第12讲隐马尔科夫模型

合集下载

隐马尔可夫模型原理

隐马尔可夫模型原理

隐马尔可夫模型原理
隐马尔可夫模型(Hidden Markov Model, HMM)是一种用来
描述状态序列的概率模型。

它基于马尔可夫链的理论,假设系统的状态是一个没有直接观察到的随机过程,但可以通过观察到的结果来推断。

HMM的原理可以分为三个关键要素:状态集合、转移概率矩
阵和观测概率矩阵。

1. 状态集合:HMM中的状态是不能直接观测到的,但可以从
观测序列中推断出来。

状态集合可以用S={s1, s2, ..., sn}表示,其中si表示第i个状态。

2. 转移概率矩阵:转移概率矩阵A表示在一个时间步从状态
si转移到状态sj的概率。

可以表示为A={aij},其中aij表示从状态si到状态sj的转移概率。

3. 观测概率矩阵:观测概率矩阵B表示在一个时间步观测到
某个输出的概率。

可以表示为B={bj(o)},其中bj(o)表示在状
态sj下观测到输出o的概率。

通过这些要素,HMM可以用来解决三类问题:
1. 评估问题:给定模型参数和观测序列,计算观测序列出现的概率。

可以使用前向算法或后向算法解决。

2. 解码问题:给定模型参数和观测序列,寻找最可能的状态序
列。

可以使用维特比算法解决。

3. 学习问题:给定观测序列,学习模型的参数。

可以使用Baum-Welch算法进行无监督学习,或使用监督学习进行有标注数据的学习。

总之,HMM是一种可以用来描述随机过程的模型,可以用于许多序列预测和模式识别问题中。

它的简洁性和可解释性使其成为机器学习领域中重要的工具之一。

隐马尔可夫模型_刘秉权

隐马尔可夫模型_刘秉权
隐马尔可夫模型 8
实例
一房间有 N 只瓮,每只瓮中有 M 种不同颜色的球。 根据某一概率分布随机地选择一个初始瓮,根据不同颜色 球的概率分布从中随机取出一个球,并报告球的颜色。然 后根据某一概率分布随机地选择另一只瓮,再根据不同颜 色球的概率分布从中随机取出一个球,并报告球的颜 色,…。对房间外的观察者,可观察的过程是不同颜色球 的序列,而瓮的序列是不可观察的。 这里每只瓮对应 HMM 模型中的状态,球的颜色对应 于状态的输出符号,从一只瓮转向另一只瓮对应于状态转 换,从一只瓮中取球对应于从一状态输出观察符号。
P(q t = S j | q t -1 = Si , q t -2 = S k ,L)
如果系统在 t 时间的状态只与其在时间 t − 1 的状态相关, 则该 系统构成一个离散的一阶马尔可夫链(马尔可夫过程):
P(q t = S j | q t -1 = Si , q t -2 = S k ,L) = P(q t = S j | q t -1 = S i )
困难:穷尽所有可能的状态序列,复杂度 O ( N ) ,指数爆炸。 有效方法:向前算法,动态规划,复杂性 O ( N 2 T ) 。
隐马尔可夫模型 18
T
动态规划(Dynamic Programming)
也称为动态时间弯曲(Dynamic TimeWraping) 常用于有序数字的最优求解问题,例如 无向图中两点之间的最短距离问题或者 语料库对齐中基于长度的对齐都采用了 动态规划算法。
隐马尔可夫模型 3
马尔可夫模型(Markov Model)
如果只考虑独立于时间 t 的随机过程:
P(q t = S j | q t -1 = Si ) = a i, j , 1 ≤ i, j ≤ N

马尔科夫模型(转载)

马尔科夫模型(转载)

隐马尔可夫模型(一)——马尔可夫模型马尔可夫模型(Markov Model)描述了一类随机变量随时间而变化的随机函数。

考察一个状态序列(此时随机变量为状态值),这些状态并不是相互独立的,每个状态的值依赖于序列中此状态之前的状态。

数学描述:一个系统由N个状态S= {s1,s2,...s n},随着时间的推移,该系统从一个状态转换成另一个状态。

Q= {q1,q2,...q n}为一个状态序列,q i∈S,在t时刻的状态为q t,对该系统的描述要给出当前时刻t所处的状态s t,和之前的状态s1,s2,...s t, 则t时刻位于状态q t的概率为:P(q t=s t|q1=s1,q2=s2,...q t-1=s t-1)。

这样的模型叫马尔可夫模型。

特殊状态下,当前时刻的状态只决定于前一时刻的状态叫一阶马尔可夫模型,即P(q t=s i|q1=s1,q2=s2,...q t-1=s j) =P(q t=s i|q t-1=s j)。

状态之间的转化表示为a ij,a ij=P(q t=s j|q t-1=s i),其表示由状态i转移到状态j的概率。

其必须满足两个条件: 1.a ij≥ 0 2.=1对于有N个状态的一阶马尔科夫模型,每个状态可以转移到另一个状态(包括自己),则共有N2次状态转移,可以用状态转移矩阵表示。

例如:一段文字中名词、动词、形容词出现的情况可以用有3个状态的y一阶马尔科夫模型M 表示:状态s1:名词状态s2:动词状态s3:形容词状态转移矩阵: s1 s2 s3A=则状态序列O=“名动形名”(假定第一个词为名词)的概率为:P(O|M) = P(s1,s2,s3,s4} = P(s1)*p(s2|s1)p(s3|s2)p(s1|s3)=p(s1)*a12*a23*a31=1*0.5*0.2*0.4=0.04在马尔可夫模型中,每一个状态都是可观察的序列,是状态关于时间的随机过程,也成为可视马尔可夫模型(Visible Markov Model,VMM)。

