平行线的特征练习题
平行线的特征
动手做一做 实验:在准备好的横格本上任选两条平行线 、 实验 在准备好的横格本上任选两条平行线a、 在准备好的横格本上任选两条平行线 b 与平行线a、 相交 相交. (1)任意画一条直线 与平行线 、b相交. )任意画一条直线c与平行线 (2)任选一对同位角,用量角器度量,看 )任选一对同位角,用量角器度量, 看这一对同位角有什么关系? 看这一对同位角有什么关系?
问题讨论
请大家想一想:两条平行线被第三条直线所截,内错角、 请大家想一想:两条平行线被第三条直线所截,内错角、 同旁内角有什么关系呢 ? 如图,已知直线a//b,思考 如图,已知直线 , c ∠1与∠2、 ∠2与∠3之间有什么关 与 、 与 之间有什么关 为什么? 系?为什么? 4 a 1 已知) (1) ∵ a//b (已知 ) 已知 3 2 ∴∠2=∠ ( 两直线平行, ∴∠ ∠4( 两直线平行,同位角相等 ) b 又∵∠1=∠4 ( 对顶角相等 ) ∵∠ ∠ ∴∠1=∠ ∴∠ ∠2
同旁内角互补 )
平行线的三个特征: 平行线的三个特征 :
同位角相等 内错角相等 同旁内角互补
两直线平行
两直线平行的三个条件: 两直线平行的三个条件: 同位角相等 内错角相等 同旁内角互补 两直线平行
例1:小青不小心把家里的梯形玻璃块打碎了,还剩下梯 :小青不小心把家里的梯形玻璃块打碎了, 形上底的一部分(如图).要订造一块新的玻璃, ).要订造一块新的玻璃 形上底的一部分(如图).要订造一块新的玻璃,已经 你想一想, 量得 ∠A=1150,∠D=1000. 你想一想,梯形另外两个 角 各是多少度? 已知梯形的两底AD//BC) 各是多少度?(已知梯形的两底 ) 已知) 解:∵ AD//BC (已知). ∵ A+ B= C+ D= ∴ ∠A+∠B=1800;∠C+∠D=1800 两直线平行,同旁内角互补) (两直线平行,同旁内角互补). 已知) 又∵ ∠A=1150;∠D=1000. (已知 已知 ∴ ∠C=1800-∠D=1800-1000=800. = = ? B ? C ∠B=1800-∠A=1800-1150=650. = = A
平行与相交专项练习30题(有答案)ok
平行与相交专项练习30题(有答案)ok平行与相交专项练30题(有答案)1.下列对于线的描述,说法正确的是()A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米2.从直线外一点画已知直线的平行线,可以画()条.A.1B.2C.无数3.下面的图形中,()只有2组平行线.A.B.C.D.4.如果在同一平面内画两条直线,它们都和第三条直线相交成直角,那么这两条直线(A.互相垂直B.互相平行C.不垂直也不平行5.下列各句话中有()句是错误的.(1)两条直线相交,这两条直线互相垂直.(2)两条直线的交点,叫做这两条直线的垂足.(3)平行线之间的线段到处相等.(4)两条直线都与另一条直线相交,这两条直线一定平行.A.1B.2C.3D.46.在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.相互平行B.相互垂直C.相交7.同一平面内的两条直线最多有()个交点.A.B.1C.28.一张长方形纸对折两次后展开,折痕()A.相互平行B.相互垂直C.可能相互垂直,也可能相互平行9.在两条平行线之间画垂直线段,第一条长7厘米,第二条长()A.大于7厘米B.小于7厘米C.等于7厘米10.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线11.直线a、b、c在同一平面里,a与b相互垂直,b与c 相互垂直,那么a与c相互(A..垂直B.平行C.平行或垂直12.有两条直线都与同一条直线平行,则这两条直线一定()平行与相交----1))A.相互垂直B.相互平行C.相交13.在同一个平面上垂直于同一条直线的两条直线一定()A.互相垂直B.互相平行C.两种都有可能D.A、B两种都不可能.14.在同一平面内,两条直线可能_________,也可能_________,互相垂直是一种特殊的_________.15.指出左图形中各有几组互相平行的线段,并写在括号里,(_________).16.在同一平面内不相交的两条直线叫做_________,也可以说这两条直_________.在同一平面内的两条直线的位置关系有_________、_________两种情况.17.语文课本的封面,相对的两条边是相互_________的,相邻的两条边是相互_________的.18.点到直线的所有线段中,_________最短.19.平行线之间的垂直线段不但相互_________,并且长度_________.20.在同一平面内,两条不重合的直线的位置干系有_________、_________.21.上面有一排字母:TEFNKHXZ有互相垂直线段的字母是_________;有互相平行线段的字母是_________;既有互相垂直,又有互相平行的线段的字母是_________.22.如图,能找到_________组相互垂直的线段.23.两条直线不相交,就说这两条直线相互平行._________.24.图中有几组相互垂直的线段?_________组.25.当两条直线相交成直角时,这两条直线相互平行._________.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交._________.平行与相交----227.在同一平面内,两条直线的位置干系可分红哪两类?相交或垂直_________相交或平行_________平行或垂直_________.28.过直线外一点只能画一条直线的垂线._________.29.小猪要过河,它走下面的哪条路最近?这条路有什么特点?30.点A是大象的家,XXX表示河.大象要去河岸边饮水,请设想一条使大象饮水近来的线路图.平行与相交----3参考答案:1.A、不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B.2.按照平行的性质得:过直线外一点画直线的平行线,可以画一条直线与直线平行,应选:A.3.A、是正六边形,有3组平行线;B、没有平行线;C、有2组平行线;D、是正八边形,有4组平行线;故选:C.4.如图:在同一平面内,p⊥d,k⊥d,所以XXX,故选:B.5.(1)两条直线相交,这两条直线互相垂直,说法错误,应为:两条直线相交成直角时,这两条直线就互相垂直;(2)两条直线的交点,叫做这两条直线的垂足,说法错误;因为两条直线相交成直角,这两条直线就互相垂直,交点叫做垂足;(3)平行线之间的线段处处相等,说法错误,应为:平行线之间的距离处处相等;(4)根据垂直的性质可知:两条直线都与另一条直线相交,这两条直线一定平行,说法错误,前提必须在同一个平面内;故选:D.6.如图所示,,a和b都垂直于c,则a和b平行;应选:A.7.同一平面内的两条直线最多有1个交点.应选:B.8.由阐发可知:把一张长方形的纸对折两次后,折痕的干系是可能相互平行,也可能相互垂直;应选:C.9.由阐发可知:两条平行线中可以画无数条垂线段,这些线段的长度都相等,所以在两条平行线之间画垂直线段,第一条长7厘米,第二条也长7厘米;应选:C.10.因为在同一平面内,两条不相交的直线是平行线,故A、B错误;应选:C.11.由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b相互垂直,b与c相互垂直,那么a与c互相平行;故选:B.12.根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B13.由垂直的性质可得:在同一个平面内垂直于同一条直线的两条直线一定互相平行;故选:B.14.在同一平面内,两条直线可能相交,也可能平行,互相垂直是一种特殊的相交.15.指出左图形中各有几组互相平行的线段,并写在括号里,(9组).如图:平行与相交----4图中的平行线段有:AD∥EF,BD∥EF,DE∥FB,DE∥FC,DF∥AE,DF∥EC,DE∥BC,DF∥AC,EF∥AB;共有9对;故谜底为:9组16.在同一平面内不相交的两条直线叫做平行线,也能够说这两条直线相互平行.在同一平面内的两条直线的位置干系有相交、平行两种情形.由阐发得出:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行,在同一平面内的两条直线的位置关系有相交、平行两种情况.故答案为:平行线;线互相平行;相交;平行17.语文课本的封面,相对的两条边是相互平行的,相邻的两条边是相互垂直的.18.点到直线的所有线段中,垂线段最短.19.平行线之间的垂直线段不但相互平行,并且长度相等.20.在同一平面内,两条不重合的直线的位置干系有相交、平行.21.上面有一排字母:XXX有相互垂直线段的字母是T、E、H;有相互平行线段的字母是E、N、Z、H;既有相互垂直,又有相互平行的线段的字母是E、H.22.如图,能找到8组相互垂直的线段.23.两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.24.图中有几组互相垂直的线段?6组.25.当两条直线相交成直角时,这两条直线相互平行.错误.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交.正确.由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.27.在同一平面内,两条直线的位置关系可分成哪两类?相交或垂直×相交或平行√平行或垂直×.28.过直线外一点只能画一条已知直线的垂线.正确.29.如图:PC近来,这条路垂直于河对岸的路.30.如图所示:根据垂直线段最短的性质,红色的垂线段就是使大象饮水最近的线路,。
数的平行线与垂直线练习题
数的平行线与垂直线练习题题目一:平行线1. 请判断以下直线是否平行:a) AB与CDb) EF与GHc) IJ与KL2. 已知折线ABCDEF,其中AB∥CD,EF∥GH,请判断以下直线是否平行:a) AD与GHb) EF与KJc) BC与DE3. 在平面直角坐标系中,已知直线y=2x+3和y=-3x+5,请判断它们是否平行。
4. 已知线段AB和线段CD,其中AB∥CD。
若线段EF∥AB且EF 与CD相交于点G,请问线段EF与CD是否平行。
题目二:垂直线1. 请判断以下直线是否垂直:a) AB与CDb) EF与GHc) IJ与KL2. 已知线段AC和线段BD,其中AC⊥BD。
若线段EF⊥AC且EF与AB相交于点G,请问线段EF与AB是否垂直。
3. 在平面直角坐标系中,已知直线y=2x+3和y=-1/2x+2,请判断它们是否垂直。
4. 已知线段AB和线段CD,其中AB⊥CD。
若线段EF⊥AB且EF与CD相交于点G,请问线段EF与CD是否垂直。
题目三:平行线和垂直线的综合运用1. 在直角坐标系中,已知点A(-1, 2),B(3, 5),C(6, 7),D(3, 1),请判断线段AB和线段CD是否平行,线段AB是否垂直于线段CD。
2. 在平面直角坐标系中,已知直线y=-2x+3,点E(-4, -5)和点F(1, 1),请判断直线EF与直线y=-2x+3是否平行,直线EF是否垂直于直线y=-2x+3。
3. 在平面直角坐标系中,已知点A(2, 4),B(5, 6),C(7, 8),D(4, 2),请判断线段AB和线段CD是否平行,线段AB是否垂直于线段CD。
4. 在直角坐标系中,已知直线y=x+1与直线y=-x+1,请判断这两条直线是否平行,是否垂直。
注意:题目中的直线均指直线段,平行线指两条直线段在同一平面内没有交点,垂直线指两条直线段的斜率乘积为-1。
平行线与垂直线的性质综合练习题
平行线与垂直线的性质综合练习题在几何学中,平行线和垂直线是两种重要的线性关系。
它们有着独特的性质和特征,对于解决几何问题和证明定理起着关键作用。
本文将通过综合练习题的形式,深入探讨平行线和垂直线的性质,以加深我们对这些概念的理解。
1. 练习题一:已知直线l1与直线l2平行,直线l3与直线l4平行,求证直线l1与直线l3平行。
解答:根据平行线的性质,平行线的任意两条线与第三条线平行。
因此,l1与l3平行。
2. 练习题二:已知直线m与直线n相交,角AODB和角BOEC是平行线,求证角AOC和角BOD是平行线。
解答:考虑利用垂直线的性质进行证明。
设直线l与直线m相交于点O,则根据指定角的定义,角AODB和角BODE是90度的垂直角。
由于垂直角的性质,角AOC和角BOD也分别为垂直角,即角AOC和角BOD平行。
3. 练习题三:已知直线p与直线q相交于点O,直线l与直线q平行,角AOC和角AEB是直角,求证直线l与直线p平行。
解答:根据垂直线的性质,直线p和直线l分别与直线q垂直,则直线p 和直线l平行。
4. 练习题四:已知直线a与直线b平行,直线b与直线c平行,角AOC和角BOC是垂直角,求证直线a与直线c平行。
解答:根据垂直角的性质,角AOC和角BOC为直角,即直线a与直线b 垂直。
同时,直线b与直线c平行,根据平行线的性质可得出直线a与直线c平行。
通过上述练习题的解答,我们可以总结出平行线与垂直线的性质:1. 平行线的性质:- 平行线的任意两条线与第三条线平行;- 平行线之间不存在交点;- 平行线的对应角相等;- 平行线的同旁内角互补,同旁外角互补。
2. 垂直线的性质:- 垂直线上的任意两条线段互相垂直;- 垂直线与水平线相交成直角;- 垂直线的对应角相等;- 垂直线的同旁内角互补,同旁外角互补。
通过练习题,我们巩固了对平行线与垂直线性质的理解,并学会了灵活运用这些性质进行证明和解决几何问题。
在实际应用中,平行线和垂直线的性质是解决建筑、工程等领域的几何问题中不可或缺的重要工具。
第二章-相交线与平行线练习题(带解析)
第二章 相交线与平行线练习题(带解析)1、如图,直线a 、b 、c 、d ,已知c⊥a,c⊥b,直线b 、c 、d 交于一点,若∠1=500,则∠2等于【 】(1)(2)(5)(6)(7) 2、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE 与∠DCF 的位置与大小关系是 ( ) 3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A .相等B .互补C .相等或互补D .相等且互补4、下列说法中,为平行线特征的是( )①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A .①B .②③C .④D .②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=( )A .60°B .50°C .30°D .20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为( )A .α+β+γ=360°B .α-β+γ=180°C .α+β-γ=180°D .α+β+γ=180°7、如图,由A 到B 的方向是( )8、如图,由AC∥ED,可知相等的角有( )(8) (9)A .6对B .5对C .4对D .3对9、如图,直线AB 、CD 交于O ,EO⊥AB 于O ,∠1与∠2的关系是( )A.互余B.对顶角C.互补 D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( )A .50°、40°B .60°、30°C .50°、130°D .60°、120°11、下列语句正确的是( )A .一个角小于它的补角B .相等的角是对顶角C .同位角互补,两直线平行D .同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A .600B .500C .400D .300A .是同位角且相等B .不是同位角但相等;C .是同位角但不等D .不是同位角也不等 A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60°A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。
平行线的特征1
(1 )∠1,∠3的大小有什么关系?∠2,与∠4呢?
A
CD
F
两直线平行
1
23
4
同位角相等
B
E
相等 ∵AB∥DE ∴∠1=∠3 你知道理由吗?
∵ ∠1=∠3 且 ∠1=∠2 ,∠3=∠4 ∴ ∠2=∠4
(2 )发射光线BC与EF也平行吗? 同位角相等
平行 ∵ ∠2=∠4 ∴ BC∥EF
两直线平行
例1:如图,已知AG//CF,AB//CD,∠A=40,
求∠C的度数。
G
解: ∵ AG//CF(已知) A
F
1
E
B
∴ ∠A=∠1
C
D
(两直线平行,同位角相等)
又∵AB//CD(已知)
∴ ∠1=∠C(两直线平行,同位角相等)
Hale Waihona Puke ∴ ∠A=∠C (等量代换)
∵ ∠A=40 ∴ ∠C=40
例2 如图所示 ∠1 =∠2
求证 : ∠3 =∠4 a
证明:∵ ∠1 =∠2(已知)
5、如果__∠__3___=__∠__5___,
根据内错角相等,两直线平行,
可得AB//CD
B
1 A
D
32
4
5 C
平行线的特征
c
A
B
1
C
D
2
如图AB//CD, 同位角∠1 与∠2大小有什么关系? 其他同位角大小也有这样的关系吗?
平行线的特征 c
A
1
B
C
D
2
结论:
如果两条平行直线被第三条直线所截,同位角相等
两条平行直线被第三条直线所截,同位角相等, 内错角相等,同旁内角互补
平行线的性质与特征(一)
平行线的性质与特征(一)【小故事】测量地球的周长你听说过“坐地日行八万里”吗?这句话告诉我们地球的周长大约是8万里,可人们是怎么知道这个数据的呢?公元前200年,聪明的古埃及人仅仅用了一些数学知识,就测得了地球一周的总长。
他们用的数学知识你们也知道,其中包括:两条平行直线被第三条直线所截,内错角相等。
古埃及人发现,在当时的城市塞恩(如图所示的A点),直立的杆子在某个时刻没有影子,而此时在500英里以外的亚历山大(图中的B点),直立的杆子的影子却偏离垂直方向7°'12(图中 角等于7°'12)。
根据这个数据,古埃及人算出地球一周的总长约等于25000英里,这是因为弧AB的长÷7°'12=地球的周长÷360°的缘故,其中弧AB的长大约为500英里。
由于1英里=1.6千米,所以,地球的周长约为40000千米=80000里。
“里”是我国传统的一种长度单位,1里=500米。
【知识要点】一、两直线平行的判定方法1.平行线的判定公理:同位角相等,两直线平行2.平行线的判定定理1:内错角相等、两直线平行3.平行线的判定定理2:同旁内角互补、两直线平行4.平行公理的推论:平行于同一直线的两条直线平行5.垂直于同一直线的两条直线平行二、平行线的性质:1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补4.垂直于两平行线之一的直线,必垂直于另一直线【典型例题】例1 如图所示,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2,求证:DC∥AB。
例2 如图所示,直线AB 、CD 被直线EF 所截,∠1=∠2,∠CNF=∠BME ,那么AB ∥CD ,MP ∥NQ 说明理由。
例3 已知∠ABC 和∠A ′B ′C ′的两边AB 、A ′B ′,BC 、B ′C ′满足条件,AB ∥A ′B ′,BC ∥B ′C ′,求证:∠ABC=∠A ′B ′C ′或∠ABC+∠A ′B ′C ′=180°例4 如图,已知AB ∥CD ,∠B=140°,∠D=150°,求∠E 的度数。
七年级数学平行线的特征同步练习
平行线的特征第1题. 如图,下列推理中,错误的是( ) A .若a ∥b ,则∠1=∠3 B .若a ∥b ,则∠1=∠2 C .若c ∥d ,则∠3=∠5 D .若c ∥d ,则∠2+∠4=180°答案:A第2题. 如图,如果AB ∥CD ∥EF ,那么∠BAC +∠ACE +∠CEF 等于( ) A .180° B .270° C .360° D .540°答案:C第3题. 如图,DH //GE //BC ,且DC //EF ,则图中与∠1相等的角(不包括∠1)的个数是( )A . 2个B .4个C .5个D .6个 答案:C第4题. 看图填空(括号内填推理的依据)(1)若∠1=∠2,则_____∥______.( ) (2)若AB ∥CD ,则∠ABC =∠______.( ) (3)若∠3=∠4,则______∥______.( ) (4)若AD ