮(Xn )=A •2=[im(1 •啤)]im(1 ^^1)^ ^lim(1 n^)^^lim(1 」)x =e ; lim(1 -1 -4)n=e • i : n n注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7•利用施托尔茨(Stolz )定理求数列极限stolz 定理1: (__)型:若{y n }是严格递增的正无穷大数列,它与数列 {X n }一起满足:□0"m :x 二辭1,则有卩叹辭1,其中l为有限数,或;,或一stolz 定理2: (0)型:若{yn }是严格递减的趋向于零的数列, n —「::时,Xn —;0且lim X 1 Xn=],则有lim Xn=l ,其中I 为有限数,或•::,或-. n「y n1. -y n7%例11 .求:乍 2P 加:小n p愠 np+ (P^N) •解:令X n =1p ,2p 爲…圧-P , y n =n p1, n • N ,则由定理1,得:lim 1P 2P1 nP Rim (n P11)P P1,lim心 「 rn p1":( n1)p_ n p n]p1) n p_(P ⑴卩P 1注:本题亦可由 方法五(即定积分定义)求得,也较为简便,此处略.例9•求:lim n-<-.: 1e n-1 1 解:lim■n-s : 1-1 1例10 •计算: 解:一方面, 另一方面, 1= lim 学n T_on( lim 1 n 扛 (1 - n由归结原则: 1、n “ 1、n 2):::(1 ) > n(nr ');1 1(1 ——1)n (取 X n=(1 2丄_2_ 丁 )心丄—(1—)5-; nn2n n—1 ,n = 2, 3,…), 归结原则:lim f X十2n2由迫敛性,得:n'TnC :S n,求:Hm S n •n8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级 数求和的知识使问题得到解决.1 2n例13 .求:lim( 21) , (a >1). n: - a aa n1od解:令x =—,则|x | .;:1,考虑级数:V nx nan 1x而S(x)二x f (x)2;因此,原式(1—X)9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此 数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.例14.设焉0,X :^^ ^(n r O, 1, 2,),证明:数列{X :}收敛,并求极限2 +X :证:由x 0・0 ,可得: x:0(:巾 1 2, ),令 f(x ^22 x C),(x 0),例12 •设 解:令y =n 2,则{y n }单调递增数列,于是由定理2得:nE ln C ;lim S n = lim k~ 2—— j nY :2n 1n7 ln C n k1 -7 ln C := lim - n二 k 纟 k 土 2 2" (n 1) —nn” ln^^ k_on —k +1=lim n:■: 2n -1n +(n - 1)ln(n y ln kk -1=lim — n二2n 1(n 七)ln( n +1) — n In n -ln(n +1) = lim n:2n 1 .z n 1 nln( ) 1= lim :-n注:Stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用Stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则.lim an = lim =1,•••此级数是收敛的.令Q QS(x) nx n士二八'nx n1,再令n —f (x) =7 nx n」,x:: x::o f(t)dt ■ 0nt n1dt ■ x nn ±n 1f (x)二(产)二1 -x1 (1 -==S(a 」)=a(1-a 于2(1 亠x )=x :1,x : 0, (n =0,1,2,),oo考虑级数:.J |X : 1 -人; n 倉则 0 . f '(x)2(2 x)2由于X n 牛一X f (X n ) f (X nJf '(©(X n -X n£1X n —人iXn—人 1人一X n 1J?2所以, 级数"_人收敛,从而n£Q0壬(X n 牛-X n )收敛.n_0_令Sn=E (x kk_0_%牛一X k ) = X n 牛一人,叮臂^存在,二 n ^X n 丰 M^+U^S nJ (存在);对式子:X 」= 2(1+X),两边同时取极限:| =2(1知),2 *2 +I\ =^J 2或 I =―J2 (舍负);二 lim 人=J2 .n与、 1 1 i例15 .证明:lim (1In n )存在.(此极限值称为 Euler 常数)ii i i证:设 a n =i +— +—…+— —In n ,贝U a * —a*丄=—[in n —ln (n —i )];2 3 n n对函数y =1 n n 在[n -i, n ]上应用拉格朗日中值定理,可得:Inn —ln(n —1) - (0:::小1),10 •利用幕级数求极限例 16•设 sin x =sinx, sin x 二sin(sin n ±x) (n =2, 3, ■■- ),若 sinx 0 ,求:— i解:对于固定的x ,当n —•:时,单调趋于无穷,由stolz 公式,有:sin n x2nn ,1-1 lim nsin n x =lim lim — n 二 nn :”: 1n 1 [2 2 2sin n x sin n 1 x sin n x所以 a n —a “ 丄=一1 .n(n -1+0) In -1)2 'OC A因为J 收敛,由比较判别法知: n三(n -1)2心a n -a ni 也收敛,n士1 1所以l j m® 存在,即lim^Vi*1iln n)存在. n利用基本初等函数的麦克劳林展开式, 常常易求岀一些特殊形式的数列极限... 1= lim ——y : 1 ___ 1 sin 2(sin x) s in 2sin . x .2 2丄1 t sin t= lim lim 2 2 lim -“士一* t0 t -int(0 t^(t2-1t4 o(t4))sin t t 3t 4 -- t 6 o (t 6) 1 -- t 2 o (t 2) = lim 3 lim 33 .3t o (t )3 o (i )ii •利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛•下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 、 a a 例仃•求:limn 2(arctan arctan ) , (a =0).n二 n n 1解:设f (x ) =arctanx ,在[—a, a]上应用拉格朗日中值定理, n +1 n得:吩…(洽)="吟话),启,故当2知,J 。

16种求极限的方法及一般题型解题思路分享

16种求极限的方法及一般题型解题思路分享

千里之行,始于足下。

16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。

在求极限的过程中,有很多种不同的方法可以使用。

本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。

1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。

这种方法适用于对于给定的变量值函数值可以直接计算的状况。

2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。

3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。

4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。

5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。

6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。

7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。

第1页/共3页锲而不舍,金石可镂。

8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。

9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。

这个法则对于解决0/0和∞/∞型的极限问题格外有用。

10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。

11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。

12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。

13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。

14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX 趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。

求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。

1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。

2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。

3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。

4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。

5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。

6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。

7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。

8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。

9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。

10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。

11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。

12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。

13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。

14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。

15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。

16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。

以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。

求极限的21个方法总结

求极限的21个方法总结

求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。

2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。

3. 消去法:利用性质将某些项消去,使得表达式更容易计算。

4. 因式分解法:将极限表达式中的因式进行分解,简化计算。

5. 分数分解法:将极限表达式中的分数进行分解,简化计算。

6. 奇偶性性质:利用函数的奇偶性质,简化计算。

7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。

8. 幂函数性质:利用幂函数的性质,简化计算。

9. 对数函数性质:利用对数函数的性质,简化计算。

10. 指数函数性质:利用指数函数的性质,简化计算。

11. 三角函数性质:利用三角函数的性质,简化计算。

12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。

13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。

14. 夹逼定理:利用夹逼定理确定极限的值。

15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。

16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。

17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。

18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。

19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。

20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。

21. 几何法:利用几何图形的性质计算极限的值。

求极限的常用方法

求极限的常用方法

求极限的常用方法求极限是数学分析中一个重要的概念,它可以帮助我们理解函数在一些点处的行为,并在许多数学领域中发挥重要作用。

下面是一些常用的方法和技巧,来帮助我们求解各种类型的极限。

1.代入法:当函数在其中一点的极限存在时,我们可以尝试直接将该点的值代入函数中,看看是否会得到一个有意义的结果。

如果代入的结果是有限的,那么说明极限存在并等于该有限值。

然而,这种方法只适用于简单的函数和特定的极限问题。

2.分母有理化:当我们遇到含有分母中包含根式或其他不便计算的因素时,可以尝试将其有理化。

常用的方法有利用平方差公式或者乘法公式,以及通过分子分母同乘共轭式等。

3.分子有理化:类似于分母有理化,当我们遇到函数中含有根式时,可以尝试将其有理化。

常用的方法有利用平方差公式,乘方差公式以及平方和公式等。

4.拆分分数项:对于复杂的分式函数,我们可以尝试将其分解成简单的分式项,然后对各项求极限,再根据极限的性质进行求解。

5.极限的性质和定理:除了直接计算极限,我们还可以利用一些常见的极限性质和定理来简化问题。

例如,极限的四则运算法则、复合函数的极限、极限的保号性等都可以帮助我们更好地理解和求解极限。

6.夹逼定理:夹逼定理是求解一些复杂极限的常用方法之一、该定理的核心思想是通过构造两个函数,一个上界函数和一个下界函数,然后利用这两个函数对待求函数进行夹逼,从而确定待求函数的极限。

这个方法常用于求解无穷大和无穷小的极限。

7.泰勒展开:泰勒展开是求解一些复杂函数的极限的重要方法。

该方法利用了泰勒级数的定义,将复杂的函数近似为一个无穷级数,然后通过截断级数来计算近似的极限值。

8. L'Hospital法则:L'Hospital法则是求解一些不定型极限的重要方法之一、该法则利用导数和洛必达法则,将一个不定型极限转换为一个更简单的极限,然后进行求解。

9.递推关系:递推关系是求解一些递推数列的极限的重要方法。

该方法利用数列之间的递推关系,将数列的极限转化为递归方程的极限,并利用递归方程的解求解极限。

求极限方法总结

求极限方法总结

求极限⽅法总结求极限⽅法总结求极限⽅法总结⼀,求极限的⽅法横向总结:1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分⼦带根式:⽤平⽅差公式,凑平⽅(有分式⼜同时出现未知数的不同次幂:将未知数全部化到分⼦或分母的位置上)2)分⼦分母都带根式:将分母分⼦同时乘以不同的对应分式凑成完全平⽅式(常⽤到2分⼦分母都是有界变量与⽆穷⼤量加和求极限:分⼦与分母同时除以该⽆穷⼤量凑出⽆穷⼩量与有界变量的乘积结果还是⽆穷⼩量。

3等差数列与等⽐数列和求极限:⽤求和公式。

4分母是乘积分⼦是相同常数的n项的和求极限:列项求和5分⼦分母都是未知数的不同次幂求极限:看未知数的幂数,分⼦⼤为⽆穷⼤,分⼦⼩为⽆穷⼩或须先通分。

6运⽤重要极限求极限(基本)。

7乘除法中⽤等价⽆穷⼩量求极限。

8函数在⼀点处连续时,函数的极限等于极限的函数。

9常数⽐0型求极限:先求倒数的极限。

10根号套根号型:约分,注意别约错了。

11三⾓函数的加减求极限:⽤三⾓函数公式,将sin化cos⼆,求极限的⽅法纵向总结:1未知数趋近于⼀个常数求极限:分⼦分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带⼊其他式⼦。

2未知数趋近于0或⽆穷:1)将x放在相同的位置2)⽤⽆穷⼩量与有界变量的乘积3)2个重要极限4)分式解法(上述)⾼数解题技巧。

⾼数(上册)期末复习要点⾼数(上册)期末复习要点第⼀章:1、极限2、连续(学会⽤定义证明⼀个函数连续,判断间断点类型)第⼆章:1、导数(学会⽤定义证明⼀个函数是否可导)注:连续不⼀定可导,可导⼀定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(⼀定要熟悉并灵活运⽤--第⼀节)2、洛必达法则3、泰勒公式拉格朗⽇中值定理4、曲线凹凸性、极值(⾼中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应⽤主要有⼏类:极坐标、求做功、求⾯积、求体积、求弧长第七章:向量问题不会有很难1、⽅向余弦2、向量积3、空间直线(两直线的夹⾓、线⾯夹⾓、求直线⽅程) 3、空间平⾯4、空间旋转⾯(柱⾯)⾼数解题技巧。

归纳求极限的方法

归纳求极限的方法

求极限的方法⒈利用函数极限的四则运算法则来求极限定理1①:若极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又若0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(lim lim lim 0x g x f x g x f x x x x x x →→→=利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。

例1:求2422lim---→x x x 解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim=→xxx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim--→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e xx =+∞→)11(lim的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα1)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lime x x x x x =⎥⎦⎤+⋅⎢⎣⎡+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。

求极限的方法与技巧

求极限的方法与技巧

求极限的方法与技巧求极限是微积分中一个重要的概念,它在数学分析、物理学、经济学等许多领域都有广泛的应用。

正确理解和应用极限的方法和技巧对于解决复杂问题至关重要。

在本文中,我将分享一些求极限的方法和技巧。

一、代入法代入法是求解极限最基本的方法之一、当函数在特定点不可求值或复杂时,我们可以通过代入该点的相邻值来近似求解极限。

例如,对于函数f(x)=x^2,要求极限lim(x->2)f(x),我们可以尝试代入x=2附近的数字,如1.9、1.99、1.999等,通过逐渐逼近2,来估算极限的值。

当代入的数字越接近2时,得到的极限值越接近真实值。

二、基本极限法则基本极限法则是求极限过程中的重要工具,它基于一系列基本的极限结果。

以下是常用的基本极限法则:1. 常数法则:lim(x->a)c=c,其中c为常数;2. 幂函数法则:lim(x->a)x^n=a^n,其中n为正整数,a为实数;3. 指数函数法则:lim(x->0)(1+x)^n=1,其中n为正整数;4. 三角函数法则:lim(x->0)sin(x)/x=1,lim(x->0)(1-cos(x))/x=0;5. 对数函数法则:lim(x->1)ln(x)=0。

通过灵活运用这些基本极限法则,可以简化复杂的极限计算过程。

三、夹逼法夹逼法是求解极限中一种常用的思路。

当我们需要求解一个函数f(x)在特定点的极限时,可以通过构造两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x),且lim(x->a)g(x)=lim(x->a)h(x)=L,则根据夹逼定理,可以得到lim(x->a)f(x)=L。

通过灵活选择g(x)和h(x),我们可以利用夹逼法求解复杂的极限问题。

四、换元法换元法是极限求解中一种常用的技巧。

通过进行变量替换,可以将复杂的极限问题转化为简单的形式。

例如,对于极限lim(x->0)sin(2x)/x,我们可以进行变量替换令u=2x,得到lim(u->0)sin(u)/(u/2),进一步化简为lim(u->0)2sin(u)/u。

