高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法同步练习2无答案新人教A版选修1_2201907022243
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教A版选修2_2
某 个
至多 n-1个
至少 n+1个
【拓展延伸】反证法的适用范围 (1)否定性命题.
(2)命题的结论中出现“至少”“至多”“唯一”等词
语的.
(3)当命题成立非常明显,而要直接证明所用的理论太
少,且不容易说明的.
(4)要讨论的情况多或者复杂,而反面情况少或者简单 的.
(5)问题共有n种情况,现要证明其中有一种情况成立时,
2
类型一
用反证法证明否定性命题
【典例1】设{an}是公比为q(q≠0)的等比数列,Sn是它 的前n项和,求证:数列{Sn}不是等比数列.
【解题指南】本题为否定性命题,可以考虑用反证法证 明.
【解析】假设 Sn为等比数列,则S S1 S3 ,
2 2
所以a 1 q a1 a1 1 q q ,
【微思考】 1.我们常说“否定之否定即为肯定”,你能说明反证法 中的否定之否定的两个否定分别是指什么吗? 提示:第一个否定是指“否定结论”即假设,第二个否
定是指“逻辑推理结果否定了假设”.
2.反证法原理与利用等价命题即互为逆否命题的证明 思路有关吗? 提示:有关,反证法的原理为“互为逆否命题的两个命 题真假一致”,即:“P⇒Q”⇔“﹁Q⇒﹁P”.
形.
【证明】假设以任意三点为顶点的四个三角形都是锐 角三角形,四个点为A,B,C,D.
2.“自然数a,b,c中恰有一个偶数”的否定正确的为 ( A.a,b,c都是奇数 B.a,b,c都是偶数 )
C.a,b,c中至少有两个偶数
D.a,b,c中都是奇数或至少有两个偶数
【解析】选D.自然数a,b,c的奇偶性共有四种情 形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇 数,2个偶数;(4)3个都是偶数,所以否定正确的是a,b,c 中都是奇数或至少有两个偶数.
2018年秋高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 反证法学案 新人教A版选修2-2
2.2.2 反证法学习目标:1.了解反证法是间接证明的一种基本方法.(重点、易混点)2. 理解反证法的思考过程,会用反证法证明数学问题.(重点、难点)[自主预习·探新知]反证法的定义及证题的关键思考1:反证法的实质是什么?[提示]反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?[提示]反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.[基础自测]1.思考辨析(1)反证法属于间接证明问题的方法.( )(2) 反证法就是通过证明逆否命题来证明原命题.( )(3)反证法的实质是否定结论推出矛盾.( )[答案](1)√(2)×(3)√2.“a<b”的反面应是( )A.a≠b B.a>bC.a=b D.a=b或a>b[答案] D3.用反证法证明“如果a>b,那么3a>3b”,假设的内容应是________.【导学号:31062152】[答案]3a≤3b4.应用反证法推出矛盾的推导过程中,下列选项中可以作为条件使用的有________.(填序号)①结论的反设;②已知条件;③定义、公理、定理等;④原结论.[解析]反证法的“归谬”是反证法的核心,其含义是:从命题结论的假设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.[答案]①②③[合作探究·攻重难][证明]假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.∵a,b,c成等比数列,∴b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0,即a=c.从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[规律方法] 1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.用反证法证明数学命题的步骤[跟踪训练]1.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直.[证明]假设AC⊥平面SOB,如图,∵直线SO在平面SOB内,∴SO⊥AC.∵SO⊥底面圆O,∴SO⊥AB.∴SO⊥平面SAB.∴平面SAB∥底面圆O.这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直.【导学号:31062153】[证明]∵2x=3,∴x=log23,这说明方程2x=3有根.下面用反证法证明方程2x=3的根是唯一的:假设方程2x=3至少有两个根b1,b2(b1≠b2),则2b1=3,2b2=3,两式相除得2b1-b2=1.若b1-b2>0,则2 b1-b2>1,这与2 b1-b2=1相矛盾.若b1-b2<0,则2 b1-b2<1,这也与2 b1-b2=1相矛盾.∴b1-b2=0,则b1=b2.∴假设不成立,从而原命题得证.[规律方法]巧用反证法证明唯一性命题当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.[跟踪训练]2.求证:两条相交直线有且只有一个交点.[证明]假设结论不成立,则有两种可能:无交点或不止一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[1.你能阐述一下“至少有一个、至多有一个、至少有n个”等量词的含义吗?提示:2.个”等量词的反设词吗?提示:2a=0中至少有一个方程有实数解. 【导学号:31062154】[证明]假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧a 2--4a +<0,a -2-4a 2<0,a 2+4×2a <0,⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0.⇒-32<a <-1,这与已知a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.母题探究:1.(变条件)将本题改为:已知下列三个方程x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实数根,如何求实数a 的取值范围?[解] 若方程没有一个有实根,则 ⎩⎪⎨⎪⎧16a 2--4a <0,a -2-4a 2<0,4a 2+8a <0,解得⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0.即-32<a <-1,故三个方程至少有一个方程有实根,实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32. 2.(变条件)将本题条件改为三个方程中至多有2个方程有实数根,求实数a 的取值范围. [解] 假设三个方程都有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2≥0,a 2+4×2a ≥0,即⎩⎪⎨⎪⎧4a 2+4a -3≥0,3a 2+2a -1≤0,a 2+2a ≥0,解得⎩⎪⎨⎪⎧a ≤-32或a ≥12,-1≤a ≤13,a ≤-2或a ≥0.即a ∈∅.所以实数a 的取值范围为实数R .[规律方法] 当命题中出现“至少……”、“至多……”、“不都……”、“都不……”、“没有……”、“唯一”等指示性词语时,宜用反证法.提醒:对于此类问题,需仔细体会“至少有一个”、“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.[当堂达标·固双基]1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )【导学号:31062155】A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角C[“最多只有一个”的否定是“至少有两个”,故选C.]2.如果两个实数之和为正数,则这两个数( )A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数C[假设两个数分别为x1、x2,且x1≤0,x2≤0,则x1+x2≤0,这与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.]3.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b与c是异面直线,若利用反证法证明,则应假设________.[解析]∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.[答案]b与c平行或相交4.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A、∠B、∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为________. 【导学号:31062156】[解析]根据反证法证题的三步骤:否定结论、导出矛盾、得出结论.[答案]③①②5. 设数列{a n}是公比为q的等比数列,S n是它的前n项和.求证:数列{S n}不是等比数列.[证明]假设数列{S n}是等比数列,则S22=S1S3,即a21(1+q)2=a1·a1(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾.所以数列{S n}不是等比数列.。
