2011年高考数学二轮考点专题突破:函数、基本初等函数的图象与性质
高考数学二轮专题突破 专题一 第2讲 函数、基本初等函
第2讲 函数、基本初等函数的图象与性质【高考考情解读】 1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式考查,且常与新定义问题相结合,难度较大.1. 函数的概念及其表示两个函数只有当它们的三要素完全相同时才表示同一函数,定义域和对应关系相同的两个函数是同一函数. 2. 函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.3. 指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质.(2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况. 4. 熟记对数式的五个运算公式log a (MN )=log a M +log a N ;log a M N =log a M -log a N ;log a M n=n log a M ;a log a N =N ;log a N =log b N log b a(a >0且a ≠1,b >0且b ≠1,M >0,N >0). 提醒:log a M -log a N ≠log a (M -N ), log a M +log a N ≠log a (M +N ). 5. 与周期函数有关的结论(1)若f (x +a )=f (x +b )(a ≠b ),则f (x )是周期函数,其中一个周期是T =|a -b |.(2)若f (x +a )=-f (x ),则f (x )是周期函数,其中一个周期是T =2a . (3)若f (x +a )=1f x或f (x +a )=-1f x,则f (x )是周期函数,其中一个周期是T=2a .提醒:若f (x +a )=f (-x +b )(a ≠b ),则函数f (x )关于直线x =a +b2对称.考点一 函数及其表示例1 (1)若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2xln x的定义域是________. 答案 (0,1)解析 由函数y =f (x )的定义域是[0,2]得,函数g (x )有意义的条件为0≤2x ≤2且x >0,x ≠1,故x ∈(0,1).(2)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >02x,x ≤0,则f (f (19))=________.答案 14解析 因为19>0,所以f (19)=log 319=-2,故f (-2)=2-2=14.(1)求函数定义域的类型和相应方法①若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可,函数f (g (x ))的定义域应由不等式a ≤g (x )≤b 解出. ②实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义. (2)求函数值时应注意形如f (g (x ))的函数求值时,应遵循先内后外的原则;而对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段求解.(1)若函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +3,x <4,则f (log 23)=________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.答案 (1)24 (2)(-1,2-1) 解析 (1)f (log 23)=f (log 23+3) =f (log 224)=2log 224=24.(2)当x ≥0时,f (x )=x 2+1是增函数; 当x <0时f (x )=1,因此由题设f (1-x 2)>f (2x )得,⎩⎪⎨⎪⎧1-x 2>02x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0.解之得-1<x <0或0≤x <2-1.故所求实数x 的取值范围是(-1,2-1). 考点二 函数的性质例2 (1)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x的取值范围为________. 答案 ⎝⎛⎭⎪⎫-2,23 解析 f ′(x )=3x 2+1>0,∴f (x )为增函数. 又f (x )为奇函数,由f (mx -2)+f (x )<0知,f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0,令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g-2=-x -2<0g2=3x -2<0,∴-2<x <23.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.答案 -14解析 根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14.函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·天津改编)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.(2)已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=e x+a ,若f (x )在R 上是单调函数,则实数a 的最小值是________.答案 (1)⎣⎢⎡⎦⎥⎤12,2 (2)-1 解析 (1)由题意知a >0,又log 12a =log 2a -1=-log 2a .∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ).∵f (log 2a )+f (log 12a )≤2f (1),∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1). 又因f (x )在[0,+∞)上递增. ∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎢⎡⎦⎥⎤12,2. (2)依题意得f (0)=0.当x >0时,f (x )>e 0+a =a +1. 若函数f (x )在R 上是单调函数,则有a +1≥0,a ≥-1, 因此实数a 的最小值是-1. 考点三 函数的图象例3 形如y =b|x |-a(a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg|x |图象的交点个数为n ,则n =________.答案 4解析 由题意知,当a =1,b =1时,y =1|x |-1=⎩⎪⎨⎪⎧1x -1x ≥0且x ≠1,-1x +1x <0且x ≠-1,在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.(1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是________. 答案 [-2,0]解析 函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2. 综上所述:-2≤a ≤0. 考点四 基本初等函数的图象及性质例4 (1)若函数f (x )=212log ,0,log (),0,x x x x >⎧⎪⎨-<⎪⎩若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知a = 3.42log5,b = 3.64log5,c =0.33log15(),则a 、b 、c 大小关系为________.答案 (1)(-1,0)∪(1,+∞) (2)a >c >b解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0,故-1<a <0或a >1. (2)∵a = 3.42log5,b = 3.64log5,c =0.33log15()=5log 3313,根据y =a x且a =5,知y 是增函数. 又∵log 23.4>log 3313>1,0<log 43.6<1,∴5log 23.4>(15)log 30.3>5log 43.6,即a >c >b .(1)指数函数、对数函数、幂函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较.(1)(2012·天津)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为________.(2)使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (1)c <b <a (2)(-1,0) 解析 (1)利用中间值判断大小.b =⎝ ⎛⎭⎪⎫12-0.8=20.8<21.2=a ,c =2log 52=log 522<log 55=1<20.8=b ,故c <b <a .(2)作出函数y =log 2(-x )及y =x +1的图象.其中y =log 2(-x )及y =log 2x 的图象关于y 轴对称,观察图象(如图所示)知,-1<x <0,即x ∈(-1,0).也可把原不等式化为⎩⎪⎨⎪⎧-x >0,-x <2x +1后作图.1. 判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2. 函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3. 函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a .(2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称. 4. 二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中.5. 指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较.6. 解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.1. 关于x 的方程e xln x =1的实根个数是________.答案 1解析 由原方程可得ln x =e -x. 设y 1=ln x ,y 2=e -x, 两函数的图象如图所示:两曲线有且只有一个交点,所以方程有唯一解.2. 定义在R 上的奇函数f (x ),当x ∈(0,+∞)时,f (x )=log 2x ,则不等式f (x )<-1的解集是________________.