角的概念的推广(二)
角的概念的推广
1200
O
终始边 A
AOB=1200 BOA=-1200
射线OA绕端点O旋转900到射线OB,接 着再旋转-300到OC求角AOC.
B
C
-300 900
600
O
A
AOC = AOB + BOC = 900 + (-300) = 600
各角和的旋转量等于各角旋转量的和.
例 题 1:
射线OA绕端点O顺时针旋转800到OB位 置,接着逆时针旋转2500到OC位置,然后再顺 时针旋转2700到OD位置,求 AOD的大小.
练习1:
(1).把 14850化成k 3600 00 3600, k Z
的形式是
A. 43600 450 B. 43600 3150
C. 103600 3150 D. 53600 3150
(2).在直角坐标系中,判断下列各语句的真,假.
初中角的概念:
顶点
O
B
角的边
A
把公共端点的两条射线组成的图形叫做角.
角还可以看成平面内一条射线
绕着端点从一个位置旋转到另一个 位置所成的图形.
一.正角、负角、零角:
正角:一条射线绕着它的端点按逆时 针方向旋转形成的角;
负角:按顺时针方向旋转形成的角。
零角:射线没有作任何旋转。
B
终始边
-1200
1200
【例2】
在 00~3600 间,找出与下列各角终边相同的 角,并判定它们是第几象限角.
(1)150 ;(2) 650 ;(3) 950 15' .
【例3】写出与下列各角终边相同的角的集合S ,
并把 S 中适合不等式 360 720 的元素
角的概念和弧度制
1.角的概念的推广:(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向(逆时针或顺时针)旋转到另一位置OB形成角α。
其中射线OA叫角α的始边,射线OB叫角α的终边,端点O叫角α的顶点。
(2)正角、零角、负角:由始边的旋转方向而定。
正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:射线不做旋转时形成的角(3)象限角:由角的终边所在位置确定。
第一象限角的集合;第二象限角的集合第三象限角的集合;第四象限角的集合(4)终边相同的角:一般地,所有与α角终边相同的角,连同α角在内,可以表示为可构成集合S={ β| β=α+k×3600, K∈ Z}(5)特殊角的集合:终边在轴上角的集合,轴线角终边在轴上角的集合,终边在坐标轴上角的集合2.弧度制:(1)定义:用“弧度”做单位来度量角的制度,叫做弧度制。
(2)角度与弧度的互化:角度、弧度的换算关系:≈0.01745(rad), ≈57.30°=57°18ˊ;(2)两个公式:设扇形的弧长为,圆心角为,半径为,α为圆心角弧度数,则有:扇形弧长:扇形面积:1.将化为的形式是( ).A. B.C. D.2.若,则角的终边所在的象限为( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限3.扇形的周长是,圆心角是弧度,则扇形面积是( ).A. B. C. D.4.若集合,,则集合为( ).A. B. C. D.5.若角与终边相同,则一定有( ).A. B.C. D.6.在到之间与终边相同的角是___________.7.如果是第三象限角,那么角的终边的位置如何?是哪个象限的角?8.已知扇形的周长为,当它的半径和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.。
角的概念的推广2
角的记法 “旋转”定义角之后,角的范围扩大了。 1、角有正负之分
如 : 300 , 190 , 660
2、角可以任意大
体操动作:转体2周(720°),转体3周(1080°) 3、零角 (一条射线没有旋转)
2、“象限角” 为了研究方便,我们往往在平面直角坐标系内 来讨论角: 使角的顶点与坐标原点重合,角的始边与x轴 的非负半轴重合,角的终边在第几象限,我们 就说这个角是第几象限的角。
例2、写出与下列各角终边相同的角的集合S, 并把S中在-360°~720°间的角写出来: ⑴120° ⑵-36° 解:⑴ S={a|a=120°+k· 360°,k∈Z} S中在-360°~720°间的角是 -1×360° +120°=-240° 0×360° +120°= 120° 1×360° +120°= 480° ⑵S={a|a=-36°+k· 360°,k∈Z} S中在-360°~720°间的角是-36°,324°,684°
y
O
注:角的终边落在坐标轴 上,则此角不属于任何一 x 个象限。
是第一象限角, 是第二象限角, 不是象限角.
3、终边相同的角
观察:图⑴中哪些角的终边相同? 图⑵中哪些角的终边相同?
思考:终边相同的角有什么关系?
图⑴中390°,-330°,30°的终边相同且有如 下关系:
390°=30°+360° -690°=30°-2×360°
-330°=30°-360° ……
结论:所有与a终边相同的角连同a在内可 以构成一个集合: | = +k 360 , k Z } S={ 注意:⑴k∈Z, ⑵a是任意角,
⑶ k· 360°与a之间是“+” ⑷终边相同的角不一定相等, 但相等的角终边相同, 终边相同的角有无数多个,它们的差是 360°的整数倍。
角的概念推广教案
角的概念推广优秀教案第一章:角的引入1.1 教学目标让学生了解角的定义和基本性质。
能够识别和比较不同类型的角。
能够用角度来描述角的大小。
1.2 教学内容角的定义:从一点引出两条射线所组成的图形。
角的性质:角的内部是两条射线的公共部分,外部是不共线的两条射线的夹角。
角的分类:锐角、直角、钝角、平角、周角。
1.3 教学方法通过实物演示和图形展示,引导学生直观地理解角的概念。
利用几何模型和练习题,让学生亲手操作,加深对角的认识。
1.4 教学资源角的概念引入PPT演示文稿。
实物模型和图片,如剪刀、三角板等。
1.5 教学步骤1.5.1 导入:利用实物或图片,引导学生观察和描述角的存在。
1.5.2 新课引入:讲解角的定义和性质,通过PPT演示文稿和实物模型进行辅助说明。
1.5.3 实例分析:展示不同类型的角,让学生区分和比较它们的大小。
1.5.4 练习巩固:提供一些练习题,让学生运用角的概念进行解答。
1.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的概念的理解程度。
第二章:角的大小比较2.1 教学目标让学生能够比较不同角的大小。
学会使用量角器测量角的大小。
2.2 教学内容角的大小比较:通过观察角的内部或外部,比较角的大小。
量角器的使用:量角器的结构和如何测量角的大小。
2.3 教学方法通过实际操作量角器,让学生学会正确测量角的大小。
提供练习题,让学生运用比较角大小的方法。
2.4 教学资源量角器演示文稿和实物量角器。
练习题和答案。
2.5 教学步骤2.5.1 导入:复习上一章的内容,引导学生回顾角的概念。
2.5.2 新课引入:讲解如何比较角的大小,通过PPT演示文稿和实物量角器进行辅助说明。
2.5.3 实例分析:提供一些角的大小比较实例,让学生实践和理解比较方法。
2.5.4 练习巩固:提供一些练习题,让学生运用角的大小比较方法进行解答。
2.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的大小比较的理解程度。
角的概念的推广
第三象限角的集合:
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
第四象限角的集合:
第三象限角的集合:
{x | k 360 180 x k 360 270, k Z}
例1. 在 - 720到720之间,写 出与60角终边相同的角的集合M.