高中数学《第二章推理与证明2.2直接证明与间接证明2.2.2反证法...》730PPT课件
§2.2.2 反证法
一般地,假设原命题不成立(即在原命题的 条件下,结论不成立),经过正确的推理, 最后得出矛盾。因此说明假设错误,从而证 明了原命题成立,这样的证明方法叫做反证 法。
这种不是直接从原命题的条件逐步推得 命题成立的证明方法称为间接证明
注:反证法是最常见的间接证法。
探究反证法的证明过程
反证法
意溪中学
温故迎新
1.直接证明的两种基本证法: 综合法和分析法
2.这两种基本证法的推证过程和特点:
综合法: 已知条件 结论 由因导果
分析法: 结论 已知条件 执果索因
3、在实际解题时,两种方法如何运用? 通常用分析法寻求思路, 再由综合法书写过程.
道 旁 苦 李
王戎的结论:李子是苦的
反证法的思维方法:正难则反
例题:
c
已知:如图,直线a,b被直线c所截,
a
∠1 ≠ ∠2
1
b
求证:a∥
2
证明:(反设) 假设结论不成立,则a∥b
(归缪) ∴∠1=∠2 (两直线平行,同位角相等)
这与已知的∠1≠∠2矛盾 ∴假设不成立
(存真) ∴a∥b
准确地作出反设(即否定结论)是非常重要的, 否定必须要全面
∴ ax1 - ax2 = 0 ∴a(x1 - x2)= 0
∵a ≠ 0
∴x 1
-x 2
0,即x1
=
x 2
与x 1
x 矛盾 2
故假设不成立,结论成立。
注:结论中的有且只有(有且仅有)形式出现,
是唯一性问题,常用反证法
总结回顾:
1、反证法的一般步骤:
与假设、已知、 定义、定理、 公理或者事实 矛盾等
或等于60度.
高中数学 第2章 推理与证明 2.2 直接证明与间接证明 2.2.1 直接证明讲义(含解析)苏教版选
直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法直接证明 定义推证过程综合法 从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件⇒…⇒…⇒结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法 结论⇐…⇐…⇐已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27]综合法的应用[例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨]从已知条件出发,结合基本不等式,即可得出结论. [精解详析]∵a 2+19≥2a 3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎪⎫a 2+19+⎝ ⎛⎭⎪⎫b 2+19+⎝ ⎛⎭⎪⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通]综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab .又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面PAO ,PO ∩b =P ,∴a ⊥平面PAO .又c平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.分析法的应用[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨]本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析]要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b 成立,即证(a -b )24a <(a -b )2<(a -b )24b 成立.只需证a -b 2a <a -b <a -b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通]在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥a+b.证明:要证ab+ba≥a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥a+b.综合法与分析法的综合应用[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨]因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析]∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通](1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c . 证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c =1, 只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bc b 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc=1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bc b 2+ab +ac +bc =a 2+c 2+ab +bc a 2+c 2-ac +ab +ac +bc=1. 故原等式成立.6.若a ,b ,c 是不全相等的正数. 求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O , ∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2ab a +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝⎛⎭⎪⎫2ab a +b ,即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ). 7.已知a >0,用分析法证明:a 2+1a 2-2>a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +2,从而只需证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(某某高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S n n=a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。
高中数学 第二章 推理与证明 2.2 直接证明与间接证明 反证法可用来解决哪些问题素材 新人教A版选修2-2
反证法可用来解决哪些问题一、证明几何量之间的关系例1. 如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。
求证:AC 与平面SOB 不垂直。
分析:结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。
证明:假设AC ⊥平面SOB ,∵ 直线SO 在平面SOB 内, ∴ AC ⊥SO , ∵ SO ⊥底面圆O , ∴ SO ⊥AB ,∴ SO ⊥平面SAB , ∴平面SAB ∥底面圆O ,这显然出现矛盾,所以假设不成立.即AC 与平面SOB 不垂直。
否定性的问题常用反证法。
例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。
上面所举的例子,用直接证法证明比较困难,尤其是证两条直线是异面直线,常采用反证法。
二、证明“唯一性”问题例2:试证明:在平面上所有通过点)0,2(的直线中,至少通过两个有理点(有理点指坐标x 、y 均为有理数的点)的直线有一条且只有一条。
证明:先证存在性。
因为直线0=y ,显然通过点)0,2(,且直线0=y 至少通过两个有理点,例如它通过)0,0(和)0,1(。
这说明满足条件的直线有一条。
再证唯一性。
假设除了直线0=y 外还存在一条直线b kx y +=(0≠k 或0≠b )通过点)0,2(,且该直线通过有理点A ),(11y x 与B ),(22y x ,其中1x 、1y 、2x 、2y 均为有理数。
因为直线b kx y +=通过点)0,2(,所以k b 2-=,于是)2(-=x k y ,且0≠k 。
又直线通过A ),(11y x 与B ),(22y x 两点,所以)2(11-=x k y , ①)2(-=x k y ②①-②,得)(2121x x k y y -=- ③因为A 、B 是两个不同的点,且0≠k ,所以21x x ≠,21y y ≠, 由③,得2121x x y y k --=,且k 是不等于零的有理数;由①,得k y x 112-=. 此式的左边是无理数,右边是有理数,出现了矛盾。
高中数学《第二章推理与证明2.2直接证明与间接证明2.2.2反证法...》718PPT课件
B. abc≠0(D) NhomakorabeaC. a≠0,b≠0,c≠0
D. a≠0或b≠0或c≠0
课堂练习
2. 在△ABC中,若∠C是直角,则 ∠B 一定是锐角.