答案 (-∞,-2)∪⎝ ⎛⎭⎪⎫0,12 解析 由已知条件可知,当x ∈(-∞,0)时,f (x )=-log 2(-x ). 当x ∈(0,+∞)时,f (x )<-1, 即为log 2x <-1,解得0<x <12;当x ∈(-∞,0)时,f (x )<-1, 即为-log 2(-x )<-1,解得x <-2.所以f (x )<-1的解集为(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12. 3. 定义域为R 的偶函数f (x )满足对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )与函数y =log a (x +1)在x ∈(0,+∞)上至少有三个交点,则a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫0,33 解析 ∵f (x +2)=f (x )-f (1),∴令x =-3得f (1)=0, ∴f (x +2)=f (x ),周期T =2.x ∈[0,1]时,f (x )=f (x +2)=-2(x -1)2.根据函数f (x )的奇偶性与周期性画出图象.要使y =f (x )与y =log a (x +1)在x ∈(0,+∞)上至少有三个交点,只须满足⎩⎪⎨⎪⎧0<a <1log a 3>-2,解得0<a <33.(推荐时间:40分钟)1. 已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1100的值等于________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎪⎫1100=lg 1100=-2,f ⎝ ⎛⎭⎪⎫f ⎝⎛⎭⎪⎫1100=f (-2)=-lg 2. 2. 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的________条件. 答案 充分不必要解析 当c =-1时,易知f (x )在R 上递增;反之,若f (x )在R 上递增,则需有1+c ≤0,即c ≤-1. 所以“c =-1”是“函数f (x )在R 上递增”的充分不必要条件.3. (2013·课标全国Ⅱ改编)设a =log 36,b =log 510,c =log 714,则a 、b 、c 的大小关系为_______.答案 a >b >c解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c .4. 设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.答案 [-1,12)解析 ∵f (x )是偶函数,∴f (-x )=f (x )=f (|x |), ∴不等式f (1-m )<f (m )⇔f (|1-m |)<f (|m |), 又∵当x ∈[0,2]时,f (x )是减函数, ∴⎩⎪⎨⎪⎧|1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12.5. 设函数f (x )=x (e x+a e -x)(x ∈R )是偶函数,则实数a 的值为________.答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x+a e x )=x (e x +a e -x),化简得x (e -x+e x)(a +1)=0.因为上式对任意实数x 都成立,所以a =-1. 6. 设函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),x 1≠x 2,不等式f x 1-f x 2x 1-x 2>0恒成立,则实数a 的取值范围是________. 答案 a ≤2解析 f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,如图,作出函数图象,当a 变化时, 易得a 的取值范围为a ≤2.7. 已知函数f (x )=a sin x +bx 3+5,且f (1)=3,则f (-1)=________.答案 7解析 因为f (1)=3,所以f (1)=a sin 1+b +5=3, 即a sin 1+b =-2.所以f (-1)=-a sin 1-b +5=-(-2)+5=7.8. 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12, 即f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12. 又因为f ⎝ ⎛⎭⎪⎫-12=-12a +1,f ⎝ ⎛⎭⎪⎫12=b2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1). ① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a . ②将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.9. 直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________.答案 1<a <54解析 y =x 2-|x |+a 是偶函数,图象如图所示.由图象可知直线y =1与曲线y =x 2-|x |+a 有四个交点需满足a -14<1<a , ∴1<a <54. 10.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________.(填序号)答案 ③④解析 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x 的图象如图所示. 由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b 得, a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立.11.已知奇函数f (x )=⎩⎪⎨⎪⎧ x 2-2x x ≥0,ax 2+bx x <0,给出下列结论:①f (f (1))=1;②函数y =f (x )有三个零点;③f (x )的递增区间是[1,+∞);④直线x =1是函数y =f (x )图象的一条对称轴;⑤函数y =f (x +1)+2图象的对称中心是点(1,2).其中,正确结论的序号是________.(写出所有正确结论的序号).答案 ①②解析 因为f (x )是奇函数,所以x <0时,f (-x )=x 2+2x ,即f (x )=-x 2-2x .可求得a =-1,b =-2.即f (x )=⎩⎪⎨⎪⎧ x 2-2x , x ≥0,-x 2-2x , x <0.①f (f (1))=f (-1)=-f (1)=1,①正确;②易知f (x )的三个零点是-2,0,2,②正确;③当x ∈(-∞,-1]时,f (x )也单调递增,③错误;④由奇函数图象的特点知,题中的函数f (x )无对称轴,④错误;⑤奇函数f (x )图象关于原点对称,故函数y =f (x +1)+2图象的对称中心应是点(-1,2),⑤错误.故填①②.12.给出下列四个函数:①y =2x ;②y =log 2x ;③y =x 2;④y =x . 当0<x 1<x 2<1时,使f ⎝ ⎛⎭⎪⎫x 1+x 22>f x 1+f x 22恒成立的函数的序号是________. 答案 ②④解析 由题意知满足条件的图象形状为:故符合图象形状的函数为y =log 2x ,y =x .13.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8.则所有正确命题的序号为________.答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0;根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④. 14.已知直线y =mx 与函数f (x )=⎩⎪⎨⎪⎧ 2-⎝ ⎛⎭⎪⎫13x ,x ≤0,12x 2+1,x >0的图象恰好有3个不同的公共点,则实数m 的取值范围是________.答案 (2,+∞)解析 作出函数f (x )=⎩⎪⎨⎪⎧ 2-⎝ ⎛⎭⎪⎫13x ,x ≤0,12x 2+1,x >0的图象,如图所示.直线y =mx 的图象是绕坐标原点旋转的动直线.当斜率m ≤0时,直线y=mx 与函数f (x )的图象只有一个公共点;当m >0时,直线y =mx 始终与函数y =2-⎝ ⎛⎭⎪⎫13x (x ≤0)的图象有一个公共点,故要使直线y =mx 与函数f (x )的图象有三个公共点,必须使直线y =mx与函数y =12x 2+1 (x >0)的图象有两个公共点,即方程mx =12x 2+1在x >0时有两个不相等的实数根,即方程x 2-2mx +2=0的判别式Δ=4m 2-4×2>0,解得m > 2.故所求实数m 的取值范围是(2,+∞).。
2011高考数学 第二讲函数、基本初等函数的图象与性质课件2.
整合训练
3.(1)函数y=x|x|的图象大致是( )
(2)(2010年山东卷)函数y=2x-x2的图象大致是(
)
答案:(1)C (2)A
基本初等函数的图象和性质问题 考纲点击 1.理解指数函数的概念,理解指数函数的单调性,掌握指 数函数图象通过的特殊点. 2.理解对数函数的概念,理解对数函数的单调性,掌握对 数函数图象通过的特殊点.了解指数函数y=ax与对数函数y =logax互为反函数(a>0,a≠1). 1 1 y= ,y=x 2 的图象及变化 3.了解函数y=x,y=x2,y=x3, x 情况.
答案:(1)B (2)B
函数的图象问题 考纲点击
1.掌握指数函数图象通过的特殊点. 2.掌握对数函数图象通过的特殊点. 1 1 y= ,y=x 2 的图象,了 3.结合函数y=x,y=x2,y=x3, x 解它们的变化情况.
基础梳理 三、函数的图象 1.基本初等函数的图象 基本初等函数包括:一次函数、二次函数、反比例函数、 指数函数、对数函数、三角函数.对于这些函数的图象应非常 清楚. 2.函数图象的画法 (1)描点法作图 通过________、________、________三个步骤画出函数的 图象. (2)图象变换法作图 ①平移变换 a.y=f(x)的图象向左平移a(a>0)个单位得到函数 ________的图象.
1 3 2 =(x 2-x1 )[(x 2+ x1 ) 2+ x1 . 2 4 由x1<x2,则x2-x1>0, 得f(x1)-f(x2)>0, 所以f(x1)>f(x2). 所以f(x)=-x3+1在R上是减函数.
0<a<1, 15 ______; ○ 当x>1时, 16 ○ 当0<x<1时, ____. 19 ○ a>1,当x>1时, ______; 20 ○ 当0<x<1时, ______.
2011届高考数学考点知识专题总复习函数的性质及应用
2011 届高考数学考点知识专题总复习函数的性质及应用课时考点1函数的性质及应用高考考纲透析:( 1)认识映照的观点,理解函数的观点。
(2) 认识函数单一性、奇偶性的观点,掌握判断一些简单函数的单一性、奇偶性的方法。
(3) 认识反函数的观点及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4) 理解分数指数幂的观点,掌握有理指数幂的运算性质 . 掌握指数函数的观点、图像和性质。
(5) 理解对数的观点,掌握对数的运算性质;掌握对数函数的观点、图像和性质。
(6) 能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
高考风向标:映照与函数的观点、函数单一性、奇偶性、周期性、函数的值域与最值、反函数、函数图象、指数函数、对数函数、二次函数、函数的综合应用。
特别是函数的单一性、奇偶性、周期性、反函数复现率较高。
高考试题选:1.若和 g(x) 都是定义在实数集 R 上的函数,且方程有实数解,则不行能是( A)( B)( c)( D)2. 若函数的定义域和值域都是[0 , 1] ,则 a=()(A)(B)(c)(D)23. 函数上的最大值和最小值之和为a,则 a 的值为()A .B. c. 2D. 44.设分别是定义在 R 上的奇函数和偶函数,当时,且则不等式的解集是()A.B. c. D.5.已知函数的最大值不大于,又当(1)求 a 的值;(2)设6. 是定义在 R 上的以 3 为周期的奇函数,且在区间(0,6)内解的个数的最小值是()A .2B. 3c.4D. 5热门题型1对数函数与二次函数复合而成的复合函数的性质例 1:能否存在实数,使函数在区间上是增函数?假如存在,说明可取哪些值;假如不存在,请说明原因。
解题剖析:解答本题要掌握三点:一是对数的底数对单一性的影响,二是二次函数的张口方向与对称轴对单一性的影响,三是真数在给定区间上要大于 0。
而后利用复合函数的单一性等知识加以解决。
【数学】2011届高考二轮专题复习课件:第2讲基本初等函数的图象与性质(新课标人教版文)
第2讲 │ 主干知识整合
3.周期性是函数的整体性质,一般地,对于函数 f(x),如果对于 定义域中的任意一个 x 的值: 若 f(x+T)=f(x)(T≠0),则 f(x)是周期函数,T 是它的一个周期; 若 f(x+a)=f(x+b)(a≠b),则 f(x)是周期函数,|b-a|是它的一个 周期; 若 f(x+a)=-f(x)(a≠0), f(x)是周期函数, 是它的一个周期; 则 2a 1 若 f(x+a)= (a≠0,且 f(x)≠0),则 f(x)是周期函数,2a 是它 fx 的一个周期; 1+fx 若 f(x+a)= (a≠0 且 f(x)≠1), f(x)是周期函数, 是它 则 4a 1-fx 的一个周期.
第2讲 │ 要点热点探究
设函数 f(x)定义在实数集上,它的图象关于直线 x=1 对称,且当 x≥1 时,f(x)=2x-x,则有( )
1 3 2 A.f3<f2<f3 2 1 3 C.f3<f3<f2 2 3 1 B.f3<f2<f3 3 2 1 D.f2<f3<f3
第2讲 │ 主干知识整合
二、函数的性质 1.单调性是函数在其定义域上的局部性质,也是最重要 的性质,要特别注意定义中的符号语言:定义在 I 上的函数 f(x),且 D⊆I,对任意 x1,x2∈D,且 x1<x 2 时,都有 f(x1)<(或 >)f(x2),则称 f(x)在区间 D 上为增函数(或减函数).其等价说 fx1-fx2 法有:对任意 x1,x2∈D 时,都有 >(或<)0 或(x1- x1-x2 x2)(f(x1)-f(x2))>(或<)0,则称 f(x)在区间 D 上为增函数(或减 函数).当函数有几个增区间时,在写函数单调区间时,这些 区间一般不能取并集. 2.奇偶性是函数的整体性质,判断奇偶性务必先判断定 义域是否关于原点对称,若奇函数的定义域中有 0,则必有 f(0)=0,而此时 f(0)=0 是 f(x)为奇函数的必要非充分条件.
高考数学二轮复习(考点梳理+热点突破)第二讲 函数、基本初等函数的图象与性质课件
栏 目 链 接
第十九页,共43页。
Z主 干考点
(kǎo
diǎn) 梳理
解析 对A,没有幂函数的图象;对B,f(x)=xa(x>0)中a
>1,g(x)=logax中0<a<1,不符合(fúhé)题意;对C,f(x)
=xa(x>0)中0<a<1,g(x)=logax中a>1,不符合(fúhé)题
栏 目
随堂讲义·第一部分 知识复习专题 专题一 集合、常用逻辑(luójí)用语、函数与导
数 第二讲 函数、基本初等函数的图象与性质
第一页,共43页。
高考预测 函数的图象与性质历来是高考的重点,也是热点,一般以选 择题或填空题的形式考查.对于函数图象的考查体现在两个(liǎnɡ ɡè)方面:一是识图;二是用图,即通过函数的图象,通过数形结 合的思想方法解决问题,对于函数的性质,主要考查函数单调性 、奇偶性、周期性,也可能考查求函数的定义域和简单函数的值
0<a<1 时,在(0,+∞)
上是⑩_减__函__数_
a○ 1>2_增_1_时函__,_数在(0,+∞)上是
栏 目
0<a<1,
当 x>1 时,○ 15_y_<__0__;
链 接
当 0<x<1 时,○ 16_y_>__0
a>1,
当 x>1 时,○ 19_y_>__0__; 当 0<x<1 时,○ 20_y_<__0
第十七页,共43页。
Z主 干考点
(kǎo
diǎn) 梳理
3.函数 y=f(x)(x∈R)的图象如下图所示,下列说法 正确的是( C )
栏
目
①函数 y=f(x)满足 f(-x)=-f(x);
链 接
②函数 y=f(x)满足 f(x+2)=f(-x);
高中数学二轮讲义:专题1 第2讲 基本初等函数、函数与方程(教师版)
专题一第2讲基本初等函数、函数与方程【要点提炼】考点一基本初等函数的图象与性质1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y =x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【热点突破】【典例】1 (1)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( )A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值【答案】 C【解析】画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A,B之间,|f(x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图象是图中的实线部分,因此h(x)有最小值-1,无最大值.(2)已知函数f(x)=e x+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,1e B .(-∞,e)C.⎝ ⎛⎭⎪⎫-1e ,eD.⎝⎛⎭⎪⎫-e ,1e 【答案】 B【解析】 由题意知,方程f(-x)-g(x)=0在(0,+∞)上有解, 即e -x+2-ln(x +a)-2=0在(0,+∞)上有解,即函数y =e -x与y =ln(x +a)的图象在(0,+∞)上有交点. 函数y =ln(x +a)可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a<0时,向右平移,两函数总有交点,当a>0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y =ln(x +a),得1=ln a ,即a =e ,∴a<e.【方法总结】 (1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化. 【拓展训练】1 (1)函数f(x)=ln(x 2+2)-ex -1的大致图象可能是( )【答案】 A【解析】 当x →+∞时,f(x)→-∞,故排除D ;函数f(x)的定义域为R ,且在R 上连续,故排除B ;f(0)=ln 2-e -1,由于ln 2>ln e =12,e -1<12,所以f(0)=ln 2-e -1>0,故排除C.(2)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是( ) A .(-∞,-1) B .(-∞,-1] C .(1,+∞) D .[1,+∞)【答案】 A【解析】 当x>0时,f(x)=1-2-x>0. 又f(x)是定义在R 上的奇函数,所以f(x)<-12的解集和f(x)>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1,即x>1,则f(x)<-12的解集是(-∞,-1).故选A.【要点提炼】考点二 函数的零点 判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1 函数零点的判断【典例】2 (1)(2020·长沙调研)已知函数f(x)=⎩⎪⎨⎪⎧xe x,x ≤0,2-|x -1|,x>0,若函数g(x)=f(x)-m 有两个不同的零点x 1,x 2,则x 1+x 2等于( )A .2B .2或2+1eC .2或3D .2或3或2+1e【答案】 D【解析】 当x ≤0时, f ′(x)=(x +1)e x, 当x<-1时,f ′(x)<0,故f(x)在(-∞,-1)上单调递减, 当-1<x ≤0时,f ′(x)>0, 故f(x)在(-1,0]上单调递增,所以x ≤0时,f(x)的最小值为f(-1)=-1e.又当x ≥1时,f(x)=3-x ,当0<x<1时,f(x)=x +1.作出f(x)的图象,如图所示.因为g(x)=f(x)-m 有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y =m 与f(x)的图象有两个不同的交点,且交点的横坐标分别为x 1,x 2,由图可知1<m<2或m =0或m =-1e .若1<m<2,则x 1+x 2=2; 若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e.(2)设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(2-x),当x ∈[-2,0]时,f(x)=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程f(x)-log 8(x +2)=0在区间(-2,6)上根的个数为( )A .1B .2C .3D .4 【答案】 C【解析】 对于任意的x ∈R ,都有f(2+x)=f(2-x), ∴f(x +4)=f[2+(x +2)]=f[2-(x +2)]=f(-x)=f(x), ∴函数f(x)是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f(x)=⎝⎛⎭⎪⎫22x-1,且函数f(x)是定义在R 上的偶函数, 且f(6)=1,则函数y =f(x)与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f(x)与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f(x)-log 8(x +2)=0在区间(-2,6)上有3个根.【特点突破】考向2 求参数的值或取值范围 【典例】3 (1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________. 【答案】 [-3,0) 【解析】 设t =3-|x -2|(0<t ≤1),由题意知a =t 2-4t 在(0,1]上有解,又t 2-4t =(t -2)2-4(0<t ≤1), ∴-3≤t 2-4t<0,∴实数a 的取值范围是[-3,0).(2)已知函数f(x)=⎩⎪⎨⎪⎧x +3,x>a ,x 2+6x +3,x ≤a ,若函数g(x)=f(x)-2x 恰有2个不同的零点,则实数a 的取值范围为____________________. 【答案】 [-3,-1)∪[3,+∞)【解析】 由题意得g(x)=⎩⎪⎨⎪⎧x +3-2x ,x>a ,x 2+6x +3-2x ,x ≤a ,即g(x)=⎩⎪⎨⎪⎧3-x ,x>a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点, 即g(x)的图象与x 轴有两个交点.若当x ≤a 时,g(x)=x 2+4x +3有两个零点, 则令x 2+4x +3=0,解得x =-3或x =-1, 则当x>a 时,g(x)=3-x 没有零点,所以a ≥3. 若当x ≤a 时,g(x)=x 2+4x +3有一个零点, 则当x>a 时,g(x)=3-x 必有一个零点, 即-3≤a<-1,综上所述,a ∈[-3,-1)∪[3,+∞).【方法总结】 利用函数零点的情况求参数值(或取值范围)的三种方法【拓展训练】2 (1)已知偶函数y =f(x)(x ∈R )满足f(x)=x 2-3x(x ≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x>0,-1x,x<0,则y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4 【答案】 B【解析】 作出函数f(x)与g(x)的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f(x)-g(x)有3个零点.(2)(多选)已知函数f(x)=⎩⎪⎨⎪⎧x +2a ,x<0,x 2-ax ,x ≥0,若关于x 的方程f(f(x))=0有8个不同的实根,则a 的值可能为( ) A .-6 B .8 C .9 D .12 【答案】 CD【解析】 当a ≤0时,f(x)仅有一个零点x =0,故f(f(x))=0有8个不同的实根不可能成立.当a>0时,f(x)的图象如图所示,当f(f(x))=0时,f 1(x)=-2a ,f 2(x)=0,f 3(x)=a.又f(f(x))=0有8个不同的实根,故f 1(x)=-2a 有三个根,f 2(x)=0有三个根,f 3(x)=a 有两个根,又x 2-ax =⎝ ⎛⎭⎪⎫x -a 22-a24,所以-2a>-a24且a<2a ,解得a>8且a>0,综上可知,a>8. 专题训练一、单项选择题1.(2020·全国Ⅰ)设alog 34=2,则4-a等于( ) A.116 B.19 C.18 D.16 【答案】 B【解析】 方法一 因为alog 34=2, 所以log 34a=2, 所以4a=32=9, 所以4-a=14a =19.方法二 因为alog 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4log 94-=14log 94-=9-1=19.2.函数f(x)=ln x +2x -6的零点一定位于区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 【答案】 B【解析】 函数f(x)=ln x +2x -6在其定义域上连续且单调, f(2)=ln 2+2×2-6=ln 2-2<0, f(3)=ln 3+2×3-6=ln 3>0,故函数f(x)=ln x +2x -6的零点在区间(2,3)上.3.在同一直角坐标系中,函数f(x)=2-ax 和g(x)=log a (x +2)(a>0且a ≠1)的大致图象可能为( )【答案】 A【解析】 由题意知,当a>0时,函数f(x)=2-ax 为减函数.若0<a<1,则函数f(x)=2-ax 的零点x 0=2a ∈(2,+∞),且函数g(x)=log a (x +2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax 的零点x 0=2a ∈(0,2),且函数g(x)=log a (x +2)在(-2,+∞)上为增函数.故A 正确.4.(2020·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a【答案】 B【解析】 4a =6>4,a>1,b =12log 4=-2,c 3=35<1,0<c<1,故a>c>b.5.(2020·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病典例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e-0.23t -53,其中K 为最大确诊病典例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66 D .69 【答案】 C【解析】 因为I(t)=K1+e-0.23t -53,所以当I(t *)=0.95K 时,*0.23531et K ⎛⎫-- ⎪⎝⎭+=0.95K ,即*0.235311et ⎛⎫-- ⎪⎝⎭+=0.95,即1+*0.2353et ⎛⎫-- ⎪⎝⎭=10.95, 即*0.2353et ⎛⎫-- ⎪⎝⎭=10.95-1, ∴*0.2353et ⎛⎫- ⎪⎝⎭=19,∴0.23(t *-53)=ln 19, ∴t *=ln 190.23+53≈30.23+53≈66.6.(2020·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( )A .1<a<2B .0<a<2,a ≠1C .0<a<1D .a ≥2【答案】 A【解析】 令u(x)=x 2-ax +1,函数y =log a (x 2-ax +1)有最小值,∴a>1,且u(x)min >0,∴Δ=a 2-4<0,∴1<a<2,∴a 的取值范围是1<a<2.7.(2020·太原质检)已知函数f(x)=⎩⎪⎨⎪⎧e x,x>0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g(x)=f(x)+kx 恰好有两个零点,则实数k 等于( ) A .-2e B .e C .-e D .2e 【答案】 C【解析】 g(x)=f(x)+kx =0,即f(x)=-kx ,如图所示,画出函数y =f(x)和y =-kx 的图象,-2x 2+4x +1=-kx ,即2x 2-(4+k)x -1=0, 设方程的两根为x 1,x 2,则Δ=(4+k)2+8>0,且x 1x 2=-12,故g(x)在x<0时有且仅有一个零点, y =-kx 与y =f(x)在x>0时相切.当x>0时,设切点为(x 0,-kx 0),f(x)=e x, f ′(x)=e x,f ′(x 0)=0e x =-k ,0e x =-kx 0,解得x 0=1,k =-e.8.已知函数f(x)=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x|+1,x ≠0,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的解,则a 的取值范围是( )A .(1,2)B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 【答案】 D【解析】 作出f(x)=⎝ ⎛⎭⎪⎫1e |x|+1,x ≠0的图象如图所示.设t =f(x),则原方程化为2t 2-(2a +3)t +3a =0, 解得t 1=a ,t 2=32.由图象可知,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f(x)的图象有三个不同的交点时才满足条件, 所以1<a<2.又方程2t 2-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2-4×2×3a =(2a -3)2>0, 解得a ≠32,综上,得1<a<2,且a ≠32.二、多项选择题9.(2020·临沂模拟)若10a=4,10b=25,则( ) A .a +b =2 B .b -a =1 C .ab>8lg 22 D .b -a>lg 6【答案】 ACD【解析】 由10a=4,10b=25,得a =lg 4,b =lg 25,则a +b =lg 4+lg 25=lg 100=2,故A 正确;b -a =lg 25-lg 4=lg 254>lg 6且lg 254<1,故B 错误,D 正确;ab =lg 4·lg25=4lg 2·lg 5>4lg 2·lg 4=8lg 22,故C 正确.10.已知函数f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,则( ) A .函数f(x)+g(x)的定义域为(-1,1) B .函数f(x)+g(x)的图象关于y 轴对称 C .函数f(x)+g(x)在定义域上有最小值0 D .函数f(x)-g(x)在区间(0,1)上是减函数 【答案】 AB【解析】 ∵f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,∴f(x)+g(x)=log a (x +1)+log a (1-x),由x +1>0且1-x>0得-1<x<1,故A 对;由f(-x)+g(-x)=log a (-x +1)+log a (1+x)=f(x)+g(x),得函数f(x)+g(x)是偶函数,其图象关于y 轴对称,B 对;∵-1<x<1,∴f(x)+g(x)=log a (1-x 2),∵y =1-x 2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a (1-0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C 错;∵f(x)-g(x)=log a (x +1)-log a (1-x),当0<a<1时,f(x)=log a (x +1)在(0,1)上单调递减,g(x)=log a (1-x)在(0,1)上单调递增,函数f(x)-g(x)在(0,1)上单调递减;当a>1时,f(x)=log a (x +1)在(0,1)上单调递增,g(x)=log a (1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D 错.11.(2020·淄博模拟)已知函数y =f(x)是R 上的奇函数,对于任意x ∈R ,都有f(x +4)=f(x)+f(2)成立.当x ∈[0,2)时,f(x)=2x-1.给出下列结论,其中正确的是( ) A .f(2)=0B .点(4,0)是函数y =f(x)图象的一个对称中心C .函数y =f(x)在区间[-6,-2]上单调递增D .函数y =f(x)在区间[-6,6]上有3个零点 【答案】 AB【解析】 对于A ,因为f(x)为奇函数且对任意x ∈R ,都有f(x +4)=f(x)+f(2),令x =-2,则f(2)=f(-2)+f(2)=0,故A 正确;对于B ,由A 知,f(2)=0,则f(x +4)=f(x),则4为f(x)的一个周期,因为f(x)的图象关于原点(0,0)成中心对称,则(4,0)是函数f(x)图象的一个对称中心,故B 正确;对于C ,因为f(-6)=0,f(-5)=f(-5+4)=f(-1)=-f(1)=-1,-6<-5,而f(-6)>f(-5),所以f(x)在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f(0)=0,f(2)=0,所以f(-2)=0,又4为f(x)的一个周期,所以f(4)=0,f(6)=0,f(-4)=0,f(-6)=0,所以函数y =f(x)在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f(x)=⎩⎪⎨⎪⎧sin πx ,x ∈[0,2],12f x -2,x ∈2,+∞,则下列结论正确的是( )A .任取x 1,x 2∈[2,+∞),都有|f(x 1)-f(x 2)|≤1B .函数y =f(x)在[4,5]上单调递增C .函数y =f(x)-ln(x -1)有3个零点D .若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132【答案】 ACD【解析】 f(x)=⎩⎪⎨⎪⎧sin πx ,x ∈[0,2],12f x -2,x ∈2,+∞的图象如图所示,当x ∈[2,+∞)时,f(x)的最大值为12,最小值为-12,∴任取x 1,x 2∈[2,+∞ ),都有|f(x 1)-f(x 2)|≤ 1恒成立,故A 正确;函数y =f(x)在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f(x)在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f(x)的图象有3个交点,∴函数y =f(x)-ln(x -1)有3个零点,故C 正确;若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1<x 2<x 3,则x 1+x 2=3,x 3=72,∴x 1+x 2+x 3=132,故D 正确.三、填空题13.(2019·全国Ⅱ)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a =________. 【答案】 -3【解析】 当x>0时,-x<0,f(-x)=-e -ax.因为函数f(x)为奇函数,所以当x>0时,f(x)=-f(-x)=e-ax,所以f(ln 2)=e-aln 2=⎝ ⎛⎭⎪⎫12a=8,所以a =-3. 14.已知函数f(x)=|lg x|,若f(a)=f(b)(a ≠b),则函数g(x)=⎩⎪⎨⎪⎧x 2+22x +5,x ≤0,ax 2+2bx,x>0的最小值为________.【答案】 2 2【解析】 因为|lg a|=|lg b|,所以不妨令a<b , 则有-lg a =lg b ,所以ab =1,b =1a(0<a<1),所以g(x)=⎩⎪⎨⎪⎧x +22+3,x ≤0,ax +2ax ,x>0,当x ≤0时,g(x)=(x +2)2+3≥3,取等号时x =-2; 当x>0时,g(x)=ax +2ax≥2ax ·2ax=22,当且仅当x =2a时,等号成立, 综上可知,g(x)min =2 2.15.定义在R 上的奇函数f(x),当x ≥0时,f(x)=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1,1-|x -3|,x ∈[1,+∞,则函数F(x)=f(x)-1π的所有零点之和为________.【答案】11-2π【解析】 由题意知,当x<0时, f(x)=⎩⎪⎨⎪⎧-2x 1-x ,x ∈-1,0,|x +3|-1,x ∈-∞,-1],作出函数f(x)的图象如图所示,设函数y =f(x)的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F(x)=f(x)-1π的所有零点之和为11-2π.16.对于函数f(x)与g(x),若存在λ∈{x ∈R |f(x)=0},μ∈{x ∈R |g(x)=0},使得|λ-μ|≤1,则称函数f(x)与g(x)互为“零点密切函数”,现已知函数f(x)=ex -2+x -3与g(x)=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 【答案】 [3,4]【解析】 由题意知,函数f(x)的零点为x =2, 设g(x)的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3. 方法一 因为函数g(x)的图象开口向上, 所以要使g(x)的至少一个零点落在区间[1,3]上,则需满足g(1)g(3)≤0,或⎩⎪⎨⎪⎧g 1>0,g 3>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a<103,得3≤a ≤4.故实数a 的取值范围为[3,4].方法二 因为g(μ)=μ2-a μ-μ+4=0, a =μ2-μ+4μ=μ+4μ-1,因为1≤μ≤3,所以3≤a ≤4. 故实数a 的取值范围为[3,4].。
2011年高考数学难点、重点突破精讲精练专题五-函数的概念及其性质(教师版)
专题05函数的概念及其性质【名师导航】函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的定义域、解析式、值域是高考考查重点,函数性质的综合考查在历年考试中久考不衰,应重点研究。
1、映射与函数:以考查概念与运算为主,部分涉及新定义运算;2、定义域、值域、解析式是考查的重点,而且比较稳定,有时结合其它知识点(一本部分内容为背景),分段函数较多、花样翻新;3、函数的单调性在历年考试中久考不衰,且比例有上升趋势,和导函数联系较多;4、函数的周期性在试题中往往不是直接给出的,考生要善于通过其他函数性质进行推理,将问题转化为较为明显的周期函数,再根据函数的周期性分析解决问题。
5、函数的奇偶性主要和单调性、不等式、最值、三角函数等综合,与周期性、对称性、抽象函数等问题联系较多。
【考纲知识梳理】 一、函数与映射的概念注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。
二、函数的其他有关概念 (1)函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域(2)一个函数的构成要素 定义域、值域和对应关系 (3)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。
注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y=x 和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx 与y=cosx ,其定义域为R ,值域都为[-1,1],显然不是相等函数。
因此凑数两个函数是否相等,关键是看定义域和对应关系) (4)函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。
(5)分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。
高考数学二轮复习第二部分突破热点分层教学专题一第讲基本初等函数函数与方程及函数的应用学案