例1. 在 - 720到720之间,写 出与60角终边相同的角的集合M. 例2. 求终边为直线y x的角的集合.
例3. 已知 是第二象限角,
问:12 是第几象限角? 2 是第几象限角?
2
3 是第几象限角?
3
课堂练习
1. A {小于90的角},B {第一象限
的角},则A B ( )
A.{锐角}
B.{小于90的角}
C.{第一象限的角} D.以上都不对
2. 若90 135, 则 的范围是______, 的范围是_______ .
3. 与- 457角终边相同的角的集合是:
A.{ | k 360 457, k Z} B.{ | k 360 97, k Z} C.{ | k 360 263, k Z} D.{ | k 360 263, k Z}
角的概念的推广
一、复习
1.初中是如何定义角的?
二、角的概念的推广:
二、角的概念的推广: 1.“旋转”形成角.
二、角的概念的推广: 1.“旋转”形成角.
B
O
A
二、角的概念的推广: 1.“旋转”形成角.
B
O
A
二、角的概念的推广: 1.“旋转”形成角.
B
三角函数基础知识
三角函数基础知识整理一.角的概念:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.⑵.“正角”与“负角”“0角”⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和.注意: (1)Z k ∈ (2)是任意角; (3)0360⋅k 与之间是“+”号,如:0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二. 弧度制:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αradr rr1rad2rr2rad3rr 3radlrα rad2.弧长公式:α⋅=r l由公式:⇒=r l α α⋅=r l 比公式180r n l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 21=其中l 是扇形弧长,R 是圆的半径oR Sl三. 三角函数的定义:1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离02222>+=+=y x yx r2. 比值ry叫做α的正弦 记作: r y =αsin比值r x叫做α的余弦 记作: rx =αcos比值xy叫做α的正切 记作: x y =αtan比值yx叫做α的余切 记作: y x =αcot比值x r叫做α的正割 记作: xr =αsec比值yr叫做α的余割 记作: y r =αcsc以上六种函数,统称为三角函数. 3. 突出探究的几个问题:①角是“任意角”,当=2k +(k Z)时,与的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等②实际上,如果终边在坐标轴上,上述定义同样适用③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定. ⑤定义域:r y=αsin 的定义域: R r x=αcos 的定义域:Rx y =αtan 的定义域:⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2)比值只与角的大小有关.ry)(x,αP4. 三角函数在各象限内的符号规律:正弦在第一、二象限为正;余弦在第一、四象限为正; 正切在第一、三象限为正.四. 诱导公式:1.必须熟记的两组诱导公式:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+k诱导公式二:αα-sin sin(=-) ααcos cos(=-) ααtan tan(-=-)2. 诱导公式的变形规则:奇变偶不变,符号看象限.诱导公式三: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-) αα-cos 180cos(=-︒) ααπ-cos cos(=-) ααtan 180tan(-=-︒) ααπtan tan(-=-)诱导公式四: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+) αα-cos 180cos(=+︒) ααπ-cos cos(=+) ααtan 180tan(=+︒) ααπtan tan(=+)诱导公式五: 用弧度制可表示如下:ααcos )90sin(=-︒ ααπcos )2sin(=-ααsin )90cos(=-︒ ααπsin )2cos(=-ααcot )90tan(=-︒ααπcot )2tan(=-诱导公式六: 用弧度制可表示如下:ααcos )90sin(-=+︒ ααπcos )2sin(-=+ααsin )90cos(-=+︒ ααπsin )2cos(-=+ααcot )90tan(=+︒ ααπcot )2tan(=+补充公式七: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-) ααcos 360cos(=-︒) ααπcos 2cos(=-) ααtan 360tan(-=-︒) ααπtan 2tan(-=-)补充公式八: 用弧度制可表示如下:ααcos )270sin(-=-︒ ααπcos )23sin(-=- ααsin )270cos(-=-︒ ααπsin )23cos(-=-ααcot )270tan(=-︒ααπcot )23tan(=-补充公式九: 用弧度制可表示如下:ααcos )270sin(-=+︒ ααπcos )23sin(-=+ ααsin )270cos(=+︒ ααπsin )23cos(=+ααcot )270tan(-=+︒ ααπcot )23tan(-=+五.两角和与差的三角函数关系式:1.两角和与差的三角函数关系式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2 推导公式:)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+因为1)()(222222=+++ba b ba a .所以sin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ则asin α+bcos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α) (或=22b a +cos (α-θ))(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ.则a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ)六.二倍角公式:1.二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' 注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于α2是α的二倍的形式,尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式.(4) 公式)(2αS ,)(2αC ,)(2αC ',)(2αT 成立的条件是: 公式)(2αT 成立的条件是Z k k k R ∈+≠+≠∈,4,2,ππαππαα.其他R ∈α(5) 熟悉“倍角”与“二次”的关系(升角—降次,降角—升次)(6) 特别注意公式的三角表达形式,且要善于变形:22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用七.万能公式:1.万能公式2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222ααααααααα-=+-=+=证明:12tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α22tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α32tan 12tan22sin 2cos 2cos 2sin2cos sin tan 222α-α=α-ααα=αα=α八. 三角函数的图象与性质:1.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 注:有向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.2.用单位圆中的正弦线、余弦线作正弦函数y=sinx ,x ∈[0,2π]、余弦函数y=cosx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = sin x ()-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = cos x ()3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)(1)y=cosx, x R 与函数y=sin(x+2π) x R 的图象相同(2)将y=sinx 的图象向左平移2π即得y=cosx 的图象 (3)也同样可用五点法作图:y=cosx x[0,2]的五个点关键是(0,1) (2π,0) (,-1) (23π,0) (2,1)4.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 5.值域正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-16.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期注意:1 周期函数x 定义域M ,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2 “每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)f (x 0))3 T 往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π 7.奇偶性y =sinx 为奇函数,y =cosx 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称8.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1九. 函数()()0,0sin >>+=ωψωA x A y 的图象与性质:1.振幅变换:y=Asinx ,x R(A>0且A 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折A 称为振幅 2.周期变换:函数y=sin ωx, x R (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若 ω<0则可用诱导公式将符号“提出”再作图ω决定了函数的周期3 相位变换: 函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到(用平移法注意讲清方向:“加左”“减右”)十. 正切函数的图象与性质:1. 正切线:正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R 3.当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y , 当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数6.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增十一. 正、余弦定理:1 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 2 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA②若A 为直角或钝角时:⎩⎨⎧>≤)(b a 锐角一解无解b a3. 余弦定理:A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ca a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=4.余弦定理可以解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角5.三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。
(完整版)一轮复习三角函数的基本概念
Y 轴正半轴 Y 轴负半轴
{α|α=k·360°+90°, k∈Z}
{α|α=k·360°+270°,k∈Z}
弧度制
我们把长度等于半径长的弧所对的
圆心角叫做1弧度的角.
单位符号 :rad
B
读作:弧度
C
l = 2r
l =r
1rad
Oo r
A
2rad
A
r
Oo
S={ β| β=α+k·3600 , K∈ Z}
注:(1) K ∈ Z
(2) 是任意角
(3)相等的角终边一定相同,但终边相同的 角不一定相等,终边相同的角有无数多个,它 们相差360°的整数倍
y
O
x
α 终边所在的象限
角 α 的集合
第一象限
{α|k·360°<α<k·360°+90°,k∈Z}
第二象限
{α|k·360°+90°<α<k·360°+180°, k∈Z}
第三象限
{α|k·360°+180°<α<k·360°+270°, k∈Z}
第四象限
{α|k·360°-90°<α<k·360°,k∈Z}
y
O
x
α 终边所在的轴 X 轴正半轴
X 轴负半轴
角 α 的集合 {α|α=k·360°,k∈Z}
A.40 B.140 C. 40 D. 140
(2)有下列各式:① sin1125 ;② tan 37 sin 37 ;
12
12
③ sin 4 ;④ sin | 1|,其中为负值的个数是 ___2____ .
tan 4
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档高中数学三角函数基础知识点及答案1、角的概念的推广:平面内一条射线绕着端点从一具位置旋转到另一具位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一具零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就讲那个角是第几象限的角。
假如角的终边在坐标轴上,就以为那个角别属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k kαθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角别一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,所以,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
(答:25-o;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k kαθπ=+∈Z . (3)α终边与θ终边对于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边对于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边对于原点对称?2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边对于直线x y =对称,则α=____________。
角的概念的推广教学设计方案
角的概念的推广教学设
计方案
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
《角的概念的推广》——教学设计
双滦职教中心:徐云
教学目标设计:
知识与技能
1.理解并掌握“正角”“负角”“象限角”“终边相同的角”的定义
2.掌握所有与α角终边相同的角的表示方法
3.体会运动变化观点,深刻理解推广后的角的概念;
过程与方法
1.借助图片、视频、实物演示、动手绘制角等手段,让学生充分体会到多媒体等手段对数学教学的作用。
2.在老师的引导、及时评价下,同学之间的互相评价下,学生积极探究知识的形成过程。
情感、态度与价值观
1.通过本节的学习,让学生意识到数学来源于生活,服务于生活,激发学习数学的兴趣。
2.体会数形结合思想,学会运用运动变化的观点认识事物.
3.通过课堂上的学生自评、互评,教师评价,培养学生竞争意识和团队合作意识,锻炼学生的语言表达能力,提高分析问题和解决问题的能力。
教学重点研判:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法.
教学难点体会:终边相同的角的概念、其符号表示、集合表示
教学思想方法:本节教学方法采用任务驱动法、情景导入法、问题探究法、教师引导下的讨论法,通过课前预习展示、实例教具展示、观看视频等方式,在教师的带领下,学生轻松地接受新知识,真正做到了让学生成为课堂的主体。
教学过程设计:。
角的概念的推广
角的概念的推广引言角是几何学中重要的概念之一,它在实际生活和学术领域中有着广泛的应用。
本文将介绍角的定义、性质以及与其他几何概念的关系,从而推广角的概念。
角的定义在几何学中,角是由两条射线公共端点所围成的部分。
我们可以把射线看成是一根直线,并延长它们,当两条射线共线时,所围成的角度为零。
根据角的凸度,角可以分为锐角、直角和钝角。
•锐角:角度小于90度的角称为锐角;•直角:角度等于90度的角称为直角;•钝角:角度大于90度但小于180度的角称为钝角。
角的性质除了不同凸度的分类,角还有一些重要的性质,下面将介绍几个常见的性质。
直角的性质直角是一种特殊的角,它有一些独特的性质。
•直角可以被等分成两个相等的角,每个角的度数为45度。
•直角的两条边相互垂直。
锐角和钝角的性质锐角和钝角也有一些特殊的性质。
•锐角的度数总是小于90度,而钝角的度数总是大于90度。
•锐角和钝角的正弦、余弦和正切值的大小具有不同的关系。
角与其他几何概念的关系角与其他几何概念之间存在着紧密的联系,下面将介绍角与直线、多边形以及圆的关系。
角与直线的关系直线可以被看成无数个角的集合,两条直线之间的夹角就是这两条直线所围成的角。
夹角可以分为对顶角、同位角和内错角等。
•对顶角:两条相交的直线所围成的角,称为对顶角,对顶角的度数相等。
•同位角:两条平行直线被一条交错直线切割形成的相对应的内错角。
•内错角:平行直线被一条截线分成两段,则截线处的内错角相等。
角与多边形的关系多边形是有多个边和角组成的图形,角是多边形内角和外角的基本单位。
•多边形内角和为180度,每个内角的大小取决于多边形的边数。
•多边形外角和为360度,每个外角的大小与多边形内角之和相等。
•多边形的对角线可以划分内部成多个角。
角与圆的关系角与圆的关系是通过圆周角来描述的。
•圆周角:圆周角是以圆心为顶点的任意两条射线所围成的角,圆周角的度数等于对应的圆心角的度数。
•圆心角:圆心角是以圆心为顶点的两条射线所围成的角,圆心角的度数是对应的圆周角的一半。
三角数列知识点总结
三角函数知识点总结1. 角的概念的推广(1) 终边相同的角:所有与α角终边相同的角(连同α角在)可以用式子k ⋅360︒α,k ∈Z 来表示。
与α角终边相同的角的集合可记作:{β|βk ⋅360︒α,k ∈Z}或{β|β2k πα,k ∈Z}。
※ 角的集合表示形式不是唯一的;终边相同的角不一定相同,相同的角一定终边相同。
(2) 象限角:角的顶点与坐标轴原点重合,角的始边与x 轴的非负半轴重合,角的终边落在第几象限,就称这个角为第几象限的角。
象限角 集合表示象限角 集合表示第一 象限 ⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ第二 象限 ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,ππππ222第三 象限⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ第四 象限⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,ππππ22232 ※ 角的终边在坐标轴上,就认为这个角不属于任何象限。
(3) 轴线角:角的终边在坐标轴上的角称为轴线角。
轴线角集合表示 轴线角集合表示 x 轴非负半轴{x |x 2k π,k ∈Z }x 轴非正半轴 {x |x2k ππ,k ∈Z }x 轴{x |xk π,k ∈Z }y 轴非负半轴⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,22ππy 轴非正半轴⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,232ππy 轴⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ坐标轴⎭⎬⎫⎩⎨⎧∈=Z k k x x ,π212. 弧度制(1) 1弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角。
(2) 度数与弧度数的换算: ①180︒π弧度; ②1801π=︒弧度; ③1弧度O⎪⎭⎫ ⎝⎛π180。
(3) 有关扇形的一些计算公式: ①R=α; ②R S 21=; ③221R S α=;④C(α2)R ;⑤)sin (212αα-=-=∆R S S S 扇形弓。
角的概念的推广
角的概念的推广角是几何学中的重要概念,它在日常生活中的应用广泛且重要。
角的概念使我们能够更好地理解和描述物体之间的关系,从而更好地解决实际问题。
本文将探讨角的概念以及它在不同领域的推广应用。
一、角的定义和性质角是由两条射线共同起源的部分平面,常用三个字母表示。
根据角的大小,可以将角分为锐角、直角和钝角。
锐角指小于90度的角,直角指等于90度的角,钝角指大于90度但小于180度的角。
角的大小可以通过角度来测量,角度是角所对应的弧长在单位圆上的长度比值。
除了大小外,角还具有其他一些重要性质。
首先,两个角互为补角当且仅当它们的和为90度。
其次,两个角互为余角当且仅当它们的和为180度。
此外,角的顶点、起始射线和终止射线确定一个平面。
这些性质为我们研究角的性质和应用提供了基础。
二、角的推广应用1. 几何学中的角在几何学中,角是研究平面和空间图形间相对位置关系的重要工具。
角的推广应用在多边形的研究中尤为重要。
例如,我们可以通过计算多边形的内角和来判断它们的类型,进而帮助解决诸如平行四边形的判定、多边形的内切圆问题等。
2. 物理学中的角角的概念在物理学中也有着广泛的应用。
例如,角度被广泛用于描述力的作用方向和大小。
在机械学中,角度还用于描述转动运动和力矩的计算。
此外,角速度和角加速度也是物理学中经常使用的概念,通过这些概念可以描述物体的旋转状态以及旋转的快慢程度。
3. 工程学中的角在工程学中,角的概念被广泛应用于测量和布局。
例如,利用角度可以确定建筑物的方向,帮助制定建筑物的布局方案。
此外,在电气工程中,角度也用于描述交流电的相位差,从而确定电路中电压和电流的相对位置。
4. 地理学中的角在地理学中,角被广泛应用于测量和描述地球表面上的地理位置和方向。
例如,利用经纬度可以确定地理位置的坐标,并且通过计算角度可以确定两个地点之间的方位角和航向角。
这些信息对于导航和地图制作非常关键。
5. 计算机图形学中的角在计算机图形学中,角的概念被广泛用于描述和渲染三维图形。
角的概念的推广
角的概念的推广§2角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与角终边相同的角(包括角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。
2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
二、教学重、难点重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。
难点:把终边相同的角用集合和符号语言正确地表示出来。
三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教法:类比探究交流法。
四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。
但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
角的概念的推广思政要点
角的概念的推广思政要点
角的概念的推广涉及到数学、物理、地理、文化等多个方面,以下是思政要点:
1. 角的静态定义和动态定义:角的静态定义是指具有公共端的
两条射线组成的图形,而动态定义是指一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。
角的大小与边的长短没有关系,而决定于角的两条边张开的程度。
2. 角的种类:角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0 角等 10 种。
3. 角的符号:角的符号是以角度为单位的,通常用符号“°”
表示,例如 90°表示一个直角。
4. 角的测量:角的测量通常使用角度计或量角器等工具,其中
角度计可以测量任意角度,而量角器只能测量固定角度。
5. 角在物理中的应用:角在物理学中有许多应用,例如在几何
学中,角可以用来描述平面几何中的角度和线段长度之间的关系;在
力学中,角可以用来描述物体的运动轨迹和受力情况。
6. 角在地理中的应用:角在地理学中也有许多应用,例如在地
图上,角可以用来描述两个地点之间的夹角,以及地图上各种线条的夹角。
7. 角的文化意义:角在中国传统文化中具有重要的象征意义,
例如在古代社会中,角被广泛用于装饰和祭祀活动中,代表着权力、荣誉和信仰等意义。
角的概念的推广涉及到多个学科领域,需要从多个角度进行思考和理解,有助于提高人们的综合素质和跨学科思维能力。
角的概念的推广(教学设计)
§2 角的概念的推广【教学目标】1.通过实例,理解角的概念推广的必要性,了解任意角的概念,根据角的旋转方向,能判断正角、负角和零角;2.学会建立直角坐标系来讨论任意角,理解象限角的定义,掌握终边相同角的表示方法;3.通过观察、联想得出相应的数学规律的学习过程,体会由特殊到一般的数学思维方法. 【教学重点】1.了解任意角的概念,初步理解正角、负角、零角、象限角、终边相同的角的概念;2.初步学会终边相同的角的表示方法.【教学难点】终边相同的角的集合的表示方法.【教学方法】六环节分层导学法【课前准备】(学案导学)教师编印导学案,提前两天下发,指导学生完成并检查.学生预习教材P6-8相关内容,完成优化设计基础知识梳理部分和导学案自主学习部分内容,形成对角的概念的推广的初步认识;学有余力的同学尝试完成优化设计典型例题领悟部分和导学案合作探究部分,至少明确本节课的研究主线.(小组交流)学生分组交流讨论,分享自己的学习心得,解决个别同学存在的困惑,共同梳理出自己小组存在的问题,以便在课堂上得到及时解决。
(检查反馈)学生自主学习能力比较差,主要存在以下问题:1)书写不够规范,角的单位“°”容易漏写;2)思维不够严谨,审题不仔细,做题往往不注意条件;3)终边相同的角的表示方法掌握不熟练;4)概念辨析缺乏方法.完成较好的学生有:白焕焕、杨宇、杨强、何楠.【教学过程】一、导入新课初中阶段我们学习了“角的概念”,请大家思考一下问题:(1)初中学过的角是如何定义的,角的范围又是怎样的?(2)跳水运动员在空中身体的旋转周数如何用角度来表示?(3)汽车在前进和后退中,车轮转动的角度如何表示才合理?(4)工人师傅在拧紧或拧松螺丝时,扳手转动的角度如何表示比较合适?学生围绕以上问题进行讨论,从而得出正角、负角和任意角的有关概念.教师对学生的回答进行总结,并强调:在日常生活中,我们经常要遇到大于360°的角及按不同方向旋转而成的角,这些都说明了我们研究推广角的概念的必要性. 之后提出本节课的主要问题,即在初中学习的基础上,将角的概念推广到任意角.【板书】角的概念的推广二、展示评价学生以组推荐代表展示导学案的完成情况,并回答问题:本节课中学习了哪些新概念,这些概念分别是如何定义的?其他同学补充完善,不同组别之间展开交流点评,教师根据学生的回答情况进行板书,并点拨、激励、评价.展示形式:实物投影展示导学案的完成情况,口头表述回答教师所提问题.三、导引探究教师引导学生重点探究象限角的判定与终边相同角的表示方法,学会建立直角坐标系来讨论任意角,理解象限角的定义,掌握终边相同角的表示方法.探究1:判断角所在象限例1在0°~360°之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)480°;(2)-760°;(3)932°;归纳小结:判断角α所在象限的方法:先在0°~360°之间,找出与所求角终边相同的角β,因为α与β终边相同,因此只需判断角β所在象限,即为角α所在象限.跟踪训练1:象限角的概念:第一象限角的集合可表示为____________ ______;第二象限角的集合可表示为_________ ________ _;第三象限角的集合可表示为;第四象限角的集合可表示为.跟踪训练2:锐角是第几象限角?第一象限的角都是锐角吗?探究2:终边相同的角的表示方法例2写出与60°终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.归纳小结:一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z}.跟踪训练3:在直角坐标系中,写出终边在y轴上的角的集合(用0°~360°表示)四、当堂检测学生独立完成导学案巩固提高部分,教师巡视学生完成情况,检测学生学习效果.五、课堂小结师生共同回顾本节课的相关概念,总结解题方法1.正角、负角、零角2.象限角和终边相同的角3.角所在象限的判定和终边相同的角的表示方法六、作业布置习题1-2 第2,3题【教学反思】本节课是北师大版必修4第一章第二节的内容,是在初中的基础上进一步学习角的概念,是学好三角函数的基础. 本节课使用的方法是六环节分层导学法,由学生先课前预习,完成导学案,小组进行交流学习,课堂由学生展示和教师引导的课堂探究以及当堂检测组成. 由于学生课前预习的过程中存在较大的问题,自主学习能力较差,学习的主动性不够,获取信息的能力较弱,导致学生课前完成的导学案问题较多,影响了课堂展示评价环节的进行,再加上教师对六环节分层导学模式的应用不够熟练,导致课堂评价展示环节流于形式,变成教师的“满堂解释”,导引探究部分,教师引导学生对角所在象限的判断和终边相同的角的表示方法进行探究,学生基本能掌握两种方法,但理解不够,动手能力还不好. 最后由于时间把握不好,当堂检测部分未能按时完成. 这节课基本上完成了教学任务,但是没能很好的体现六环节分层导学模式,今后在教学中将会对这种教学模式进行进一步的探究,以期能熟练应用这种教学模式进行教学,提升教学效率.。
三角函数基础知识
三角函数基础知识整理一. 角的概念:1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点. ⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA 为始边的角α=210°,β=-150°,γ=660°,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角α或α∠ 可以简记成α⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后,它包括任意大小的正角、负角和零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)3.终边相同的角结论:所有与终边相同的角连同在内可以构成一个集合:{}Z k k S ∈⋅+==,360|αββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和.注意: (1)Z k ∈ (2)是任意角;(3)0360⋅k 与之间是“+”号,如:0360⋅k -30°,应看成0360⋅k +(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二. 弧度制:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad2.弧长公式:α⋅=r l由公式:⇒=r l α α⋅=r l 比公式180rn l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 21=其中l 是扇形弧长,R 是圆的半径三. 三角函数的定义:1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离02222>+=+=y x yx r2. 比值r y叫做α的正弦 记作: r y =αsin 比值r x叫做α的余弦 记作: r x =αcos 比值xy叫做α的正切 记作: xy =αtan 比值yx叫做α的余切 记作: y x =αcot比值x r叫做α的正割 记作: x r =αsec 比值yr叫做α的余割 记作: y r =αcsc以上六种函数,统称为三角函数. 3. 突出探究的几个问题: ①角是“任意角”,当=2k+(k Z)时,与的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等 ②实际上,如果终边在坐标轴上,上述定义同样适用 ③三角函数是以“比值”为函数值的函数④0>r 而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定. ⑤定义域:r y=αsin 的定义域: R r x=αcos 的定义域:Rx y =αtan 的定义域:⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合. (2)比值只与角的大小有关.4. 三角函数在各象限内的符号规律:正弦在第一、二象限为正;余弦在第一、四象限为正; 正切在第一、三象限为正.四. 诱导公式:1.必须熟记的两组诱导公式:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+k诱导公式二:αα-sin sin(=-) ααcos cos(=-) ααtan tan(-=-)2. 诱导公式的变形规则:奇变偶不变,符号看象限.诱导公式三: 用弧度制可表示如下:ααsin 180sin(=-︒) ααπsin sin(=-) αα-cos 180cos(=-︒) ααπ-cos cos(=-) ααtan 180tan(-=-︒) ααπtan tan(-=-)诱导公式四: 用弧度制可表示如下:αα-sin 180sin(=+︒) ααπ-sin sin(=+) αα-cos 180cos(=+︒) ααπ-cos cos(=+) ααtan 180tan(=+︒) ααπtan tan(=+)诱导公式五: 用弧度制可表示如下:ααcos )90sin(=-︒ ααπcos )2sin(=-ααsin )90cos(=-︒ ααπsin )2cos(=-ααcot )90tan(=-︒ααπcot )2tan(=-诱导公式六: 用弧度制可表示如下:ααcos )90sin(-=+︒ ααπcos )2sin(-=+ααsin )90cos(-=+︒ ααπsin )2cos(-=+ααcot )90tan(=+︒ ααπcot )2tan(=+补充公式七: 用弧度制可表示如下:αα-sin 360sin(=-︒) ααπ-sin 2sin(=-) ααcos 360cos(=-︒) ααπcos 2cos(=-) ααtan 360tan(-=-︒) ααπtan 2tan(-=-)补充公式八: 用弧度制可表示如下:ααcos )270sin(-=-︒ ααπcos )23sin(-=- ααsin )270cos(-=-︒ ααπsin )23cos(-=-ααcot )270tan(=-︒ααπcot )23tan(=-补充公式九: 用弧度制可表示如下:ααcos )270sin(-=+︒ ααπcos )23sin(-=+ ααsin )270cos(=+︒ ααπsin )23cos(=+ααcot )270tan(-=+︒ ααπcot )23tan(-=+五.两角和与差的三角函数关系式:1.两角和与差的三角函数关系式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2 推导公式:)cos sin (cos sin 222222ααααba b ba ab a b a ++++=+因为1)()(222222=+++ba b ba a .所以sin 2θ+cos 2θ=1(1)若令22ba a +=sin θ,则22ba b +=cos θ则asin α+bcos α=22b a +(sin θsin α+cos θcos α)=22b a +cos (θ-α) (或=22b a +cos (α-θ))(2)若令22ba a +=cos ϕ,则22ba b +=sin ϕ.则a sin α+b cos α=22b a +(sin αcos ϕ+cos αsin ϕ)=22b a +sin (α+ϕ)六.二倍角公式:1.二倍角公式:αααcos sin 22sin =;)(2αS ααα22sin cos 2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' 注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于α2是α的二倍的形式,尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式.(4) 公式)(2αS ,)(2αC ,)(2αC ',)(2αT 成立的条件是: 公式)(2αT 成立的条件是Z k k k R ∈+≠+≠∈,4,2,ππαππαα.其他R ∈α(5) 熟悉“倍角”与“二次”的关系(升角—降次,降角—升次) (6) 特别注意公式的三角表达形式,且要善于变形:22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用七.万能公式:1.万能公式2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222ααααααααα-=+-=+=证明:12tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α22tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α 32tan 12tan22sin 2cos 2cos 2sin 2cos sin tan 222α-α=α-ααα=αα=α八. 三角函数的图象与性质:1.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 注:有向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.2.用单位圆中的正弦线、余弦线作正弦函数y=sinx ,x ∈[0,2π]、余弦函数y=cosx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.3.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)(1)y=cosx, x R 与函数y=sin(x+2π) x R 的图象相同(2)将y=sinx 的图象向左平移2π即得y=cosx 的图象 (3)也同样可用五点法作图:y=cosx x [0,2]的五个点关键是(0,1) (2π,0) (,-1) (23π,0) (2,1)4.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 5.值域正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-16.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期注意:1 周期函数x 定义域M ,则必有x+T M, 且若T>0则定义域无上界;T<0则定义域无下界;2“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t) f (x 0))3 T 往往是多值的(如y=sinx 2,4,…,-2,-4,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π 7.奇偶性y =sinx 为奇函数,y =cosx 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称8.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1九. 函数()()0,0sin >>+=ωψωA x A y 的图象与性质:1.振幅变换:y=Asinx ,x R(A>0且A 1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的它的值域[-A, A] 最大值是A, 最小值是-A .若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折A 称为振幅2.周期变换:函数y=sin ωx, x R (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变).若 ω<0则可用诱导公式将符号“提出”再作图ω决定了函数的周期3 相位变换: 函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)十. 正切函数的图象与性质:1. 正切线:正切函数R x xy ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R 3.当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y , 当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数 6.单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增十一. 正、余弦定理:1 正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 2 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况:①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA asin 锐角一解一钝一锐二解直角一解无解A b a②若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a3. 余弦定理:A bc c b a cos 2222-+=⇔bc a c b A 2cos 222-+= B ca a c b cos 2222-+=⇔ca b a c B 2cos 222-+= C ab b a c cos 2222-+=⇔ab c b a C 2cos 222-+= 4.余弦定理可以解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角5. 三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。