3. 求证: 2 , 3 , 5 不可能成 等差数列.
课堂练习
4. 已知a,b,c均为实数,且
a x2 2 y ,b y2 2z ,
2
3
c z2 2x .
例题讲解
例1. 已知a 0,证明x的方程ax b 有且只有一个根.
例题讲解
例2. 已知直线a,b 和平面,如果 a ,b ,且a // b,求证a // .
a
b
新课讲授
注 意:
反证法的关键是在正确的推理下得 出矛盾. 这个矛盾可以是与已知条件矛 盾,或与假设矛盾,或与定义、定理、 公理、事实矛盾等.
6
求证:a,b,c中至少有一个大于0.
课堂小结
1.“反证法”的解题步骤: (1)提出反设(否定结论); (2)推出矛盾(与已知、假设、定义、 定理、公理、事实矛盾,这是关键 的一步); (3)否定假设,肯定结论.
2.反证法一般应用于证明“结论含有否定词、 至多、至少、唯一性”的问题.
课后作业
《学案》与《习案》.
课堂练习
1. 用反证法证明命题“若a2+b2+c2=0,
则a=b=c=0”时,第一步应假设
(
)
A. a≠b≠c≠0
B. abc≠0
C. a≠0,b≠0,c≠0
D. a≠0或b≠0或c≠0
课堂练习
1. 用反证法证明命题“若a2+b2+c2=0,
则a=b=c=0”时,第一步应假设
A. a≠b≠c≠0
2.2.2 反证法
高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 反证法导学案 新人教A版选修
湖北省松滋市高中数学第二章推理与证明 2.2 直接证明与间接证明2.2.2 反证法导学案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省松滋市高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法导学案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省松滋市高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法导学案新人教A版选修2-2的全部内容。
2。
2.2 反证法【学习目标】1。
了解反证法的基本原理;2。
掌握运用反证法的一般步骤;3.学会用反证法证明一些典型问题。
【重点难点】重点:反证法的实质.难点:如何产生矛盾。
【使用说明与学法指导】1.课前用20分钟预习课本P89—91内容.并完成书本上练、习题及导学案上的问题导学。
2.独立思考,认真限时完成,规范书写.课上小组合作探究,答疑解惑。
【问题导学】1。
反证法?反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
2.反证法常见矛盾类型?反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾或与假设矛盾或与定义、定理、公理、事实矛盾等.3.反证法的实质是什么?反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的。
4. 反证法属于直接证明还是间接证明?其证明过程属合情推理还是演绎推理?反证法是间接证明中的一种方法,其证明过程是逻辑非常严格的演绎推理.【合作探究】问题1:用反证法证明否定性命题1。
2019年高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法优化练习2-2
2.2.2 反证法[课时作业] [A 组 基础巩固]1.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( ) A .a <b B .a ≤b C .a =bD .a ≥b解析:“a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B. 答案:B2.用反证法证明命题:“a ,b ,c ,d ∈R ,a +b =1,c +d =1,且ac +bd >1,则a ,b ,c ,d 中至少有一个负数”时的假设为( )A .a ,b ,c ,d 全都大于等于0B .a ,b ,c ,d 全为正数C .a ,b ,c ,d 中至少有一个正数D .a ,b ,c ,d 中至多有一个负数解析:至少有一个负数的否定是一个负数也没有,即a ,b ,c ,d 全都大于等于0. 答案:A3.“自然数a ,b ,c 中恰有一个偶数”的否定正确的为( ) A .a ,b ,c 都是奇数 B .a ,b ,c 都是偶数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a ,b ,c 中都是奇数或至少有两个偶数.答案:D4.给定一个命题“已知x 1>0,x 2≠1且x n +1=x 3n +3x n3x 2n +1,证明对任意正整数n 都有x n >x n +1”,当此题用反证法否定结论时应是( )A .对任意正整数n 有x n ≤x n +1B .存在正整数n 使x n ≤x n +1C .存在正整数n 使x n >x n +1D .存在正整数n 使x n ≥x n -1且x n ≥x n +1解析:“对任意正整数n 都有x n >x n +1”的否定为“存在正整数n 使x n ≤x n +1”. 答案:B5.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝⎛⎭⎪⎫b +1c =⎝ ⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c∵a ,b ,c ∈(-∞,0),∴a +1a=-⎣⎢⎡⎦⎥⎤-a +⎝ ⎛⎭⎪⎫-1a ≤-2,b +1b=-⎣⎢⎡⎦⎥⎤-b +⎝ ⎛⎭⎪⎫-1b ≤-2,c +1c =-⎣⎢⎡⎦⎥⎤-c +⎝ ⎛⎭⎪⎫-1c ≤-2, ∴⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c ≤-6, ∴三数a +1b、c +1a、b +1c中至少有一个不大于-2,故应选C. 答案:C6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________________________________________________________________________.解析:“至少有一个”的否定是“没有一个”. 答案:没有一个是三角形或四边形或五边形7.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证∠BAP <∠CAP .用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP . 答案:∠BAP =∠CAP 或∠BAP >∠CAP8.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,则∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为________.解析:由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.答案:③①②9.已知a ≥-1,求证以下三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数解.