HMM隐马尔可夫模型在自然语言处理中的应用

HMM隐马尔可夫模型在自然语言处理中的应用

HMM隐马尔可夫模型在自然语言处理中的应用隐马尔可夫模型(Hidden Markov Model,HMM)是自然语言处理中常用的一种概率统计模型,它广泛应用于语音识别、文本分类、机器翻译等领域。

本文将从HMM的基本原理、应用场景和实现方法三个方面,探讨HMM在自然语言处理中的应用。

一、HMM的基本原理HMM是一种二元组( $λ=(A,B)$),其中$A$是状态转移矩阵,$B$是观测概率矩阵。

在HMM中,状态具有时序关系,每个时刻处于某一状态,所取得的观测值与状态相关。

具体来说,可以用以下参数描述HMM模型:- 隐藏状态集合$S={s_1,s_2,...,s_N}$:表示模型所有可能的状态。

- 观测符号集合$V={v_1,v_2,...,v_M}$:表示模型所有可能的观测符号。

- 初始状态分布$\pi={\pi (i)}$:表示最初处于各个状态的概率集合。

- 状态转移矩阵$A={a_{ij}}$:表示从$i$状态转移到$j$状态的概率矩阵。

- 观测概率矩阵$B={b_j(k)}$:表示处于$j$状态时,观测到$k$符号的概率。

HMM的主要任务是在给定观测符号序列下,求出最有可能的对应状态序列。

这个任务可以通过HMM的三种基本问题求解。

- 状态序列概率问题:已知模型参数和观测符号序列,求得该观测符号序列下各个状态序列的概率。

- 观测符号序列概率问题:已知模型参数和状态序列,求得该状态序列下观测符号序列的概率。

- 状态序列预测问题:已知模型参数和观测符号序列,求得使得观测符号序列概率最大的对应状态序列。

二、HMM的应用场景1. 语音识别语音识别是指将语音信号转化成文字的过程,它是自然语言处理的关键技术之一。

HMM在语音识别领域具有广泛应用,主要用于建立声学模型和语言模型。

其中,声学模型描述语音信号的产生模型,是从语音输入信号中提取特征的模型,而语言模型描述语言的组织方式,是指给定一个句子的前提下,下一个字或单词出现的可能性。

《隐马尔可夫模型》课件

《隐马尔可夫模型》课件
它是一种双重随机过程,包括一个状态转移的随 机过程和一个观测值生成的随机过程。
隐马尔可夫模型在许多领域都有应用,如语音识 别、自然语言处理、生物信息学和金融预测等。
隐马尔可夫模型的应用领域
01
语音识别
用于将语音转换为文本,或识别说 话人的意图。
生物信息学
用于分析基因序列、蛋白质序列和 代谢物序列等。
03 隐马尔可夫模型的建立
观察概率矩阵的确定
总结词
观察概率矩阵描述了在给定状态下,观察到不同状态的概率 分布。
详细描述
观察概率矩阵是隐马尔可夫模型中的重要组成部分,它表示 了在给定状态下,观察到不同状态的概率分布。例如,在语 音识别中,观察概率矩阵可以表示在特定语音状态下发出不 同音素的概率。
状态转移概率矩阵的确定
VS
原理
通过动态规划找到最大概率的路径,该路 径对应于最可能的隐藏状态序列。
05 隐马尔可夫模型的优化与 改进
特征选择与模型参数优化
要点一
特征选择
选择与目标状态和观测结果相关的特征,提高模型预测准 确率。
要点二
模型参数优化
通过调整模型参数,如状态转移概率和观测概率,以改进 模型性能。
高阶隐马尔可夫模型
初始状态概率分布表示了隐马尔可夫模型在初始时刻处于各个状态的概率。这个概率分布是隐马尔可 夫模型的重要参数之一,它决定了模型在初始时刻所处的状态。在某些应用中,初始状态概率分布可 以根据具体问题来确定,也可以通过实验数据来估计。
04 隐马尔可夫模型的训练与 预测
前向-后向算法
前向算法
用于计算给定观察序列和模型参 数下,从初始状态到某个终止状 态的所有可能路径的概率。
《隐马尔可夫模型》 ppt课件

隐马尔科夫模型

隐马尔科夫模型

1.0 骰子A
1: 1/6
2: 1/6 3: 1/6 4: 1/6 5: 1/6 6: 1/8
0
3: 1/8
4: 3/16
5: 3/16
6: 3/8
0.2
HMM将两个序列相联系起来:
1. 由离散隐状态组成的状态序列(路径)
Q = (q1,…,qT), 每个qt∈S均是一个状态
… 124552646214614613613666166466163661636616361651561511514612356234
问题 1 – 评估问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
i=N i=N-1
α(t,i)
i=5
i=4
i=3
i=2
i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N
1. 初始化
i=N-1
2. α(1,i)=π(i)b(i,o1)
i=5
i=4
i=3
i=2
i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
3.学习问题
• 给定一系列观察序列样本, 确定能够产生出这些序列的模 型 =(π, A, B)

HMM(隐马尔可夫模型)及其应用

HMM(隐马尔可夫模型)及其应用

HMM(隐马尔可夫模型)及其应用摘要:隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。

80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。

本文先是简要介绍了HMM的由来和概念,之后重点介绍了3个隐马尔科夫模型的核心问题。

关键词:HMM,三个核心问题HMM的由来1870年,俄国有机化学家Vladimir V. Markovnikov第一次提出马尔可夫模型。

马尔可夫在分析俄国文学家普希金的名著《叶夫盖尼•奥涅金》的文字的过程中,提出了后来被称为马尔可夫框架的思想。

而Baum及其同事则提出了隐马尔可夫模型,这一思想后来在语音识别领域得到了异常成功的应用。

同时,隐马尔可夫模型在“统计语言学习”以及“序列符号识别”(比如DNA序列)等领域也得到了应用。

人们还把隐马尔可夫模型扩展到二维领域,用于光学字符识别。

而其中的解码算法则是由Viterbi和他的同事们发展起来的。

马尔可夫性和马尔可夫链1. 马尔可夫性如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程。

马尔可夫性可用如下式子形象地表示:X(t+1)=f(X(t))2. 马尔可夫链时间和状态都离散的马尔可夫过程称为马尔可夫链。

记作{Xn=X(n), n=0,1,2,…}这是在时间集T1={0,1,2,…}上对离散状态的过程相继观察的结果。

链的状态空间记作I={a1, a2,…}, ai ∈R.条件概率Pij(m, m+n)=P{ Xm+n = aj | Xm = aj }为马氏链在时刻m处于状态ai条件下,在时刻m+n转移到状态aj的转移概率。

3. 转移概率矩阵如下图所示,这是一个转移概率矩阵的例子。

由于链在时刻m从任何一个状态ai出发,到另一时刻m+n,必然转移到a1,a2…,诸状态中的某一个,所以有当与m无关时,称马尔可夫链为齐次马尔可夫链,通常说的马尔可夫链都是指齐次马尔可夫链。

隐马尔科夫模型(HMM)详解

隐马尔科夫模型(HMM)详解

马尔科夫过程马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。

考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...S N}。

我们如今用q1,q2,q3,…q n来表示系统在t=1,2,3,…n时刻下的状态。

在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(S N)表示t=1时系统状态为S N的概率。

马尔科夫模型有两个假设:1. 系统在时刻t的状态只与时刻t-1处的状态相关;〔也称为无后效性〕2. 状态转移概率与时间无关;〔也称为齐次性或时齐性〕第一条详细可以用如下公式表示:P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i)其中,t为大于1的任意数值,S k为任意状态第二个假设那么可以用如下公式表示:P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i)其中,k为任意时刻。

下列图是一个马尔科夫过程的样例图:可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,a ij表示P(S i|S i-1)。

隐马尔科夫过程与马尔科夫相比,隐马尔科夫模型那么是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下列图所示:此图是从别处找来的,可能符号与我之前描绘马尔科夫时不同,相信大家也能理解。

该图分为上下两行,上面那行就是一个马尔科夫转移过程,下面这一行那么是输出,即我们可以观察到的值,如今,我们将上面那行的马尔科夫转移过程中的状态称为隐藏状态,下面的观察到的值称为观察状态,观察状态的集合表示为O={O1,O2,O3,…O M}。

相应的,隐马尔科夫也比马尔科夫多了一个假设,即输出仅与当前状态有关,可以用如下公式表示:P(O1,O2,…,O t|S1,S2,…,S t)=P(O1|S1)*P(O2|S2)*...*P(O t|S t) 其中,O1,O2,…,O t为从时刻1到时刻t的观测状态序列,S1,S2,…,S t那么为隐藏状态序列。

《隐马尔可夫模型》课件

《隐马尔可夫模型》课件

C R F 常用在文本分类、句法分析、命名实体识别等 领域。
HMM的局限性和改进方法
1
截断、尾部效应
加入上下文信息,使用长短时记忆网络。
2
自适应马尔可夫链
使用观测序列预测假设的状态转移矩阵。
3
深度学习方法
使用神经网络建立序列到序列的映射关系,消除符号表示造成的信息损失。
总结
HMM模型的优缺点
HMM模型可以识别长时序列,具有较好的泛化 性,但是对许多情况会做出错误HMM将会在自然语言处理、语音识别、图像识 别等领域继续发挥重要作用。
参考文献
• 《统计学习方法》- 李航 • 《Python自然语言处理》- 谢益辉 • 《深度学习》- Goodfellow等
附录
最近,HMM被用于音乐生成,允许他们生成具有旋律的曲子,相信HMM会在越来越多的领域展现其重要性。
隐马尔可夫模型PPT课件
在本课件中,我们将一起了解隐马尔可夫模型的基本概念,算法和应用领域。 无论您是机器学习新手,还是专业人士,这份PPT都能帮助您了解隐马尔可夫 模型的关键要素。
隐马尔可夫模型概述
隐马尔可夫模型(Hidden Markov Model, HMM)是 一种用于描述动态系统的概率模型。
马尔可夫假设
HMM 假设未来的状态只与当前状态有关,与历史状态无关,即是一个马尔可夫过程。
HMM的基本问题
1 问题1:给出模型和观测序列,如何计算观测序列出现的 概率?
通过前向,后向算法,或者前向-后向算法计算观测序列出现的概率。
2 问题2:给出模型和观测序列,如何预测其中的状态序列?
通过维特比算法预测概率最大的状态序列。
3 问题3:给出模型和观测序列,如何调整模型数使其最优?

隐马尔科夫模型(原理图解)

隐马尔科夫模型(原理图解)

3
总结
11
山东大学高性能计算与大数据处理学科组
1.隐马尔可夫模型-路径预测
问题2:给定观察序列O=O1,O2, …,OT,以及模型λ,如何推测最可能的状态序列S ?
1 (1)
t=1
Π:初始概率向 量
2 (1)
S1t=3
3 (1)
T (1)
S1 t=2
St=T-1 1
S1t=T
S1
a01 a02
B生成概率矩阵




SN
SN
OT

HMM模型五元组表示:λ =( N, M, π , A, B)用来描述HMM,或简写为 λ =(π , A, B)
6




OM

山东大学高性能计算与大数据处理学科组
提 纲
1 2
Hidden Markov Model 隐马尔科夫模型的三个问题
概率计算问题
路径预测问题
参数学习问题
3
总结
7
山东大学高性能计算与大数据处理学科组
1. 隐马尔可夫模型-全概率计算 问题1:给定观察序列O=O1,O2, …,OT,以及模型λ=(π,A,B),计算P(O|λ)?
t=1
Π:初始概率向 量
1 (1)
t=2
2 (1)
t=3
3 (1)
S1
t=T-1
T (1)
t=T
H M M
… … … …
Q Q1 1 Q2
Q1 Q2 一般随机过程 观察状态序列