求极限的方法总结

求极限的方法总结

求极限的方法总结极限是数学中的一个重要概念,它可以描述函数或数列在某一点或某个无穷远的情况下的趋势或结果。

在求解极限时,有许多不同的方法可以使用,下面我将简要总结一下常见的求极限的方法。

一、替换法替换法是求函数极限的常用方法之一。

当我们在计算某一点的函数极限时,可以尝试将该点的数值代入函数中,然后计算函数的值。

如果当点趋近于某个有限值时函数的极限存在,那么我们可以得出该极限的值。

二、分子分母因式分解法当我们计算一个分式的极限时,可以尝试对分子和分母进行因式分解。

通过因式分解,我们可以减少计算的复杂性,进而更容易求得极限的结果。

三、洛必达法则洛必达法则是求解函数极限的重要工具。

这个法则的基本思想是将一个函数的极限转化为同一点处的两个函数的极限之比。

如果这两个函数的极限都存在并且是有限的,那么我们可以得出原函数极限的结果。

四、夹逼定理夹逼定理是求解数列极限的常用方法之一。

这个定理的主要思想是通过两个逼近数列来逼近待求数列,进而确定数列的极限值。

夹逼定理在实际计算中可以大大简化问题的求解。

五、泰勒展开式泰勒展开式是一种将函数展开为无穷项级数的方法。

通过将函数展开为级数,我们可以更加准确地计算函数的极限值。

泰勒展开式有时候可以帮助我们求解一些复杂的函数极限,特别是在计算高阶导数时。

六、变量代换法变量代换法是一种将复杂极限转化为简单极限的方法。

通过对函数中的自变量进行适当的替代,我们可以将复杂的极限转化为简单的极限。

这种方法可以大大减少计算的难度,提高求解极限问题的效率。

七、松弛变量法松弛变量法是一种求解含有未知数的极限问题的方法。

通过引入一个松弛变量,我们可以使得原来的极限问题变得简单,从而更容易求解。

这种方法在求解一些复杂的函数极限时特别有用。

总结:求解极限的方法有替换法、分子分母因式分解法、洛必达法则、夹逼定理、泰勒展开式、变量代换法和松弛变量法等。

每种方法都有其适用的范围和特点,我们可以根据具体问题的不同选择合适的方法。

考研数学:求极限的16种方法

考研数学:求极限的16种方法

考研数学:求极限的16种方法1500字求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。

在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。

以下是16种常见的求极限的方法:方法1:代入法代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。

代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。

方法2:夹逼定理夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。

通过取两个已知函数逐渐逼近待求函数,来求得极限。

方法3:集中取值法集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。

通过将待求函数的取值限制在一个区间内,来求得极限。

方法4:变量代换法变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。

通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。

方法5:公共因子法公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。

通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。

方法6:三角函数极限法三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。

通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。

方法7:幂函数极限法幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。

通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。

方法8:自然对数极限法自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。

通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。

方法9:常数e极限法常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。

通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。

方法10:斜率法斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。

极限求法总结

极限求法总结

极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。

例:()0lim x x f x A →=的ε-δ 定义是指:∀ε>0, ∃δ=δ(0x ,ε)>0,0<|x-0x |<δ⇒|f(x)-A|<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)-A |≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:|x+a |=|(x-0x )+(0x +a)|≤|x-0x |+|0x +a|<|0x +a |+δ1 域|x+a|=|(x-0x )+(0x +a)|≥|0x +a|-|x-0x |>|0x +a|-δ1 从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-0x |<δ 时,就有|f(x)-A|<ε.例:设lim n n x a →∞=则有12 (i)nn x x x a n→∞++=.证明:因为lim n n x a →∞=,对110()N N εε∀>∃=,,当1n N >时,-2n x a ε∣∣<于是当1n N >时,1212......n n x x x x x x na a n n+++∣+++-∣∣-∣=0ε<<1其中112N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由2A n ε<,解得2An ε>,故取12max ,A N N ε⎧⎫⎡⎤=⎨⎬⎢⎥⎣⎦⎩⎭12...+=22n x x x n N n εεε+++>-α<当时,。

求极限的几种类型与方法

求极限的几种类型与方法

求极限的几种类型与方法
初级阶段:四则运算法,连续函数用代入法,分子分母同除最高次项法,分离非零定式因式法,分子有理化法,分子分母约去致零因式法。

晋级阶段:等价无穷小替换因式法,不定式的罗比达法则,幂指函数配底或取对数。

高级阶段:泰勒公式展开法,收敛级数通项趋于0,构造定积分法,应用积分和微分中值定理法。

求极限的方法
(1)分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
(2)无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
(3)运用两个特别极限;
(4)运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小。

比无穷小,分子分母还必须是连续可导函数。

(5)用Mclaurin(麦克劳琳)级数展开,而国内普遍译为Taylor(泰勒)展开。

(6)等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。

因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。

(7)夹挤法。

这不是普遍方法,因为不可能放大、缩小后的结果都一样。

(8)特殊情况下,化为积分计算。

求极限的方法总结

求极限的方法总结

求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。

二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。

()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。

limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档