证明:假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧a 2--4a +<0a -2-4a 2<0a 2+4×2a <0⇒⎩⎪⎨⎪⎧-32<a <12a >13或a <-1-2<a <0⇒-32<a <-1,这与已知 a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.10.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.证明:假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0,即(x +y 2)2+34y 2=0.由y ≠0,得34y 2>0.又(x +y2)2≥0,所以(x +y 2)2+34y 2>0.与x 2+y 2+xy =0矛盾,故原命题成立.[B 组 能力提升]1.有甲、乙、丙、丁四位歌手参加比赛,其中一位获奖,有人走访了这四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁解析:若甲获奖,则甲、乙、丙、丁四位歌手说的话都是假的,同理可推出乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.答案:C2.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不确定解析:分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意.答案:B3.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n .答案:04.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:据题目要求及解题步骤,因为a 1-1,a 2-2,...,a 7-7均为奇数, 所以(a 1-1)+(a 2-2)+...+(a 7-7)也为奇数. 即(a 1+a 2+...+a 7)-(1+2+...+7)为奇数. 又因为a 1,a 2,...,a 7是1,2,...,7的一个排列, 所以a 1+a 2+...+a 7=1+2+...+7,故上式为0. 所以奇数=(a 1-1)+(a 2-2)+...+(a 7-7) =(a 1+a 2+...+a 7)-(1+2+...+7)=0. 答案:(a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)5.已知a ,b ,c 都是小于1的正数,求证:(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14.∵a ,b ,c 都是小于1的正数, ∴-a b >12,-b c >12,-c a >12,∴-a b +-b c +-c a >32.(*)又∵-a b ≤1-a +b2,-b c ≤1-b +c2,-c a ≤1-c +a2,∴-a b+-b c+-c a≤1-a +b 2+1-b +c 2+1-c +a 2=3-a +b +c +a +b +c2=32(当且仅当1-a =b,1-b =c,1-c =a ,即a =b =c =12时,等号成立),与(*)式矛盾.∴假设不成立,原命题成立,故(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于14.6.求证:抛物线上任取四个不同点所组成的四边形不可能是平行四边形.证明:如图,设抛物线方程为y 2=2px (p >0),在抛物线上任取四个不同点的坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 则y 2i =2px i (i =1,2,3,4), 于是直线AB 的斜率为k AB =y 2-y 1x 2-x 1=2py 1+y 2, 同理:k BC =2p y 3+y 2,k CD =2p y 4+y 3,k DA =2py 1+y 4. 假设四边形ABCD 为平行四边形, 则有k AB =k CD ,k BC =k DA ,即有⎩⎪⎨⎪⎧y 2+y 1=y 4+y 3 ①y 3+y 2=y 1+y 4 ②①-②得y 1-y 3=y 3-y 1, ∴y 1=y 3,同理y 2=y 4,则x 1=y 212p =y 232p=x 3,同理x 2=x 4,由⎩⎪⎨⎪⎧x 1=x 3y 1=y 3,⎩⎪⎨⎪⎧x 2=x 4y 2=y 4.显然A ,C 重合,B ,D 重合.这与A ,B ,C ,D 为抛物线上任意四点矛盾,故假设不成立. ∴四边形ABCD 不可能是平行四边形.。
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法优化练习新人教A版选修1-2(20
2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法优化练习新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法优化练习新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法优化练习新人教A版选修1-2的全部内容。
2。
2。
2 反证法[课时作业][A组基础巩固]1.用反证法证明:“自然数a,b,c中恰有一个偶数”时正确的反设为( )A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数解析:自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c 中都是奇数或至少有两个偶数.”答案:D2.实数a,b,c满足a+2b+c=2,则()A.a,b,c都是正数B.a,b,c都大于1C.a,b,c都小于2D.a,b,c中至少有一个不小于1 2解析:假设a,b,c中都小于错误!,则a+2b+c<错误!+2×错误!+错误!=2,与a+2b+c=2矛盾∴a,b,c中至少有一个不小于错误!。
答案:D3.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,(2)已知a,b∈R,|a|+|b|〈1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是( )A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确解析:(1)的假设应为p+q>2;(2)的假设正确.答案:D4.设a,b,c大于0,则3个数:a+错误!,b+错误!,c+错误!的值( )A.都大于2 B.至少有一个不大于2C.都小于2 D.至少有一个不小于2解析:假设a+错误!,b+错误!,c+错误!都小于2则a+错误!<2,b+错误!〈2,c+错误!〈2∴a+错误!+b+错误!+c+错误!<6,①又a,b,c大于0所以a+错误!≥2,b+错误!≥2,c+错误!≥2。
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法212数学
2.应用反证法推出矛盾的推导过程中要把下列哪些
作为条件使用( )
①结论的否定,即假设;②原命题的条件;③公理、
定理、定义等;④原命题的结论.
A.①②
B.①②④
C.①②③
D.②③
解析:由反证法的定义,可将①②③作为条件使用,
而④(原命题的结论)不能作为条件使用.
答案:C
第七页,共二十八页。
第二章 推理(tuīlǐ)与证明
第一页,共二十八页。
2.2 直接证明与间接证明 2.2.2 反证法
[学习目标] 1.了解反证法是间接证明的一种基本方 法(重点).2.理解反证法的思考过程,会用反证法证明数学 问题(重点、难点).
第二页,共二十八页。
1.反证法 (1)反证法是间接证明的一种基本方法. (2)一般地,假设原命题不成立(即在原命题的条件下, 结论不成立),经过正确的推理,最后得出矛盾,因此说 明假设错误,从而证明了原命题成立,这种证明方法叫作 反证法.
归纳升华 1.反证法证明唯一性命题的适用类型:当证明结论 是“有且只有”“只有一个”“唯一”等形式的命题时, 由于从假设的结论中易于导出矛盾,所以用反证法证明 唯一性比较简单. 2.证明“有且只有一个”的问题,需要证明两个方 面,即存在性问题和唯一性问题两个方面.
第十八页,共二十八页。
[变式训练] 用反证法证明:过已知直线 a 外一点 A 只有一条直线 b 与已知直线 a 平行.
第二十一页,共二十八页。
[迁移探究 1] (变换条件)已知 a,b,c∈(0,2),求 证:(2-a)b,(2-b)c,(2-c)a 不能都大于 1.
证明:假设(2-a)b,(2-b)c,(2-c)a 都大于 1. 因为 a,b,c∈(0,2) 所以 2-a>0,2-b>0,2-c>0. 所以(2-2a)+b≥ (2-a)b>1. 同理(2-2b)+c≥ (2-b) c>1.
高中数学第2章推理与证明2.2直接证明与间接证明2.2.2反证法b12b高二12数学
12/9/2021
第三页,共二十九页。
(2)应用反证法证明数学命题的一般步骤 ①分清_命__题__(m_ìn_g_tí_)的__条_件__和__结_论_; ②做出_与__命__题__结_论__(_jié_lù_n)_相_矛__盾_的假定; ③由_假__定_出__发__,_应__用__(y_ìn_gy_ò_ng_)正__确__的_推__理__方_法__,推出矛盾的结果; ④断定产生矛盾结果的原因,在于_开__始__所_做__的__假__定_不__真_____,于
12/9/2021
第二十三页,共二十九页。
2.用反证法证明命题“设 a、b 为实数,则方程 x3+ax+b=0 至少有一个实根”时,要做的假设是( ) A.方程 x3+ax+b=0 没有实根 B.方程 x3+ax+b=0 至多有一个实根 C.方程 x3+ax+b=0 至多有两个实根 D.方程 x3+ax+b=0 恰好有两个实根 解析:选 A.“至少有一个”的反面是“一个也没有”,故选 A.
12/9/2021
第二十八页,共二十九页。
内容(nèiróng)总结
第二章 推理(tuīlǐ)与证明
No
Image
12/9/2021
第二十九页,共二十九页。
设 a>0,b>0,且 a+b=1a+1b,求证:a2+a<
2 与 b2+b<2 至多有一个成立. 证明:因为 a+b=1a+1b=a+ abb,
因为 a>0,b>0,所以 ab=1.
