分式的乘除

合集下载

(完整版)分式加减乘除运算

(完整版)分式加减乘除运算

(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。

分式的乘除法

分式的乘除法

分式的乘除法【教材研学】一、分式的乘除法1. 分式的乘除法法则:(1) 分式的乘法法则:两个分式相乘,用分子的积做积的分子,分母的积做积的分母. 用字母表示为:bdac d c b a =⨯ (2)分式的除法法则:两个分式相除,将除式的分子、分母颠倒位置后,与被除式相乘。

用字母表示为:bc ad c d b a d c b a =⨯=÷ (3)分式的乘方法则:分式乘方是把分子、分母各自乘方。

用公式表示为:n nn n ab a b a b a b a b =个43421⋯⨯⨯=)((n 是正整数) 老师:根据分式的乘除法法则,怎样进行分式乘除法的混合运算?小明:可以按照从左到右的顺序逐步进行。

比如:2232232222222xy x x y x y x y x y x y x y =•=÷=÷• 小刚:可将除法首先统一为乘法,再进行乘法运算。

比如:22222222xy x x y x y x y x y x y =••=÷• 老师:这两种做法都对,在运算过程中,可利用乘法的交换律、结合律,结果保留最简分式或整式.2.分式乘除法中的求值题分式乘除法中,求值题一般有两种要求:(1)求值.这时可以选择直接求值,也可以选择化简后再求值,常常是将分式先化简成最简形式,然后再代入求值比较方便;(2)先化筒再求值.二、探究活动:问题:在上一节学习了分式的约分,为整式的乘除法做好了准备。

那么约分在分式的乘除法中有哪些应用呢?探究:分式的乘除法作为分式的运算,要求结果保留最简分式或整式,因而在分式乘除法运算中经常会用到约分。

分式的乘除法运算通常有两种思路:(1)直接利用法则相乘,然后再约分。

比如:abc b a abc c b a a bc 54100804525162222==⨯。

(2)在分式相乘前,能约分的先约分;依据法则相乘.比如:ab b a c b a a bc 5415445251622=⨯=⨯ 一般地,选择第(2)中方法较为简便。

初中数学《分式的乘除》解题技巧

初中数学《分式的乘除》解题技巧

《分式的乘除》解题技巧 分式的乘除法,是分式之间的第一种运算.这类运算具体来说,包含三个内容:分式的乘法,分式的除法和分式的混合运算.
◆类型一:分式的乘法
法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
【例1】计算:3
432x y y x -⋅ 【分析】先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;如果有奇数个负号,积为负.计算分子与分子的积;计算分母与分母的积;把积中
【小结】分式的乘法主要是分三步:定号,套用分式乘法法则,化简.
◆类型二:分式的除法 法则:两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.
【例2】计算:2
32b ab a ÷-() 【分析】所有参与运算的式子中,有一个负号,因此,积的符号是负号.除法运算变成乘法运算,除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子.
【解】原式b a b
b a b a ab 3232322
222-=-=⋅-= 【小结】这种类型的计算主要是两步:定号,套用除法法则,最终结果一定是最简分式. ◆类型三:分式乘除混合运算:
【例3】计算:2235325953
x x x x x ÷⋅--+ 【分析】在解答分式的乘除法混合运算时,注意两点,就可以了:注意运算的顺序:按照从左到右的顺序依次计算;注意分式乘除法法则的灵活应用.
【解】原式2
2(53)(53)2533533
x x x x x x x -+=⋅⋅=-+
【小结】这种类型的题目最容易出错的地方就是运算顺序,从左到右,熟练掌握乘除法法则,最终结果为最简分式即可.。

分式的乘除

分式的乘除

分式的乘除资料编号:202201191002【自学指导】借助于课本和全品大讲堂(或分式固学案),弄清楚以下几个问题:1. 分式的乘法运算怎样进行?2. 怎样利用转化的方法进行分式的除法运算?3. 分式的乘除,运算的结果有什么要求?4. 分式的乘方怎样计算?【重要知识点总结】分式的乘除运算分式相乘,用分子的积作积的分子,用分母的积作积的分母,结果要化为最简分式或整式. (即分子与分子相乘,分母与分母相乘)分式相除时,先把除法转化为乘法,再进行计算,结果要化为最简分式或整式.注意:(1)无论是分式的乘法运算还是除法运算,结果都要化为最简分式或整式(即结果的分子和分母不再含有公因式).(2)为便于计算和约分,算式中的多项式要先进行因式分解再约分.(3)分式的分子、分母的系数是负数时,要先把负号提到分式的前面再进行计算.(4)分式的乘除法是同级运算,多个分式相乘除时应按照从左到右的顺序进行运算.(5)当除式是整式时,可以把其分母看作是1,然后按照除法法则进行运算.【例题讲解】例1. 计算:223243a y y a ⋅. 分析: 分式与分式相乘时,分子与分子相乘,分母与分母相乘(即分子、分母分别相乘),结果一定要通过约分化为最简分式或整式.解:原式a y ay y a 2342322=⋅⋅=. 例2. 计算:aa a a 21222+⋅-+. 分析: 进行分式的乘法运算时,分子和分母能因式分解的,要先因式分解,以便于进行约分.解:原式()2122+⋅-+=a a a a ()()222+-+=a a a a ()21-=a a (或a a 212-). 例3. 计算:41441222--÷+--a a a a a . 分析:分式的除法运算,要先通过转化的方法化为分式的乘法,再进行运算.解:原式()()()()()2211212-+-+÷--=a a a a a a ()()()()()1122212-+-+⋅--=a a a a a a ()()()()()()1122212-+--+-=a a a a a a (*) ()()122+-+=a a a . 说明 在熟练的情况下,(*)步可以省去不写. ❀以上例题均选自北师大版八年级下册数学课本❀【作业】1. 计算: (1)2a b b a ⋅; (2)y x xy xyy x 234222+⋅-.2. 计算:(1)2256103x y x y ÷; (2)2211y x y x +÷-.3. 计算:xx x x x x x 349622222--÷+-+.。

《分式的乘除法》课件(共14张PPT)

《分式的乘除法》课件(共14张PPT)


b a2

ab ba2

1 a
x2 1 x 1 (3) y y2
解 x2 1 y2 y x 1
(x 1)(x 1) y y y(x 1)
xy y
(2)(a2 a) a a 1
解 (a2 a) a 1 a
(a2 a)(a 1) a
第五章 分式与分式方程
2 分式的乘除法
•温故知新:
2 4 , 35
24 35
b d ?....... b d ?
ac
ac
猜想 a d a d
b c bc
a d a c ac b c b d bd
分式的乘除法的法则:
两个分式相乘,把分子相乘的积作为 积的分子,把分母相乘的积作为积的分 母;
⑵原式

(x 1)(x 1)
x 22

1 x 1
(x
1)(x x 1
2)

x 1 x2

2)

a2
1
2a
注意:按照法则 进行分式乘除运算,如果运算
结果不是最简分式,一定要进行约分,使运算结果 化成最简分式。
•例2计算
(1)3xy2 6 y2 x
解 原式 3xy2 x 6y2

3xy2 6y2
x
1 x2 2
(2)
a2
a 1 4a
4

a2 a2
1 4
③原式

3
xy

2
x y
2


3xy 2y2
x

3x2 2y
•做一做

分式的乘除运算讲解

分式的乘除运算讲解

分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。

分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。

分式的乘法运算是指将两个分式相乘,得到一个新的分式。

而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。

在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。

为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。

分式可以看作是分子和分母之间带有分数线的数学表达式。

在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。

分式的分子和分母都可以是整数、变量、或两者的组合。

在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。

而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。

通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。

分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。

掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。

综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。

通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。

1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。

2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。

分式的加减法与乘除法

分式的加减法与乘除法

分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。

分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。

在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。

本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。

一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。

例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。

例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。

例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。

例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。

例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。

例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。

例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。

例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。

分式的乘除二

分式的乘除二

a
b
a4 b 4;
猜想
a n b
a n b n .
分式的乘方法则:

a 即:
a n b
n
b n
(n是正整数)
例题2:
(1)
( 3x )2
(3x)2
32 x2
9x2
2y
(2y ) 2 2 2 y 2
4y 2
(2)( ຫໍສະໝຸດ b)3 2c(ab )32c
(ab)3 ( 2c) 3
1、分式混合运算一定要按照运算顺序。 2、乘除混合运算统一为乘法运算。
⑴ 3a 3b • 8a2b a2 b 2
4ab
2a
⑵ 2m 2n • 5p 2q 5mnp 3pq 2 4mn 3q
(3) a b 1 • a b
ab ab
a a n n
. 1.
是什么意思?
表示什么? 表示什么?
a3b3 8c 3
(3) ( xy ) 3
(xy) 3 x 3y 3
xy
(x y)3 (x y)3
例3:计算
(1)
2a 2b 3c
2
( 2)
a2b cd 3
3
2a d3

c 2a
2
(1)( 2 x4 y2 )2 3z
(2) ( 2acb2d3
)2
6a 4 b3
3c •( b2
)3
(3)( x 1 )2 3 x
(
x2 6x 9 x2
9 )2

x2
1 2x
1
(4)
(
3a 2 y2 2mn
)2

(
4mn 3m 3n2

八年级上册数学分式的乘除

八年级上册数学分式的乘除

在八年级上册的数学课程中,我们学习了一个重要的主题——分式的乘除。

分式是一种特殊的数学表达式,它包含了一个或多个字母,这些字母表示未知数。

分式的乘除运算与整数和小数的乘除运算有所不同,需要遵循一定的规则。

首先,我们来学习分式的乘法。

分式的乘法是将两个分式相乘,得到一个新的分式。

在进行乘法运算时,我们需要先将分子与分子相乘,然后将分母与分母相乘。

例如,计算2/3乘以4/5,我们可以得到(2*4)/(3*5)=8/15。

接下来,我们来学习分式的除法。

分式的除法是将一个分式除以另一个分式,得到一个新的分式。

在进行除法运算时,我们需要先将被除数的倒数乘以除数,然后进行乘法运算。

例如,计算2/3除以4/5,我们可以得到(2*5)/(3*4)=10/12=5/6。

在学习分式的乘除时,我们需要掌握一些基本的技巧和规律。

例如,我们可以将复杂的分式化简为最简形式,这样可以简化计算过程。

此外,我们还需要注意约分和通分的概念,这对于解决实际问题非常重要。

分式的乘除加减运算

分式的乘除加减运算

分式的运算 姓名:1、 分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母. 用式子表示为:db c a d c b a ⋅⋅=⋅ 2、 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:c bd a c d b a d c b a ⋅⋅=⋅=÷ 3、分式乘方的法则:分式乘方要把分子、分母分别乘方. n b a )(=n nba . (n 为正整数) 4、分式加减法的法则是:(1)同分母分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=± (2)异分母分式相加减,先通分,变为同分母的分式,再加减.用式子表示是:bdbc ad bd bc bd ad d c b a ±=±=± 一、计算1、3232⎪⎪⎭⎫ ⎝⎛-c b a 2、32432⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛a b a b a b3、2223x y mn ·2254m n xy ÷53xym n .4、22121a a a -++÷21a a a -+.5、2216168m m m -++÷428m m -+·22m m -+. 6.计算22121a a a -++÷21a a a -+.二、计算(1)213x +34x (2) 56ab -23ac +34abc. (3) 23---x x x x(4)39y y --259y -; (5) a a -+-21442 (6)2m m n +-m+n三、计算1、1111-÷⎪⎭⎫ ⎝⎛--x x x 2、222)2222(x x x x x x x --+-+-3、22224421y xy x y x y x y x ++-÷+-- 4、x x x x x x x x 4)44122(22-÷+----+四、先化简,后求值:1、已知:2a =2b =+322222222a b a b a ab a ab b a b+-÷++-的值.2、3,32,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中。

分式的乘除法公式

分式的乘除法公式

分式的乘除法公式咱先来说说分式的乘除法公式哈。

这分式的乘除法公式呢,就像是数学世界里的小工具,能帮咱们解决好多问题。

比如说,分式乘法公式是:分子乘分子,分母乘分母。

这就好比咱们分糖果,一堆糖果里,男生有几个,女生有几个,要算出男生和女生分别能拿到的总数,那就是各自的数量相乘。

分式除法公式呢,就是把除数的分子分母颠倒一下,然后再按照乘法来算。

这就好像是在玩一个换位游戏,原本在下面的跑到上面,原本在上面的跑到下面,然后就变成了乘法。

我记得有一次,在给学生们讲这个知识点的时候,有个小家伙一脸迷糊地看着我,问:“老师,这咋这么麻烦呀?”我笑着对他说:“你想想看呀,咱们平时分东西,是不是得算清楚每个人能拿多少?这分式的乘除法也是一样,就是为了让咱们算得更清楚,更公平。

”然后我就给他举了个例子。

假设咱们班要举办一场活动,买了一堆水果,苹果有 x 个,香蕉有 y 个。

男生有 m 人,女生有 n 人。

那男生能分到的苹果就是 x/m,女生能分到的香蕉就是 y/n。

如果要算男生分到的苹果总数和女生分到的香蕉总数的乘积,那就是 (x/m)×(y/n) = (xy)/(mn) ,这不就是分式乘法嘛。

然后又说到除法,假如男生本来能分到 x 个苹果,但是因为一些原因,变成了只有原来的 1/m ,那现在每个男生能分到多少苹果?这就得用 x÷m ,也就是 x×(1/m) 。

那在做题的时候呢,可不能马虎。

要先看清楚分子分母,别弄混了。

乘的时候要认真乘,除的时候别忘记把除数颠倒。

比如说这道题:(a/b)×(c/d) ,那结果就是 (ac)/(bd) ,简单吧?再比如 (a/b)÷(c/d) ,那就变成 (a/b)×(d/c) ,结果就是 (ad)/(bc) 。

咱们多做几道题练练手,就会发现这分式的乘除法其实并不难。

只要掌握了这个小工具,数学的大门就会为咱们敞开得更大一些。

分式的乘除法和加减法

分式的乘除法和加减法
2 2
2
6y ( 3 )3 xy x
2
2
a 1 a 1 (4) a 4a 4 a 4
2 2 2
二、分式加减法:
同分母分式加减法的法则: 同分母的分式相加减, 分母不变,分子相加减。 异分母分式加减法的法则: 异分母的分式相加减,
先通分,化为同分母的分式,再进行计算。
【通分】 利用分式的基本性质 , 把异分母的分式化为同 分分母的过程 。 【通分的原则】 异分母通分时, 通常取各分母的最简公分母作
一、分式乘除法运算法则:
两个分式相乘,把分子相乘的积作为积的分子,
把分母相乘的积作为积的分母;
b d bd a c ac
两个分式相除,把除式的分子和分母颠 倒位置
b d b c bc 后再与被除式相乘。 a c a d ad 计算: a2 1 6a 2 y ( 2 ) (1 ) a 2 a 2a 8 y 3a
为它们的共同分母。
3 a5 例题: (1 ) a 5a
ห้องสมุดไป่ตู้2 x 1 (2) x 1 1 x
1 1 (3) ; x3 x3 2a 1 (4) a 4 a2
2
分式的混合运算:
(1)
x+1 ÷ 2 x -2x+1 x- 1
x2 - 1
x- 1 x+1
x- 1 x+1
(2) 用两种方法计算:
1 x 1 1 1 x x
+ 1 a- b
1 1 2a
(3)
1 a 2- b 2
1 ÷ a+b

分式的乘法和除法

分式的乘法和除法

分式的乘法和除法。

答:分式的乘法和除法是分式运算中的重要内容,具体如下:分式的乘法法则:两个分式相乘,用分子的积做积的分子,分母的积做积的分母。

分式的除法法则:两个分式相除,将除式的分子、分母颠倒位置后,与被除式相乘。

分式的乘方法则:分式乘方是把分子、分母各自乘方。

分数的乘除法法则
1、两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
2、两个分数相除,把除数的分子分母颠倒位置后,再与被除式相乘。