QM
t=2

QM
t=3

隐马尔可夫模型课件

隐马尔可夫模型课件

隐马尔可夫模型课 件
目录
ቤተ መጻሕፍቲ ባይዱ
• 隐马尔可夫模型简介 • 隐马尔可夫模型的基本概念 • 隐马尔可夫模型的参数估计 • 隐马尔可夫模型的扩展 • 隐马尔可夫模型的应用实例 • 隐马尔可夫模型的前景与挑战
01
隐马尔可夫模型简介
定义与特点
定义
隐马尔可夫模型(Hidden Markov Model,简称HMM)是 一种统计模型,用于描述一个隐藏的马尔可夫链产生的观测 序列。
观测概率
定义
观测概率是指在给定隐藏状态下,观测到某一特定输出的概率。在隐马尔可夫 模型中,观测概率表示隐藏状态与观测结果之间的关系。
计算方法
观测概率通常通过训练数据集进行估计,使用最大似然估计或贝叶斯方法计算 。
初始状态概率
定义
初始状态概率是指在隐马尔可夫模型中,初始隐藏状态的概率分布。
计算方法
05
隐马尔可夫模型的应用实 例
语音识别
语音识别是利用隐马尔可夫模型来识别连续语音的技术。通过建立语音信号的时间序列与状态序列之 间的映射关系,实现对语音的自动识别。
在语音识别中,隐马尔可夫模型用于描述语音信号的动态特性,将连续的语音信号离散化为状态序列, 从而进行分类和识别。
隐马尔可夫模型在语音识别中具有较高的准确率和鲁棒性,广泛应用于语音输入、语音合成、语音导航 等领域。
Baum-Welch算法
总结词
Baum-Welch算法是一种用于隐马尔可夫模型参数估计的迭代算法,它通过最大化对数似然函数来估计模型参数 。
详细描述
Baum-Welch算法是一种基于期望最大化(EM)算法的参数估计方法,它通过对数似然函数作为优化目标,迭 代更新模型参数。在每次迭代中,算法首先使用前向-后向算法计算给定观测序列和当前参数值下的状态序列概 率,然后根据这些概率值更新模型参数。通过多次迭代,算法逐渐逼近模型参数的最优解。

隐马尔可夫模型(课堂PPT)

隐马尔可夫模型(课堂PPT)

骰子作弊问题模型化: 作弊问题由 5 个部分构成:
(1)隐状态空间 S (状态空间):
S {正常骰子A,灌铅骰子 B} ,赌场具体使用哪个骰子,赌 徒是不知道的。 (2)观测空间 O :O {1,2,3,4,5,6}。正常骰子 A 和灌铅骰 子 B 的所有六个面可能取值。
.
14
(3)初始状态概率空间 :
❖ 马尔可夫模型的观测序列本身就是 状态序列;
❖ 隐马尔可夫模型的观测序列不是状 态序列;
.
9
引例2
设有N个篮子,每个都装了许多彩色小球, 小球颜色有M种.现在按下列步骤产生出一个输 出符号(颜色)序列:按某个初始概率分布,随机 的选定一个篮子,从中随机地取出一个球,记 录球的颜色作为第一个输出符号,并把球放回 原来的篮子.然后按照某个转移概率分布(与当 前篮子相联系)选择一个新的篮子(也可能仍停 留在当前篮子),并从中随机取出一个球,记下 颜色作为第二个输出符号.
.
10
如此重复地做下去,这样便得到一个输出序列. 我们能够观测到的是这个输出序列—颜色符号 序列,而状态(篮子)之间的转移(状态序列)被隐 藏起来了.每个状态(篮子)输出什么符号(颜色)是 由它的输出概率分布(篮子中彩球数目分布)来随 机决定的.选择哪个篮子(状态)输出颜色由状态 转移矩阵来决定.
a11
a22
1 a31
a12
a21
a13
a32
2 a23
3
a33 .
7
O(o1o2..o.T)(HHH.T.T.H ) HT
❖ 每个硬币代表一个状态; ❖每个状态有两个观测值: 正面 H 和反面 T; ❖ 每个状态产生H的概率:P(H); ❖ 每个状态产生T的概率为:1-P(H)

隐马尔可夫模型HiddenMarkovmodel

隐马尔可夫模型HiddenMarkovmodel

2
隐马尔可夫模型(HMM)的由来
1870年,俄国有机化学家Vladimir V. Markovnikov 第一次提出Markov Model(MM)
Baum 及他的同事于60年代末70年代初提出隐马尔 可夫理论,并用于语音识别
80年代末90年代初HMM被用于计算生物学 目前已成功用于人脸识别、手写识别领域
根据以上结论可进行模型估算,反复迭代,直至参数收敛。
2019/9/18
知识管理与数据分析实验室
27
内容框架
1 隐马尔科夫模型的由来
2 隐马尔科夫模型的基本理论及实例 3 隐马尔科夫模型的三个基本算法 4 隐马尔科夫模型的应用
2019/9/18
知识管理与数据分析实验室
28
隐马尔科夫模型的应用
隐马尔科夫模型
通俗的说,就是在已经知道过程“现在”的条 件下,其“将来”不依赖于“过去”。
2019/9/18
知识管理与数据分析实验室
7
马尔科夫链
• 时间和状态都离散的马尔科夫过程称为马尔科夫 链
• 记作{Xn = X(n), n = 0,1,2,…} – 在时间集T1 = {0,1,2,…}上对离散状态的过程相 继观察的结果
2019/9/18
知识管理与数据分析实验室
30
书面语理解上的应用
在词性标注方面, 采用隐马尔可夫模型的标注方法具有很 强的健壮性, 是当前主流的标注方法。
词性标注就是在给定的句子中判定每个词的语法范畴, 确 定词性并加以标注的过程, 它发生在对文本执行分词处理 之后, 是对切分所得的词进行分析、运算,确定词在上下文 中合适的词类性质并加以标注的过程。
31
生物学基因预测上的应用