假设 a2+a<2 与 b2+b<2 同时成立,
则由 a2+a<2 及 a>0
得 0<a<1;同理 0<b<1,
从而 ab<1,这与 ab=1 矛盾,
4.“任何三角形的外角都至少有两个钝角”的否定应是______. 解析:至少有两个的否定是至多有一个. 答案:存在一个三角形,其外角最多有一个钝角
(精品人教)2020年高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法优化练习1-2
2.2.2 反证法[课时作业][A 组 基础巩固]1.用反证法证明:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( )A .a ,b ,c 都是偶数B .a ,b ,c 都是奇数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.” 答案:D2.实数a ,b ,c 满足a +2b +c =2,则( )A .a ,b ,c 都是正数B .a ,b ,c 都大于1C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12, 则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾 ∴a ,b ,c 中至少有一个不小于12. 答案:D3.(1)已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2,(2)已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1,以下结论正确的是( )A .(1)与(2)的假设都错误B .(1)与(2)的假设都正确C .(1)的假设正确;(2)的假设错误D .(1)的假设错误;(2)的假设正确解析:(1)的假设应为p +q >2;(2)的假设正确.答案:D4.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a的值( ) A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2 解析:假设a +1b,b +1c ,c +1a 都小于2 则a +1b <2,b +1c <2,c +1a<2 ∴a +1b +b +1c +c +1a<6,① 又a ,b ,c 大于0所以a +1a ≥2,b +1b ≥2,c +1c≥2. ∴a +1b +b +1c +c +1a≥6.② 故①与②式矛盾,假设不成立所以a +1b ,b +1c ,c +1a至少有一个不小于2. 答案:D5.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是( )A .假设三内角都不大于60°B .假设三内角都大于60°C .假设三内角至少有一个大于60°D .假设三内角至多有两个大于60°解析:三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°.答案:B6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.解析:“至少有一个”的否定是“没有一个”.答案:没有一个是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).解析:显然①、②不能推出,③中a +b >2能推出“a ,b 中至少有一个大于1”否则a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾.④中取a =-2,b =0,推不出.答案:③8.用反证法证明质数有无限多个的过程如下:假设________.设全体质数为p 1,p 2,…,p n ,令p =p 1p 2…p n +1.显然,p 不含因数p 1,p 2,…,p n .故p 要么是质数,要么含有________的质因数.这表明,除质数p 1,p 2,…,p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个.解析:由反证法的步骤可得.答案:质数只有有限多个 除p 1,p 2,…,p n 之外9.用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行.证明:由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行.假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a .因为b ∥a ,由平行公理知b ′∥b .这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立.10.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根. 证明:假设x 0是f (x )=0的负数根,则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1, 由0<ax 0<1⇒0<-x 0-2x 0+1<1, 解之得12<x 0<2,这与x 0<0矛盾, 所以假设不成立.故方程f (x )=0没有负实根.[B 组 能力提升]1.已知直线a ,b 为异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( )A .一定是异面直线B .一定是相交直线C .不可能是平行直线D .不可能是相交直线解析:假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线. 答案:C2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 解析:“a 、b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”.答案:a ,b 不全为03.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n .答案:04.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14, 证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14. 因为0<a <1,0<b <1,所以1-a >0. 由基本不等式-a +b 2≥-a b >12同理-b +c 2>12,-c +a 2>12以上三个不等式相加-a +b 2+1-b +c 2+-c +a 2>32,即32>32. 这是不可能的.故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14. 5.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明数列{c n }不是等比数列. 证明:假设数列{c n }是等比数列,则(a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q , 所以a 2n =a n -1a n +1,b 2n =b n -1b n +1.代入①并整理,得2a n b n =a n +1b n -1+a n -1b n +1 =a n b n ⎝ ⎛⎭⎪⎫p q +q p , 即2=p q +q p .②当p ,q 异号时,p q +q p <0,与②相矛盾;当p ,q 同号时,由于p ≠q ,所以p q +q p>2,与②相矛盾.故数列{c n }不是等比数列.。
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法a22a高二22数学
当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,
可用反证法证明,证明时常见的“结论词”与“反设词”如下:
结论词
反设词
结论词
反设词
至少有一个 至多有一个
一个也没有 至少有两个
对所有 x 成立 存在某个 x0 不成立 对任意 x 不成立 存在某个 x0 成立
12/13/2021
2.(2014·高考山东卷)用反证法证明命题“设 a,b 为实数,则方程 x3+ax+b=0 至少有一个实根”时,要做的假设是( ) A.方程 x3+ax+b=0 没有实根 B.方程 x3+ax+b=0 至多有一个实根 C.方程 x3+ax+b=0 至多有两个实根 D.方程 x3+ax+b=0 恰好有两个实根 解析:至少有一个实根的否定是没有实根,故要做的假设是“方程 x3+ax+b=0 没有实根”. 答案:A
因为 x>0 且 y>0,
所以 1+x≥2y 且 1+y≥2x,
12/13/2021
两式相加,得 2+x+y≥2x+2y, 所以 x+y≤2,这与已知条件 x+y>2 矛盾, 因此1+y x<2 和1+x y<2 中至少有一个成立.
12/13/2021
探究三 用反证法证明唯一性命题
[典例 3] 求证:两条相交直线有且只有一个交点. [证明] 已知:a与b是两条相交直线, 求证:a与b有且只有一个交点. 证明:假设结论不正确,则有两种可能:a与b无交点,或不止有一个交点. 若直线a,b无交点, 则a∥b或a,b是异面直线,与已知矛盾. 若直线a,b不止有一个交点, 则至少有两个交点A和B,
12/13/2021
[随堂训练] 1.用反证法证明命题:“三角形三个内角至少有一个不大于 60°”时,应假设( ) A.三个内角都不大于 60° B.三个内角都大于 60° C.三个内角至多有一个大于 60° D.三个内角至多有两个大于 60°
【2019最新】高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法优化练习
2.2.2 反证法[课时作业] [A 组 基础巩固]1.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( ) A .a <b B .a ≤b C .a =bD .a ≥b解析:“a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B. 答案:B2.用反证法证明命题:“a ,b ,c ,d ∈R ,a +b =1,c +d =1,且ac +bd >1,则a ,b ,c ,d 中至少有一个负数”时的假设为( )A .a ,b ,c ,d 全都大于等于0B .a ,b ,c ,d 全为正数C .a ,b ,c ,d 中至少有一个正数D .a ,b ,c ,d 中至多有一个负数解析:至少有一个负数的否定是一个负数也没有,即a ,b ,c ,d 全都大于等于0. 答案:A3.“自然数a ,b ,c 中恰有一个偶数”的否定正确的为( ) A .a ,b ,c 都是奇数 B .a ,b ,c 都是偶数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a ,b ,c 中都是奇数或至少有两个偶数.答案:D4.给定一个命题“已知x 1>0,x 2≠1且x n +1=x 3n +3x n3x 2n +1,证明对任意正整数n 都有x n >x n +1”,当此题用反证法否定结论时应是( )A .对任意正整数n 有x n ≤x n +1B .存在正整数n 使x n ≤x n +1C .存在正整数n 使x n >x n +1D .存在正整数n 使x n ≥x n -1且x n ≥x n +1解析:“对任意正整数n 都有x n >x n +1”的否定为“存在正整数n 使x n ≤x n +1”. 答案:B5.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝⎛⎭⎪⎫b +1c =⎝ ⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c∵a ,b ,c ∈(-∞,0),∴a +1a=-⎣⎢⎡⎦⎥⎤-a +⎝ ⎛⎭⎪⎫-1a ≤-2,b +1b=-⎣⎢⎡⎦⎥⎤-b +⎝ ⎛⎭⎪⎫-1b ≤-2,c +1c =-⎣⎢⎡⎦⎥⎤-c +⎝ ⎛⎭⎪⎫-1c ≤-2, ∴⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c ≤-6, ∴三数a +1b、c +1a、b +1c中至少有一个不大于-2,故应选C. 答案:C6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________________________________________________________________________.解析:“至少有一个”的否定是“没有一个”. 答案:没有一个是三角形或四边形或五边形7.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证∠BAP <∠CAP .用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP8.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤: ①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,则∠A =∠B =90°不成立;②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为________.解析:由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.答案:③①②9.已知a ≥-1,求证以下三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数解.证明:假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧a 2--4a +<0a -2-4a 2<0a 2+4×2a <0⇒⎩⎪⎨⎪⎧-32<a <12a >13或a <-1-2<a <0⇒-32<a <-1,这与已知 a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.10.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.证明:假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0,即(x +y 2)2+34y 2=0.由y ≠0,得34y 2>0.又(x +y2)2≥0,所以(x +y 2)2+34y 2>0.与x 2+y 2+xy =0矛盾,故原命题成立.[B 组 能力提升]1.有甲、乙、丙、丁四位歌手参加比赛,其中一位获奖,有人走访了这四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁解析:若甲获奖,则甲、乙、丙、丁四位歌手说的话都是假的,同理可推出乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.答案:C2.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不确定解析:分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意.答案:B3.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n .答案:04.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:据题目要求及解题步骤,因为a 1-1,a 2-2,...,a 7-7均为奇数, 所以(a 1-1)+(a 2-2)+...+(a 7-7)也为奇数. 即(a 1+a 2+...+a 7)-(1+2+...+7)为奇数. 又因为a 1,a 2,...,a 7是1,2,...,7的一个排列, 所以a 1+a 2+...+a 7=1+2+...+7,故上式为0. 所以奇数=(a 1-1)+(a 2-2)+...+(a 7-7) =(a 1+a 2+...+a 7)-(1+2+...+7)=0. 答案:(a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)5.已知a ,b ,c 都是小于1的正数,求证:(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14.∵a ,b ,c 都是小于1的正数, ∴-a b >12,-b c >12,-c a >12,∴-a b +-b c +-c a >32.(*)又∵-a b ≤1-a +b2,-b c ≤1-b +c2,-c a ≤1-c +a2,∴-a b +-b c +-c a ≤1-a +b 2+1-b +c 2+1-c +a2=3-a +b +c +a +b +c 2=32(当且仅当1-a =b,1-b =c,1-c =a ,即a =b =c =12时,等号成立),与(*)式矛盾.∴假设不成立,原命题成立,故(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于14.6.求证:抛物线上任取四个不同点所组成的四边形不可能是平行四边形.证明:如图,设抛物线方程为y 2=2px (p >0),在抛物线上任取四个不同点的坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 则y 2i =2px i (i =1,2,3,4), 于是直线AB 的斜率为k AB =y 2-y 1x 2-x 1=2py 1+y 2, 同理:k BC =2p y 3+y 2,k CD =2p y 4+y 3,k DA =2py 1+y 4. 假设四边形ABCD 为平行四边形, 则有k AB =k CD ,k BC =k DA ,即有⎩⎪⎨⎪⎧y 2+y 1=y 4+y 3 ①y 3+y 2=y 1+y 4 ②①-②得y 1-y 3=y 3-y 1, ∴y 1=y 3,同理y 2=y 4,则x 1=y 212p =y 232p=x 3,同理x 2=x 4,由⎩⎪⎨⎪⎧x 1=x 3y 1=y 3,⎩⎪⎨⎪⎧x 2=x 4y 2=y 4.显然A ,C 重合,B ,D 重合.这与A ,B ,C ,D 为抛物线上任意四点矛盾,故假设不成立.∴四边形ABCD 不可能是平行四边形.。
高中数学 第二章 推理与证明 2.2 直接证明与间接证明 反证法证明素材 新人教A版选修22
反证法证明
反证法的证明主要用到“一个命题与其逆否命题同真假”的结论,为什么?这个结论可以用穷举法证明:
某命题:若A则B,则此命题有4种情况:
1.当A为真,B为真,则A→B为真,得﹁B﹁A为真;
2.当A为真,B为假,则A→B为假,得﹁B→﹁A为假;
3.当A为假,B为真,则A→B为真,得﹁B→﹁A为真;
4.当A为假,B为假,则A→B为真,得﹁B→﹁A为真;
∴一个命题与其逆否命题同真假
即关于〉=〈的问题:
大于 -〉反义:小于或等于
都大于-〉反义:至少有一个不大于
小于 -〉反义:大于或等于
都小于-〉反义:至少有一个不小于
即反证法是正确的。
与若A则B先等价的是它的逆否命题若﹁B则﹁A
假设﹁B,推出﹁A,就说明逆否命题是真的,那么原命题也是真的.