即除以一个数等于乘以它的倒数!
知识点1分式的乘法:f/g×u/v=fu/gv
分式的除法:f/g÷v/u=f/g×u/v=fu/gv(u≠0,v≠0)
— 1—。

分式的乘除法混合运算

分式的乘除法混合运算

分式的乘除法混合运算在数学中,分式的乘除法混合运算是一种常见的运算形式。

它结合了分式的乘法和除法,需要我们掌握一定的运算规则和技巧。

本文将详细解释分式的乘除法混合运算的概念、计算方法和注意事项。

一、概念解释:分式是数学中的一种表示形式,通常由分子和分母组成,用水平线隔开。

分子表示分数的被除数,分母表示分数的除数。

分式的乘除法混合运算即在一个式子中同时进行分式的乘法和除法运算。

二、计算方法:1. 乘法运算:分式的乘法运算很简单,只需将两个分式的分子相乘并将其作为结果的分子,将两个分式的分母相乘并将其作为结果的分母。

例如,计算分式1/2乘以3/4的结果如下:(1/2) × (3/4) = (1 × 3) / (2 × 4) = 3/82. 除法运算:分式的除法运算比乘法稍微复杂一些。

我们需要将除数倒置,然后将除法转化为乘法运算。

即将除法a/b转化为a乘以b的倒数。

例如,计算分式2/3除以4/5的结果如下:(2/3) ÷ (4/5) = (2/3) × (5/4) = (2 × 5)/(3 × 4) = 10/123. 混合运算:分式的乘除法混合运算可以通过先进行乘法运算,再进行除法运算的顺序来计算。

例如,计算分式2/3乘以4/5再除以1/2的结果如下:(2/3) × (4/5) ÷ (1/2) = (2/3) × (4/5) × (2/1) = (2 × 4) / (3 × 5) × 2 = 16/15三、注意事项:在进行分式的乘除法混合运算时,需要特别注意以下几点:1. 括号的运用:如果混合运算中有括号存在,我们应当优先计算括号内的乘除法。

2. 化简分式:在得到运算结果后,我们应当尽可能地将其化简。

即将分子和分母的公因数约去,使分式的结果更加简洁。

3. 正确运用分数运算规则:在进行分式的乘除法混合运算时,需要按照分数的运算规则进行计算,确保运算的准确性。

分式乘除法的运算法则

分式乘除法的运算法则

分式乘除法的运算法则
分式乘除法是分式运算中最常用的操作,它的运算法则也很重要。

分式乘除法的乘法运算,就是把分子分别乘以分母,然后把积的分子和分母相乘,得到最终结果。

分式乘除法的除法运算,就是把分子和分母互换,然后再按乘法运算法则进行运算,得到最终结果。

当分子和分母都是相同的数时,分式乘除法的乘法和除法结果都是一个数,即1。

分式乘除法的运算法则很简单,就是分子分别乘以分母,或者把分子和分母互换,再按乘法运算法则进行运算,就可以得到最终结果了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察下列运算 猜想
分式的乘除法的法则:
两个分式相乘,把分子相乘的积作 为积的分子,把分母相乘的积作为积的 分母;
两个分式相除,把除式的分子和分 母颠倒位置后再与被除式相乘.
例1 计算 分式运算的结果通常要化成最简分式品种的西瓜时,西瓜的质量越大,花费的
钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大
1.分式的乘除法的法则
2.分式运算的结果通常要化成最简分式或 整式.
3. 学会类比的数学方法
作业
课本习题3.3第1,2题
越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度
看成是均匀的,西瓜的皮厚都是d,已知球的体积公式

(其中R为球的半径),那么
(1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积的比是多少?
(3)你认为买大西瓜合算还是买小西瓜合算?与同伴交 流.
例2计算
课堂练习
小结
相关文档
最新文档