三角函数
根本停不下来——高一数学知识梳理(2)【三角函数的概念】1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式:1.一个区别:“小于90°的角”、“锐角”、“第一象限的角”的区别如下:小于90°的角的范围:⎝⎛⎭⎫-∞,π2,锐角的范围:⎝⎛⎭⎫0,π2,第一象限角的范围:⎝⎛⎭⎫2k π,2k π+π2(k ∈Z ).所以说小于90°的角不一定是锐角,锐角是第一象限角,反之不成立.2.三个防范:一是注意角的正负,特别是表的指针所成的角;二是防止角度制与弧度制在同一式子中出现;三是如果角α的终边落在直线上时,所求三角函数值有可能有两解. 【练一练】1、已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2×180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4×180°+45°,k ∈Z ,判断两集合的关系.【答案】β=-675°或β=-315° ;M ⊂≠N .2、已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α= 【答案】±3 3、已知点P (sin 34π,cos 3)4π落在角θ的终边上,且[02θ∈,π),则θ的值为 【答案】74π 4、已知扇形周长为10,面积是4,求扇形的圆心角.【答案】12.5、已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? 【答案】r =10,θ=2【同角三角函数的基本关系式与诱导公式】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α.2.三角函数的诱导公式1.一点提醒:平方关系和商数关系式中的角都是同一个角,且商数关系式中α≠π2+k π,k ∈Z .2.两个防范:一是利用平方关系式解决问题时,要注意开方运算结果的符号,需要根据角α的范围确定;二是利用诱导公式化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐,特别注意函数名称和符号的确定. 【练一练】1.已知tan 2x =,则2sin 1x += 【答案】952.已知α是三角形的内角,且sin α+cos α=15.则tan α= 【答案】-43.3.已知sin θ·cos θ=18,且π4<θ<π2,则cos θ-sin θ的值为________.【答案】-324.已知tan α=-43,则1cos 2α-sin 2α= 【答案】-257.5.= 【答案】26.已知A =k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是 【答案】{2,-2} 7.若tan(π+α)=-12,则tan(3π-α)=________.【答案】128.若sin ⎝⎛⎭⎫π6+α=35,则cos ⎝⎛⎭⎫π3-α= 【答案】35【三角函数的性质】1.周期函数(1)周期函数的定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质1.一点提醒 求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解. 2.三个防范 一是函数y =sin x 与y =cos x 的对称轴分别是经过其图象的最高点或最低点且平行于y 轴的直线,如y =cos x 的对称轴为x =k π,而不是x =2k π(k ∈Z ).二是对于y =tan x 不能认为其在定义域上为增函数,应在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数 三是函数y =sin x 与y =cos x 的最大值为1,最小值为-1,不存在一个值使sin x =32,【练一练】1、函数f (x )=cos πx 2cos π(x -1)2的最小正周期为________.【答案】22、将函数y =sin(2x +φ) 02πϕ⎛⎫<< ⎪⎝⎭的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则ϕ= 【答案】4π 3、已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π3(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是 【答案】x =5π12+k π2(k ∈Z )4、函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为_______ _.【答案】⎣⎡⎦⎤k π+π8,k π+5π85、函数()cos 22sin f x x x =+,3,)24x ππ∈(的值域为 【答案】(6、函数(sin 2)(cos 2)y x x =--的值域是 【答案】⎡⎣7、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,π))的图像如图所示.(1) 求f (x )的解析式及单调增区间(2) 求函数g (x )=f (x )+3f (x +2)在x ∈[-1,3]上的最大值和最小值.【答案】(1)f (x )=3sin ⎝⎛⎭⎫π4x +π4.(2) 最大值6;最小值-3 3.【y =A sin(ωx +φ)的图象及性质】1.“五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x 轴相交的三个交点,作图时的一般步骤为: (1)定点:如下表所示.周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象. 2.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径3.函数y =A sin(ωx +φ)的物理意义当函数y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动时,A 叫做振幅,T =2πω叫做周期,f =1T 叫做频率,ωx +φ叫做相位,φ叫做初相.【注意】1.图象变换两种途径的区别由y =sin x 的图象,利用图象变换作函数y =A sin(ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再平移变换,平移的量是|φ|ω个单位.2.两个防范 一是平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;二是解决三角函数性质时,要化为y =A sin(ωx +φ)的形式,但最大值、最小值与A 的符号有关,如(4);而y =A sin(ωx +φ)的图象的两个相邻对称轴间的距离是半个周期 【练一练】 1、函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 . 【答案】32;14π;26x π+;6π。
角的概念的推广
五 、已知角二α的终边在x轴的上方那么α是
A C第一象限角
B 第一、二象限角
C 第一、三象限角 D 第一、四象限角
六、若α是第四象限角则一八0º-α是 C
A 第一象限角
B 第二象限角
C 第三象限角
D 第四象限角
七、在直角坐标系中若α与β终边互相垂直那么
α与β之间的关系是
D
A. β=α+九0o
B β=α±九0o
一.一.一角的概念的推广
一、角的概念
初中是如何定义角的 从一个点出发引出的两条射线构成的几
何图形. 这种概念的优点是形象、直观、容易理
解但它是从图形形状来定义角因此角的范围 是[0º三六0º
这种定义称为静态定义其弊端在于“狭 隘”.
生活中很多实例会不在该范围 体操运动员转体七二0º跳水运动员向内、 向外转体一0八0º; 经过一小时时针、分针、秒针各转了多 少度 这些例子不仅不在范围[0º三六0º而且方 向不同有必要将角的概念推广到任意角 想想用什么办法才能推广到任意角 关键是用运动的观点来看待角的变化
思考八:如果α是第二象限的角那么二α、α/二 分别是第几象限的角
九0°+k·三六0°<α<一八0°+k·三六0° 一八0°+k·七二0°<二α<三六0°+k·七二0°
四五°+k·一八0°<α/二<九0°+k·一八0°
课堂练习
一.锐角是第几象限的角第一象限的角是否 都是锐角小于九0º的角是锐角吗区间0º九0º内 的角是锐角吗
2100
6600
-1500
特别地当一条射线没有作任何旋转时我 们也认为这时形成了一个角并把这个角叫做 零度角0º.
角的记法:角α或可以简记成∠α.
一轮复习专题18 三角函数(知识梳理)
专题18三角函数(知识梳理)一、知识点(一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl=α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ;rad 01745.01801≈π= 。
3、特殊角的三角函数值30 45 60 90 120 135 150 18006π4π3π2π32π43π65ππsin 021222312322210cos 1232221021-22-23-1-tan3313⨯3-1-33-0210 225 240 270 300 315 330 36067π45π34π23π35π47π611ππ24、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅n πk 2第一象限角平分线36045⋅+n π+πk 24x 轴负半轴360180⋅+n π+πk 2第二象限角平分线 360135⋅+n π+πk 243x 轴 180⋅n πk 第三象限角平分线360225⋅+n π+πk 245y 轴正半轴36090⋅+n π+πk 22第四象限角平分线 360315⋅+n π+πk 247y 轴负半轴 360270⋅+n π+πk 223第一、三象限角平分线18045⋅+n π+πk 4y 轴18090⋅+n π+πk 2第二、四象限角平分线 180135⋅+n π+πk 43坐标轴90⋅n 2πk 象限角平分线9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故终边落在y轴上的角的集合为
S S1 S 2
90 2k 180 , k Z 90 (2k 1) 180 , k Z
90 k 180 , k Z
变式 (1)写出终边在x 轴上的角所组成的角的集合;
(2)写出终边在坐标轴上的角所组成的角的集合;
(3)写出终边在第三象限的角所组成的角的集合;
终边落在坐标轴上的情形 X轴:K · 0 180 坐标轴:K · 0 90 1800 900 +K y · 0 360
+K·3600
o
x +K·3600
00 +K
·3600
2700
1. 已知是第二象限角, 是第几象限角?2是第几象 2 限角?
解:∵在第二象限 ∴k360+90<<k360+180,kZ
于是, k180+45< <k180+90 2
∵kZ, ∴k=2n或k=2n+1
当k=2n时,n360+45< <n360+90 2 在第一象限 2
当k=2n+1时,n360+225< <n360+270 2 在第三象限 2 ∴当在第二象限时, 可能在第一象限,也可能在第三象限 2
90 k 360
y
终边落在y轴非正半轴上的角的集合为
S 2 270 k 360 , k Z
90 180 2k 180 , k Z
o
270 k 1) 180 , k Z
类似地,2可能在第三、四象限或y轴负半轴上
2. 写出终边落在直线y=x上的角的集合. 分析:终边落在直线y=x上的角是与45 终边相同的角及与
225终边相同的角,问题转化为求两集合的并集.
解:终边落在直线y=x上的角的集合为 {β|β=45 + k· 360 ,k∈Z} ∪ {β|β=225 + k· 360 ,k∈Z} 即 {β|β=45 + k· 180 ,k∈Z}
角的概念的推广 (二)
复习 1角的定义 按逆时针方向旋转所形成的角叫做正角;
按顺时针方向旋转所形成的角叫做负角;
如果射线没有旋转,那么也把它看成一个角,叫做零 2象限角、轴线角 3终边相同的角
角。
【例3】
写出终边落在y轴上的角的集合。
解:终边落在y轴非负半轴上的角的集合为
S1 90 k 360 , k Z 90 2k 180 , k Z