但实际推证的过程中,推出﹁A是相当困难的,所以就转化为了推出与﹁A相同效果的内容即可,这个相同效果就是与A(已知条件)矛盾,或是与已知定义,定理,大家都知道的事实等矛盾.
1。
【2020】最新高中数学第2章推理与证明2-2直接证明与间接证明2-2-2反证法学案新人教A版选修1-2
故 , , 不成等差数列.
[规律方法]
1.用反证法证明否定性命题的适用类型
结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.
2.用反证法证明数学命题的步骤
[跟踪训练]
1.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直.
【2020】最新高中数学第2章推理与证明2-2直接证明与间接证明2-2-2反证法学案新人教A版选修1-2
编 辑:__________________
时 间:__________________
2.2.2 反证法
学习目标:1.了解反证法是间接证明的一种基本方法.(重点、易混点)2. 理解反证法的思考过程,会用反证法证明数学问题.(重点、难点)
[自 主 预 习·探 新 知]
反证法的定义及证题的关键
思考1:反证法的实质是什么?
[提示]反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.
思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?
[提示]反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.
B.有三个内角是钝角
C.至少有两个内角是钝角
D.没有一个内角是钝角
C[“最多只有一个”的否定是“至少有两个”,故选C.]
2.如果两个实数之和为正数,则这两个数( )
【导学号:48662085】
A.一个是正数,一个是负数
B.两个都是正数
C.至少有一个正数
D.两个都是负数
C[假设两个数分别为x1、x2,且x1≤0,x2≤0,则x1+x2≤0,这与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.]
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教B版选修22
2 -2
1 -2
−
2 +1 1 +1
> 0.
故函数 f(x)在(-1,+∞)内为增函数.
(2)假设存在 x0<0(x0≠-1),满足 f(x0)=0,则
0 = −
0 -2
, 且0<
0 +1
0 -2
∴0<−
0 +1
<
0 < 1,
1
1, 即
2
< 0 < 2, 与假设x0<0 矛盾,故方程 f(x)=0
2.2.2
反证法
第一页,共21页。
1.掌握间接证明的常见(chánɡ jiàn)方法(反证法)的推理特点.
2.学会写出命题的否定,并以此作条件推出矛盾结论,即学习用反证法证
明简单题目.
第二页,共21页。
反证法
一般地,由证明p⇒q转向证明:¬ q⇒r⇒…⇒t,t与假设矛盾,或与某个真
命题矛盾.从而判定¬ q为假,推出q为真的(zhēn de)方法,叫做反证法.
处是“假设”易错写成“设”.
反证法不是直接证明结论,而是先否定结论,在否定结论的基础上运用演
绎推理,导出矛盾,从而肯定结论的正确性.
第八页,共21页。
题型一
题型二
题型三
题型四
命题的结论(jiélùn)是否定型
【例题 1】 已知函数 f(x)=a
x
-2
+ +1 (
> 1).
(1)证明函数f(x)在(-1,+∞)内为增函数;
答案:D
第十九页,共21页。
1
2
3
4
5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2 反证法
1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )
A.有两个内角是钝角
B.有三个内角是钝角
C.至少有两个内角是钝角
D.没有一个内角是钝角
2.实数a,b,c满足a+2b+c=2,则( )
A.a,b,c都是正数
B.a,b,c都大于1
C.a,b,c都小于2
D.a,b,c中至少有一个不小于
3.(1)已知:p3+q3=2,求证:p+q≤2.用反证法证明时,可假设p+q≥2.
(2)已知:a,b∈R,|a|+|b|<1,求证:方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是( )
A.(1)与(2)的假设都错误
B.(1)与(2)的假设都正确
C.(1)的假设正确,(2)的假设错误
D.(1)的假设错误,(2)的假设正确
4.设a,b,c大于0,则3个数:a+,b+,c+的值( )
A.都大于2
B.至少有一个不大于2
C.都小于2
D.至少有一个不小于2
5.设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于零”的( )
A.充分条件
B.必要条件
C.充分必要条件
D.既不充分也不必要条件
6.若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )
A.钝角三角形
B.直角三角形
C.锐角三角形
D.不能确定
7.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是_______ _______________.
8.设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.
其中能推出“a,b中至少有一个大于1”的条件是______________(填序号).
9.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则
∠A=∠B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.
正确顺序的序号排列为__________.
10.已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,
求证:a,b,c,d中至少有一个是负数.。