HMM 隐马尔科夫模型

HMM 隐马尔科夫模型
9
HMM组成
Markov链 (, A)
状态序列 q1, q2, ..., qT
随机过程 (B)
观察值序列 o1, o2, ..., oT
HMM的组成示意图
10
HMM概念
采用HMM来描述语音过程的成功原因在于: • (1) 各状态驻留的时间是可变的,这样就很 好地解决了语音时变问题。 • (2) 模型参数是通过大量的训练数据进行统 计运算而得到的,因此不仅可以用于特定人识 别,而且可用于非特定人识别,这时,只要将 大量不同人的多次发音用作训练数据即可。
1 (i ) ibi (O1 ) 1 t T
t 1 ( j ) [ i (i )aij ]b j (Ot 1 ) 1 t T 1,1 j N
i 1
N
N
P(O / ) T (i )
i 1
48
前向法示意图
qN . qi . qj . . q1
t 1 ( qt*1 ), t T 1, T 2,...,1
52
Baum-Welch算法(模型训练算法)
• 目的:给定观察值序列O,通过计算确定一个模型 , 使得P(O| )最大。 • 算法步骤:
1. 初始模型(待训练模型) 0, 2. 基于0 以及观察值序列O,训练新模型 ; 3. 如果 log P(X|) - log(P(X|0) < Delta,说明训练已经达到预期效果, 算法结束。 4. 否则,令0 = ,继续第2步工作
j 1 ij

• 当Pij(m,m+n)与m无关时,称马尔科夫 链为齐次马尔科夫链,通常说的马尔科 夫链都是指齐次马尔科夫链。
6
由于模型本身是看不见的,即模型的状态不为外界所见,只能根据获得的数据推导 出来,所以称为隐马尔可夫模型。

隐马尔可夫模型

隐马尔可夫模型

使用HMM解决的问题 解决的问题 使用
已知模型λ和输出序列 测评问题 Evaluation :已知模型 和输出序列 , 已知模型 和输出序列O, 求由λ生成 的概率 求由 生成O的概率 生成 已知模型λ和输出序列 和输出序列O, 译解问题 Decoding : 已知模型 和输出序列 ,求 最有可能生成O的状态转移序列 最有可能生成 的状态转移序列 学习问题 Learning : 已知模型λ和输出序列 ,求 已知模型 和输出序列O, 和输出序列 最有可能生成O 最有可能生成O的模型的参数
起始

0.05 0 0.015
结束
0.46 0.06
0.5
0.06
0.06 0.49
0.73 1
0.49
0.46
0.01
0.48
c
0.015 0.015
y
0.46 0.7 0.3 0.015
0.05 0.23
0.015
0.4
C
0.97
C
0.97
Y
Viterbi 算法中的矩阵
I0 A C C Y 0.12 0 0 0 I1 0 0.015 0 0 M1 0 0.046 0 0 I2 0 0 0 0 M2 0 0 0.485 0 I3 0 0 0 M3 0 0 0
Viterbi算法用了一个矩阵,矩阵的行由序列中的氨基 算法用了一个矩阵, 算法用了一个矩阵 酸残基组成,列由模型中的状态组成。 酸残基组成,列由模型中的状态组成。
HMM可由多条路径产生序列 可由多条路径产生序列ACCY 可由多条路径产生序列
0.3 0.3 0.4 0.5 0.48 0.48 0.27
1 0.8 0.2 — — — — —
2 0.6 0.4 — — — — —

隐马尔可夫链模型的递推-定义说明解析

隐马尔可夫链模型的递推-定义说明解析

隐马尔可夫链模型的递推-概述说明以及解释1.引言1.1 概述隐马尔可夫链模型是一种常用的概率统计模型,它广泛应用于自然语言处理、语音识别、模式识别等领域。

该模型由两个基本假设构成:一是假设系统的演变具有马尔可夫性质,即当前状态的变化只与前一个状态有关;二是假设在每个状态下,观测到的数据是相互独立的。

在隐马尔可夫链模型中,存在两个重要概念:隐含状态和观测数据。

隐含状态是指在系统中存在但无法直接观测到的状态,而观测数据是指我们通过观测手段能够直接获取到的数据。

隐含状态和观测数据之间通过概率函数进行联系,概率函数描述了在每个状态下观测数据出现的概率。

隐马尔可夫链模型的递推算法用于解决两个问题:一是给定模型参数和观测序列,求解最可能的隐含状态序列;二是给定模型参数和观测序列,求解模型参数的最大似然估计。

其中,递推算法主要包括前向算法和后向算法。

前向算法用于计算观测序列出现的概率,后向算法用于计算在某一隐含状态下观测数据的概率。

隐马尔可夫链模型在实际应用中具有广泛的应用价值。

在自然语言处理领域,它可以用于词性标注、语义解析等任务;在语音识别领域,它可以用于语音识别、语音分割等任务;在模式识别领域,它可以用于手写识别、人脸识别等任务。

通过对隐马尔可夫链模型的研究和应用,可以有效提高这些领域的性能和效果。

综上所述,隐马尔可夫链模型是一种重要的概率统计模型,具有广泛的应用前景。

通过递推算法,我们可以有效地解决模型参数和隐含状态序列的求解问题。

随着对该模型的深入研究和应用,相信它将在各个领域中发挥更大的作用,并取得更好的效果。

1.2 文章结构文章结构部分的内容可以包括以下要点:文章将分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个子部分。

概述部分简要介绍了隐马尔可夫链模型的背景和重要性,指出了该模型在实际问题中的广泛应用。

文章结构部分说明了整篇文章的组织结构,明确了每个部分的内容和目的。

目的部分描述了本文的主要目的,即介绍隐马尔可夫链模型的递推算法和应用,并总结和展望其未来发展方向。

隐马尔可夫模型三个基本问题及算法

隐马尔可夫模型三个基本问题及算法

隐马尔可夫模型三个基本问题及算法隐马尔可夫模型(Hien Markov Model, HMM)是一种用于建模具有隐藏状态和可观测状态序列的概率模型。

它在语音识别、自然语言处理、生物信息学等领域广泛应用,并且在机器学习和模式识别领域有着重要的地位。

隐马尔可夫模型有三个基本问题,分别是状态序列概率计算问题、参数学习问题和预测问题。

一、状态序列概率计算问题在隐马尔可夫模型中,给定模型参数和观测序列,计算观测序列出现的概率是一个关键问题。

这个问题通常由前向算法和后向算法来解决。

具体来说,前向算法用于计算给定观测序列下特定状态出现的概率,而后向算法则用于计算给定观测序列下前面状态的概率。

这两个算法相互协作,可以高效地解决状态序列概率计算问题。

二、参数学习问题参数学习问题是指在给定观测序列和状态序列的情况下,估计隐马尔可夫模型的参数。

通常采用的算法是Baum-Welch算法,它是一种迭代算法,通过不断更新模型参数来使观测序列出现的概率最大化。

这个问题的解决对于模型的训练和优化非常重要。

三、预测问题预测问题是指在给定观测序列和模型参数的情况下,求解最可能的状态序列。

这个问题通常由维特比算法来解决,它通过动态规划的方式来找到最可能的状态序列,并且在很多实际应用中都有着重要的作用。

以上就是隐马尔可夫模型的三个基本问题及相应的算法解决方法。

在实际应用中,隐马尔可夫模型可以用于许多领域,比如语音识别中的语音建模、自然语言处理中的词性标注和信息抽取、生物信息学中的基因预测等。

隐马尔可夫模型的强大表达能力和灵活性使得它成为了一个非常有价值的模型工具。

在撰写这篇文章的过程中,我对隐马尔可夫模型的三个基本问题有了更深入的理解。

通过对状态序列概率计算问题、参数学习问题和预测问题的深入探讨,我认识到隐马尔可夫模型在实际应用中的重要性和广泛适用性。

隐马尔可夫模型的算法解决了许多实际问题,并且在相关领域有着重要的意义。

隐马尔可夫模型是一种强大的概率模型,它的三个基本问题和相应的算法为实际应用提供了重要支持。

隐马尔可夫模型及其典型应用

隐马尔可夫模型及其典型应用

隐马尔可夫模型及其典型应⽤【原】隐马尔可夫模型及其典型应⽤----by stackupdown ⽬录前⾔本⽂要介绍的是隐马尔可夫模型及其应⽤。

我们从⼀个史学家开始,假设他在看某国的史料时,⾟⾟苦苦地统计了上下数年,发现了粮⾷的增长和下降的⼀段,他会结合历史去分析⼀些问题。

但是如果史书的其他记载得太少,他就找不到问题的所在,所以⽆从下⼿。

⼜⽐如,⼀个⼈出去旅⾏,相信民间的传说,海藻的湿度跟未来的天⽓有关,未来不同天⽓,海藻的湿度不⼀样,但是海藻有⼀定概率是错的。

尽管如此,他还是想要根据这个来估计明天天⽓的可能性[1]。

这两个问题是跟时间相关的问题,有些这样的问题是解决不了的,有些则不然,我们在接下来的⽂章⾥会讲到相关问题的数学抽象和解决⽅法。

正⽂⼀、随机过程我们在⾃然世界中会遇到各种不确定的过程,它们的发⽣是不确定的,这种过程称为随机过程。

像花粉的布朗运动、股票市值、天⽓变化都是随机过程[2]。

马尔科夫随机过程是⼀类随机过程。

它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。

该过程有以下的性质:指定⼀个时间点,则未来时间的状态只与现在有关,跟它的过去没有关系。

在现实⽣活中的马尔科夫过程是我们⼈为抽象进⾏简化的,如果我们认为⼀个事物的未来跟过去的变化没有太⼤关系,那么我们就可以把它抽象成马尔科夫过程[2]。

⽐如我们的天⽓,很不严谨地说,可以抽象成马尔科夫过程,从今天晴天转移到明天多云、下⾬的转移只取决于今天的天⽓,⽽跟前天的天⽓⽆关。

如下图,这样我们按照概率的知识就可以得到今天下⾬,明天放晴的概率:P(明天晴|今天⾬)=0.4 这就当做是我们最简单的⼀个模型了[3]。

马尔科夫过程的假设很简单,就是概率不依赖于之前的序列,写成公式:就好像⼀条鱼不知道⾃⼰之前的运动轨迹,只知道⾃⼰在哪⾥,接着它就会按照现在的位置随机选择⼀个⽅向去游动了。