第2讲 基本初等函数、函数与方程及函数的应用基本初等函数的图象与性质(综合型)指数与对数式的8个运算公式 (1)a m·a n=am +n.(2)(a m )n =a mn .(3)(ab )m =a m b m.(4)log a (MN )=log a M +log a N .(5)log a MN=log a M -log a N .(6)log a M n=n log a M .(7)alog aN=N .(8)log a N =log b Nlog b a.[注意] (1)(2)(3)中,a >0,b >0;(4)(5)(6)(7)(8)中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.[典型例题](1)(2018·高考天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(2)函数y =1x+ln|x |的图象大致为()【解析】 (1)因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e>1,所以c >a >b ,故选D.(2)当x <0时,y =1x +ln(-x ),由函数y =1x ,y =ln(-x )单调递减,知函数y =1x+ln(-x )单调递减,排除C ,D ;当x >0时,y =1x +ln x ,此时f (1)=11+ln 1=1,而选项A 中函数的最小值为2,故排除A ,只有B 正确.故选B.【答案】 (1)D(2)B基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a >1和0<a <1两种情况讨论:当a >1时,两函数在定义域内都为增函数;当0<a <1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y =x α的性质要注意α>0和α<0两种情况的不同.[对点训练]1.(2018·武汉模拟)已知定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C.函数f (x )=2|x -m |-1为偶函数,则m =0,则f (x )=2|x |-1,a =f (log 0.53)=2log 23-1=2,b =f (log 25)=2log 25-1=4,c =f (0)=20-1=0.故c <a <b ,选C.2.已知a 是大于0的常数,把函数y =a x和y =1ax+x 的图象画在同一平面直角坐标系中,不可能出现的是( )解析:选D.因为a >0,所以y =1ax +x 是对勾函数,若0<a ≤1,则当x >0时,y =1ax+x 的值大于等于2,函数y =a x 和y =1ax+x 的图象不可能有两个交点,故选D.函数的零点(综合型)函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典型例题]命题角度一 确定函数零点的个数或其存在情况(1)已知实数a >1,0<b <1,则函数f (x )=a x+x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)(2)设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos πx |-f (x )在区间⎣⎢⎡⎦⎥⎤-12,32上零点的个数为( )A .3B .4C .5D .6【解析】 (1)因为a >1,0<b <1,f (x )=a x+x -b , 所以f (-1)=1a-1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点. (2)由f (-x )=f (x ),得f (x )的图象关于y 轴对称.由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称.当x ∈[0,1]时,f (x )=x 3,所以f (x )在[-1,2]上的图象如图.令g (x )=|cos πx |-f (x )=0,得|cos πx |=f (x ),两函数y =f (x )与y =|cos πx |的图象在⎣⎢⎡⎦⎥⎤-12,32上的交点有5个.【答案】 (1)B (2)C判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)利用零点存在性定理:利用该定理还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:对于给定的函数不能直接求解或画出图形时,常会通过分解转化为两个能画出的函数图象交点问题.命题角度二 已知函数零点的个数或存在情况求参数的取值范围(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x, x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【解析】 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x-a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.【答案】 C利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.[对点训练]1.(2018·洛阳第一次统考)已知函数f (x )满足f (1-x )=f (1+x )=f (x -1)(x ∈R ),且当0≤x ≤1时,f (x )=2x-1,则方程|cos πx |-f (x )=0在[-1,3]上的所有根的和为( )A .8B .9C .10D .11解析:选D.方程|cos πx |-f (x )=0在[-1,3]上的所有根的和即y =|cos πx |与y =f (x )在[-1,3]上的图象交点的横坐标的和.由f (1-x )=f (1+x )得f (x )的图象关于直线x =1对称,由f (1-x )=f (x -1)得f (x )的图象关于y 轴对称,由f (1+x )=f (x -1)得f (x )的一个周期为2,而当0≤x ≤1时,f (x )=2x-1,在同一坐标系中作出y =f (x )和y =|cos πx |在[-1,3]上的大致图象,如图所示,易知两图象在[-1,3]上共有11个交点,又y =f (x ),y =|cos πx |的图象都关于直线x =1对称,故这11个交点也关于直线x =1对称,故所有根的和为11.故选D.2.已知函数f (x )=exx-kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是________.解析:由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e xx -kx =0只有一个根,即方程exx2=k 只有一个根,设g (x )=e x x 2,则函数g (x )=exx2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)exx3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值g (2)=e24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e24.答案:⎝ ⎛⎭⎪⎫0,e 24函数的实际应用(综合型)[典型例题]某食品的保鲜时间y (单位:h)与储存温度x (单位:℃)满足的函数关系式为y=ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是________ h.【解析】 由已知,得e b =192,e 22k +b=48,两式相除得e 22k =14,所以e 11k=12,所以e33k +b=(e 11k )3e b=18×192=24,即该食品在33 ℃的保鲜时间是24 h.【答案】 24应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[对点训练]1.某公司为激励创新,计划逐年加大研发资金投入.若该公司2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2021年B .2022年C .2023年D .2024年解析:选B.根据题意,知每年投入的研发资金增长的百分率相同,所以,从2018年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2022年投入的研发资金开始超过200万元,故选B.2.某工厂某种产品的年固定成本为250万元,每生产x 千件该产品需另投入的成本为G (x )(单位:万元),当年产量不足80千件时,G (x )=13x 2+10x ;当年产量不小于80千件时,G (x )=51x +10 000x-1 450.已知每件产品的售价为0.05万元.通过市场分析,该工厂生产的产品能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是________万元.解析:因为每件产品的售价为0.05万元,所以x 千件产品的销售额为0.05×1 000x =50x 万元.①当0<x <80时,年利润L (x )=50x -13x 2-10x -250=-13x 2+40x -250=-13(x -60)2+950,所以当x =60时,L (x )取得最大值,且最大值为L (60)=950万元;②当x ≥80时,L (x )=50x -51x -10 000x+1 450-250=1 200-⎝⎛⎭⎪⎫x +10 000x≤1 200-2x ·10 000x =1 200-200=1 000,当且仅当x =10 000x,即x =100时,L (x )取得最大值1 000万元.由于950<1 000,所以当产量为100千件时,该工厂在这一产品的生产中所获年利润最大,最大年利润为1 000万元.答案:1 000一、选择题 1.函数y =1log 0.5(4x -3)的定义域为( )A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞)D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞)解析:选A.要使函数有意义需满足⎩⎪⎨⎪⎧4x -3>0,log 0.5(4x -3)>0,解得34<x <1.2.已知函数f (x )=(m 2-m -5)x m是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( )A .-2B .4C .3D .-2或3解析:选C.f (x )=(m 2-m -5)x m是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3.3.若a =log 1π13,b =e π3,c =log 3cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:选B.因为0<1π<13<1,所以1=log 1π1π>log 1π13>0,所以0<a <1,因为b =e π3>e=1,所以b >1.因为0<cos π5<1,所以log 3cos π5<log 31=0,所以c <0.故b >a >c ,选B.4.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C.令2ex -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).5.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是()解析:选A.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.6.(2018·贵阳模拟)20世纪30年代,为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.已知5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震的最大振幅的( )A .10倍B .20倍C .50倍D .100倍解析:选D.根据题意有lg A =lg A 0+lg 10M=lg (A 0·10M).所以A =A 0·10M,则A 0×107A 0×105=100.故选D.7.函数y =x 2ln |x ||x |的图象大致是( )解析:选D.易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D. 8.设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D.设2x=3y=5z=k (k >1), 则x =log 2k ,y =log 3k ,z =log 5k ,所以2x 3y =2log 2k 3log 3k =2lg k lg 2·lg 33lg k =2lg 33lg 2=lg 9lg 8>1,即2x >3y .①2x 5z =2log 2k 5log 5k =2lg k lg 2·lg 55lg k =2lg 55lg 2=lg 25lg 32<1,所以2x <5z .② 由①②得3y <2x <5z .9.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:选B.由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b=log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +bab<1.又a >0,b <0,所以ab<0,所以ab <a +b <0.10.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x(e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C.当x >0时,f (x )=ln x -x +1,f ′(x )=1x-1=1-xx,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max=f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =ex的大致图象如图所示,观察到函数y =f (x )与y =e x的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.11.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)解析:选C.因为函数f (x )是定义在R 上的奇函数,所以f (ln x )-f ⎝⎛⎭⎪⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ),所以⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增,所以-1<ln x <1,解得1e<x <e. 12.(2018·沈阳教学质量监测)设函数f (x )是定义在R 上的偶函数,且f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,若关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)在区间(-2,6)内有且只有4个不同的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫14,1 B .(1,4) C .(1,8) D .(8,+∞)解析:选D.因为f (x )为偶函数,且f (2+x )=f (2-x ),所以f (4+x )=f (-x )=f (x ), 所以f (x )为偶函数且周期为4,又当-2≤x ≤0时,f (x )=⎝ ⎛⎭⎪⎫22x-1, 画出f (x )在(-2,6)上的大致图象,如图所示.若f (x )-log a (x +2)=0(a >0且a ≠1)在(-2,6)内有4个不同的实根,则y =f (x )的图象与y =log a (x +2)的图象在(-2,6)内有4个不同的交点.所以⎩⎪⎨⎪⎧a >1,log a (6+2)<1,所以a >8,故选D. 二、填空题13.计算:2log 410-12log 225+823-(π-3)0=________. 解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x ;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2018·高考全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1, f (a )=4,则f (-a )=________.解析:由f (a )=ln(1+a 2-a )+1=4,得ln(1+a 2-a )=3,所以f (-a )=ln(1+a 2+a )+1=-ln11+a 2+a +1=-ln(1+a 2-a )+1=-3+1=-2. 答案:-216.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间的变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已过了保鲜时间.其中,所有正确结论的序号是________.解析:因为某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,所以24k +6=16,即4k +6=4,解得k =-12,所以t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0.①当x =6时,t =8,故①正确;②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414小时,到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确. 所以正确结论的序号为①④.答案:①④。
2011届高考数学二轮复习课件:函数、基本初等函数的图象与性质
利用数形结合,-3,2 是方程 ax2+(b-8)x
-a-ab=0 的两根,求出 a,b 的值,得 f(x)的解析式, 进而确定 f(x)在[0,1]内的值域,然后利用函数 g(x)=ax2 +bx+c 的性质,确定 c.
=-3 解 由题意得 x=- 和 x=2 是函数 f(x)的零点且 a≠0,则 =- = 的零点且 ≠ ,
4.函数单调性的判定方法 . (1)定义法:取值,作差,变形,定号,作答. 定义法:取值,作差,变形,定号 ,作答. 定义法 其中变形是关键,常用的方法有:通分、配方、因式分解. 其中变形是关键,常用的方法有:通分、配方、因式分解. (2)导数法. 导数法. 导数法 (3)复合函数的单调性遵循“同增异减”的原则. 复合函数的单调性遵循“同增异减 ”的原则. 复合函数的单调性遵循 5.函数奇偶性的判定方法 . (1)定义域关于原点对称是函数具有奇偶性的必要条件. 定义域关于原点对称是函数具有奇偶性的必要条件. 定义域关于原点对称是函数具有奇偶性的必要条件 (2)对于定义域内的任意一个 , 对于定义域内的任意一个x, 对于定义域内的任意一个 若都有f(- = 为偶函数. 若都有 - x)=f(x),则f(x)为偶函数. , 为偶函数 若都有f(- =- =-f(x), 为奇函数. 若都有 - x)=- ,则 f(x)为奇函数. 为奇函数 若都有f(- - 为偶函数. 若都有 - x)-f(x)=0,则 f(x)为偶函数. = , 为偶函数 若都有f(- + 为奇函数. 若都有 - x)+f(x)=0,则 f(x)为奇函数. = , 为奇函数
变式训练1 ,+∞ 变式训练 设f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x) = + , ∈ - ,+ 时 恒成立, 的取值范围. ≥ a恒成立,求 a的取值范围. 恒成立 的取值范围
函数专题突破讲义精简版
函数专题突破2 2.1函数概念与表示题型1:函数概念例1.(1)设函数).89(,)100()]5([)100(3)(f x x f f x x x f 求⎩⎨⎧<+≥-=(2)请设计一个同时满足下列两个条件的函数y = f (x ):①图象关于y 轴对称;②对定义域内任意不同两点12x x 、, 都有1212()()2()2x x f x f x f ++<答: .变式题:(2007山东 文2)设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A .0 B .1 C .2 D .3例2.(2007安徽 文理15) (1)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-()()5f f =__________; 题型二:判断两个函数是否相同题型三:函数定义域问题例4.求下述函数的定义域:(1)02)23()12lg(2)(x x x x x f -+--=; (2)).lg()lg()(22a x ka x x f -+-=例5.已知函数()f x 定义域为(0,2),求函数的定义域: g(x)=2()23f x +. 变式题:已知函数f (x )=31323-+-ax ax x 的定义域是R ,则实数a 的取值范围是( )A .a >31 B .-12<a ≤0C .-12<a <0D .a ≤31题型四:函数值域问题例5.求下列函数的值域:(补充题另附)(1)232y x x =-+;(2)265y x x =---;(3)312x y x +=-; (4)41y x x =+-;(5)21y x x =+-;(6)|1||4|y x x =-++;(7)22221x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x y x -=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 函数、基本初等函数的图象与性质一、选择题1.(2010·陕西)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45C .2D .9 解析:f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1.∵0<1,∴f (0)=20+1=2.∵f (0)=2≥1,∴ f (f (0))=22+2a =4a , ∴a =2,故选C. 答案:C2.(2010·山东)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数), 则f (-1)= ( ) A .3 B .1 C .-1 D .-3解析:因为f (x )为定义在R 上的奇函数,所以f (0)=0,可求得b =-1,f (-1)=-f (1) =-(21+2+b )=-3.故选D. 答案:D3.(2010·安徽)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是 ( )解析:A 项,由图象开口向下知a <0,由对称轴位置知-b2a <0,∴b <0.又∵abc >0,∴c >0.而由图知f (0)=c <0;B 项,由图知a <0,-b2a >0,∴b >0.又∵abc >0,∴c <0,而由图知f (0)=c >0; C 项,由图知a >0,-b2a <0,∴b >0.又∵abc >0,∴c >0,而由图知f (0)=c <0;D 项,由图知a >0,-b2a >0,∴b <0.又∵abc >0,∴c <0,由图知f (0)=c <0.D 正确.答案:D4.(2010·全国Ⅰ)已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( )A .(22,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)解析:f (x )=|lg x |的图象如图所示,由图知f (a )=f (b ),则有0<a <1<b ,∴f (a )=|lg a | =-lg a ,f (b )=|lg b |=lg b ,即-lg a =lg b ,得a =1b ,∴a +2b =2b +1b.令g (b )=2b +1b ,g ′(b )=2-1b 2,显然b ∈(1,+∞)时,g ′(b )>0,∴g (b )在(1,+∞)上为增函数,得g (b )=2b +1b >3,故选C.答案:C5.(2009·山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是 增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 解析:∵f (x -4)=-f (x ),∴f (x -8)=f [(x -4)-4]=-f (x -4)=-[-f (x )]=f (x ), ∴f (x )是以8为周期的周期函数. f (80)=f (8×10)=f (0), f (11)=f (3+8)=f (3)=-f (3-4) =-f (-1)=-[-f (1)]=f (1),f (-25)=f [8×(-3)-1]=f (-1)=-f (1). ∵f (x )在区间[0,2]上递增,∴f (0)<f (1).又∵f (x )为奇函数,∴f (0)=0,∴f (1)>0,∴-f (1)<0, ∴-f (1)<f (0)<f (1),f (-25)<f (80)<f (11). 答案:D 二、填空题6.已知函数f (x )=x 2-cos x ,对于⎣⎡⎦⎤-π2,π2上的任意x 1,x 2,有如下条件:①x 1>x 2; ②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,要使f (x 1)>f (x 2)恒成立,即f (|x 1|)>f (|x 2|)恒成立.∵f (x )在⎣⎡⎦⎤0,π2 上是增函数,∴|x 1|>|x 2|,即②成立,①③不成立. 答案:②7.已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (1.5)=________.解析:∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x )∴T =4,∴f (1.5)=f (1.5-4)=f (-2.5)=f (2.5)=2.5. 答案:2.58.(2010·全国Ⅰ)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是 ________.解:y =x 2-|x |+a 是偶函数,图象如图所示.由图可知y =1与y =x 2-|x |+a 有四个交点, 需满足a -14<1<a ,∴1<a <54.答案:1<a <549.(2010·重庆)已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 010)=________.解析:解法一:∵当x =1,y =0时,f (0)=12;当x =1,y =1时,f (2)=-14;当x=2,y =1时,f (3)=-12;当x =2,y =2时,f (4)=-14;当x =3,y =2时,f (5)=14;当x =3,y =3时,f (6)=12;当x =4,y =3时,f (7)=14;当x =4,y =4时,f (8)=-14;… ∴f (x )是以6为周期的函数, ∴f (2 010)=f (0+335×6)=f (0)=12.解法二:∵f (1)=14,4f (x )·f (y )=f (x +y )+f (x -y )∴构造符合题意的函数f (x )=12cos π3x ,∴f (2 010)=12cos ⎝⎛⎭⎫π3×2 010=12. 答案:12三、解答题10.在直角坐标平面中,已知点P 1(1,2),P 2(2,22),对平面上任一点A 0,记A 1为A 0关于点P 1的对称点,A 2为A 1关于点P 2的对称点. (1)求向量A 0 A 2→的坐标;(2)当点A 0在曲线C 上移动时,点A 2的轨迹是函数y =f (x )的图象,其中f (x )是以3 为周期的周期函数,且当x ∈(0,3]时,f (x )=lg x .求以曲线C 为图象的函数在(1,4] 上的解析式. 解:(1)设A 0(x ,y ),根据已知条件A 1(2-x,4-y ),A 2(2+x,4+y ), ∴A 0 A 2→=(2,4).(2)∵f (x )为以3为周期的周期函数,且f (x )=lg x ,x ∈(0,3] 当x ∈(3,6]时,x -3∈(0,3]. f (x )=f (x -3)=lg (x -3),由(1)知⎩⎪⎨⎪⎧x 2=2+x ,y 2=4+y .当1<x ≤4时,3<x 2≤6,由y 2=lg(x 2-3)得4+y =lg (x -1), 即y =lg(x -1)-4,(1<x ≤4).11.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f (x ) (x >0),-f (x ) (x <0).若f (-1)=0,且对任意实数x 均有f (x )≥0成立. (1)求F (x )的表达式;(2)当x ∈[-2,2]时, g (x )=f (x )-kx 是单调函数,求k 的取值范围. 解:(1)∵f (-1)=0,∴a -b +1=0,∴b =a +1, ∴f (x )=ax 2+(a +1)x +1. ∵f (x )≥0恒成立,∴⎩⎪⎨⎪⎧ a >0,Δ=(a +1)2-4a ≤0,∴⎩⎪⎨⎪⎧a >0(a -1)2≤0. ∴a =1,从而b =2,∴f (x )=x 2+2x +1∴F (x )=⎩⎪⎨⎪⎧x 2+2x +1 (x >0),-x 2-2x -1 (x <0).(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. ∵g (x )在[-2,2]上是单调函数, ∴k -22≤-2或k -22≥2,解得k ≤-2或k ≥6. 所以所求k 的取值范围为k ≤-2或k ≥6.12.(2009·江苏镇江)已知f (x )是定义在区间[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时,有f (m )+f (n )m +n >0.(1)解不等式f ⎝⎛⎭⎫x +12<f (1-x ); (2)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. 解:(1)任取x 1、x 2∈[-1,1],且x 2>x 1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2)+f (-x 1)x 2+(-x 1)·(x 2-x 1)>0,∴f (x 2)>f (x 1),∴f (x )是增函数. f ⎝⎛⎭⎫x +12<f (1-x )⇔⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1-x ≤1,x +12<1-x ⇔0≤x <14,即不等式f ⎝⎛⎭⎫x +12<f (1-x )的解集 为⎣⎡⎭⎫0,14. (2)由于f (x )为增函数,∴f (x )的最大值为f (1)=1,∴f (x )≤t 2-2at +1对a ∈[-1,1]、x ∈[-1,1]恒成立⇔t 2-2at +1≥1对任意a ∈ [-1,1]恒成立⇔t 2-2at ≥0对任意a ∈[-1,1]恒成立. 把y =t 2-2at 看作a 的函数, 由a ∈[-1,1]知其图象是一条线段, ∴t 2-2at ≥0对任意a ∈[-1,1]恒成立⇔⎩⎪⎨⎪⎧ t 2-2×(-1)×t ≥0,t 2-2×1×t ≥0⇔⎩⎪⎨⎪⎧t 2+2t ≥0,t 2-2t ≥0 ⇔⎩⎪⎨⎪⎧t ≤-2或t ≥0t ≤0或t ≥2,⇔t ≤-2,或t =0,或t ≥2。