鱼的前前后后的运动形成了⼀条链。

在⼀个马尔科夫模型中,我们可以利⽤它来计算概率,⽽且由于它是单个状态的转移,我们看起来它就像是⼀条链⼀样,状态从头到尾移动。

隐马尔可夫模型中关于抛掷硬币问题的算法

隐马尔可夫模型中关于抛掷硬币问题的算法

隐马尔可夫模型中关于抛掷硬币问题的算法隐马尔可夫模型(HMM)作为一种统计分析模型,创立于20世纪70年代。

80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。

隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。

所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。

例如在坛子与小球的例子中如果令每一个坛子对应与一个状态,令小球颜色对应状态的输出。

可以用一个一阶马尔科夫过程来描述坛子的选择过程。

在马尔科夫过程中,每个状态只有一个输出,但在坛子和小球的问题中。

可以从每个坛子中拿出不同颜色的小球。

也就是每个状态能按照特定的概率分布产生多个输出,状态和输出之间不再是一一对应关系。

在坛子与小球问题中,如果给定一个观察序列(不同颜色的小球序列) ,不能直接确定状态转换序列(坛子的序列) ,因为状态转移过程被隐藏起来了。

所以这类随机过程被称为隐马尔科夫过程。

隐马尔可夫模型λ可以用一个五元组(S,V,A,B,π)表示,S 为状态的集合:{1,2,3,,}S N =V 是一组输出符号组成的集合:12{,,,}M V v v v =A 是状态转移矩阵:1[](|),1,ij ij t t A a a P q j q i i j N +====≤≤B 为输出符号的概率分布:{()}()()j j k B b k b k P v j ===Π为初始状态概率分布.评估问题:对于给定模型,求某个观察值序列的概率p(σ|λ) ; 解码问题:对于给定模型和观察值序列,求可能性最大的状态序列;学习问题:对于给定的一个观察值序列,调整参数λ,使得观察值出现的概率p(σ|λ)最大。

下面求解抛掷硬币问题得到序列O={HHHHTHTTTT}1,基础解法S (/)(/,)(/)P O P O S P S λλλ=∑所有此方法会导致计算量过大,影响计算速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲:隐马尔科夫模型--HMM 余正涛郭剑毅李玉惠李勇苏磊范玉刚等昆明理工大学信息工程与自动化学院大纲�HMM的由来�马尔可夫性和马尔可夫链�HMM实例�HMM的基本概念�HMM的三个基本问题及解决方法�HMM的应用�HMM模型扩展HMM的由来�1870年,俄国有机化学家Vladimir V. Markovnikov第一次提出马尔科夫模型�马尔可夫模型�马尔可夫链�隐马尔可夫模型马尔可夫性�如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程�X(t+1) = f( X(t) )马尔科夫链�时间和状态都离散的马尔科夫过程称为马尔科夫链记作{X n = X(n), n = 0,1,2,…}�在时间集T 1 = {0,1,2,…}上对离散状态的过程相继观察的结果�链的状态空间记做I = {a 1, a 2,…}, a i ∈R. �条件概率P ij ( m ,m+n)=P{X m+n = a j |X m = a i } 为 马氏链在时刻m处于状态a i 条件下,在时刻m+n转移到状态a j 的转移概率。

马尔科夫链--转移概率矩阵晴天下雨阴天晴天阴天下雨0.25晴天0.50 0.250.50 0.25 0.25阴天0.375 0.25 0.375下雨0.25 0.125 0.625马尔科夫链--转移概率矩阵续�由于链在时刻m从任何一个状态a i 出发,到另一时刻m+1,必然转移到a 1,a 2…,诸状态中的某一个,所以有�当P ij (m,m+1)与m无关时,称马尔科夫链为齐次马尔科夫链,通常说的马尔科夫链都是指齐次马尔科夫链。

Mi m m P M j ij,...2,11)1,(1==+∑=HMM实例1Observed Ball Sequence Urn 3Urn 1Urn 2VeilHMM实例1——描述�设有N个缸,每个缸中装有很多彩球,球的颜色由一组概率分布描述,实验进行方式如下:�根据初始概率分布,随机选择N个缸中的一个开始实验。

�根据缸中球颜色的概率分布,随机选择一个球,记球的颜色为O,并把球放回缸中。

1�根据描述缸的转移的概率分布,随机选择下一口缸,重复以上步骤。

�最后得到一个描述球的颜色的序列O1,O2,…,称为观察值序列O。

HMM实例1——约束�在上述实验中,有几个要点需要注意:�不能被直接观察缸间的转移�从缸中所选取的球的颜色和缸并不是一一对应的�每次选取哪个缸由一组转移概率决定HMM实例2:硬币赌博�观测值:正面(H Head)、反面(T Tail)�硬币: 真(F Fair)、假(B Bais)HHHHTTTTHHTTHTTTTHHH…FFFFBBBBFFFFBBBBFFFFF…HMM实例3:语音处理�示意图:�其中,s1,s2,s3...表示信息源发出的信号。

O1,o2, o3 ... 是接受器接收到的信号。

通信中的解码就是根据接收到的信号 o1,o2, o3 ...还原出发送的信号 s1,s2,s3...�求:P (s1,s2,s3,...|o1,o2,o3....) 达到最大值的那个句子 s1,s2,s3,...信息源S1s2s3..接收端O1o2o3..信道HMM的基本概念�HMM的状态是不确定或不可见的,只有通过观测序列的随机过程才能表现出来�观察到的事件与状态并不是一一对应,而是通过一组概率分布相联系�HMM是一个双重随机过程,两个组成部分:�马尔可夫链:描述状态的转移,用转移概率描述。

�一般随机过程:描述状态与观察序列间的关系,用观察值概率描述。

HMM的基本概念�估算隐藏于表面事件背后的事件的概率�观察到一个人每天带雨伞的情况,反过来推测天气情况HMM组成Markov链(π, A)随机过程(B)状态序列观察值序列q1, q2, ..., q T o1, o2, ..., o THMM的组成示意图HMM模型的假设�假设1:有限历史假设p(q i |q i-1…q 1) = p(q i |q i-1)�假设2:齐次性假设(状态与具体时间无关) p(q i+1|q i ) = p(q j+1|q j ),对任意i,j成立�假设3:输出独立性假设(输出仅与当前状态有关)p(O 1,...,O T | q 1,...,q T ) = Π p(O t | q t )HMM的基本要素�用模型五元组λ=(Ω,Σ,π,A,E)用来描述HMM,或简写为λ=(π,A,E)pE A ΣΩ参数初始时选择某口缸的概率初始状态空间的概率分布每个缸中的颜色分布给定状态下,观察值概率分布在选定某个缸的情况下,选择另一个缸的概率与时间无关的状态转移概率矩阵彩球观察值集合 总数C 缸状态集合 总数M 实例含义HMM的基本要素�一个隐马尔科夫模型是一个五元组(Ω,Σ,π,A,E)其中:�Ω={X1,…. X N}:是HMM隐含状态的有限集合,N为HMM中隐含状态的总数。

�∑={O1,…. O N}:是HMM观察值的有限集合,M为所有出现观察值总数,每一个观察值对应于系统的一个可能的物理输出值,一个长度为K的观察值序列就有K个这样的观察值构成;HMM的基本要素�(Ω,Σ,π,A,E):�状态转移概率分布A={a ij }: a ij =P{q t+1=S j |q t =S i }�状态j的观察概率分布B={b i (k)},表示状态j输出相应观察值的概率,其中 b i (k)=P {O t =V k |q t =S j }HMM的基本要素-示例�示意图:HMM的基本要素-示例HMM的三个基本问题�评估问题--使用前向算法(forward algorithm) �给定观察序列O=O1O2...O T和模型λ=(π,A,B),计算P(O|λ),即给定模型和输出观察序列,如何计算从模型生成观察序列的概率。

可以把它看作是评估一个模型和给定观察输出序列的匹配程度,由此可以用来在一系列候选对象中选取最佳的匹配。

HMM的三个基本问题�解码问题--使用Viterbi算法(Viterbi algorithm)�给定观察序列O= O1O2...O T 和模型λ=(π, A, B),求在某种有意义的情况下最优的相关状态序列Q=q 1q2..qT可以理解为对输出观察的最佳“解释”,它试图揭示模型的隐藏部分,比如说查找“正确”的状态序列,在应用中,通常都使用一个优化策略来最大可能的解决这个问题。

HMM的三个基本问题�学习问题--使用前向-后向算法�如何调整模型参数λ=(π,A,B),对于一个给定的观察序列O= O 1O 2...O T ,使得P(O|λ)最大。

它试图优化模型的参数来最佳的描述一个给定的观察序列是如何得来的。

评估问题—穷举办法�给定一个固定的状态序列S=(q1,q2,q3…)∐nj j j j j n n n n n n n n n n n n n n n n n n n n q O P q q P q O P q P q O P q q P q O P q q P q O P q P T O O P O q q P q q O O P q O q P q O P q P q q O q q O O P q q O O P q O q P q O P q P q q O q q O O P q O q P q O P q P q O q q O O P q O P q P q q q O O O P q P q q q O O O P Q O P 11111122121111..1...11...11..12112112111211332112112111211321121111122111122112121)|()|()|()()|()|()...|()|()|()(),|(),|()...|(),|()|()()|,...,...()|()|()|()()|,...,...()|()|()()|,...,...()|()()|,...,...,()(),...,,...,(),(=−−−−−≈≈======评估问题—穷举办法�给定一个固定的状态序列S=(q 1,q 2,q 3…)�表示在q t状态下观测到O t的概率��N=5, M=100, => 计算量10^72∏===Tt T q q q t t O b O b O b q O P S O P t 121)()()(),/(),/(21⋯λλ)(tq O b t∑=S)/(),/()/(所有λλλS P S O P O P评估问题—前向法�定义前向变量�初始化:�递归:�终结:�时间复杂度O(T*M^2)N t i q O O O P i t t ≤≤==1),,,()(t 21 ⋯αNt O b i i i ≤≤=1)()(11 παMj T t O b a i j t j ij Mi t ≤≤−≤≤=+=+∑1,11)(])([)(11t 1 αα∑==Ni Ti O P 1)()/(αλ评估问题—前向法1 ... t t+1 ...a 1jαt 1q M .q i .q j ..q 1αt ia Nja ij)(1j t +α�示意图:评估问题—前向法�例:根据海带的状态判断天气情况�观察值集合为:dry、damp、soggy�状态集合为:sunny、cloudy、rainy评估问题—前向法�递归降低问题复杂度�首先定义局部概率(partial probability),它是到达网格中的某个中间状态时的概率。

�将计算到达网格中某个中间状态的概率作为所有到达这个状态的可能路径的概率求和问题。

例如,t=2时位于“多云”状态的局部概率通过如下路径计算得出:评估问题—前向法�局部概率�定义t时刻位于状态j的局部概率为at(j):a t ( j )= Pr( 观察状态 | 隐藏状态j ) x Pr(t时刻所有指向j状态的路径)�对于最后的观察状态,其局部概率包括了通过所有可能的路径到达这些状态的概率——例如,对于上述网格,最终的局部概率通过如下路径计算得出:评估问题—前向法�计算t=1时的局部概率�即:初始时刻状态j的局部概率依赖于此状态的初始概率及相 应时刻我们所见的观察概率。

�计算t>1时的局部概率评估问题—前向法�计算t>1时的局部概率t-1时刻局部概率给出了所有到达此状态的前一路径概率,因此,可以通过t-1时刻的局部概率定义t时刻的局部概率。

即:评估问题—前向法�总结:�首先通过计算局部概率,降低计算整个概率的复杂度,局部概率表示的是t时刻到达某个状态s的概率。

� t=1时,可以利用初始概率和观察概Pr(observation|state)(来自于混淆矩阵)计算局部概率;�t>1时的局部概率可以利用t-1时的局部概率计算。

相关文档
最新文档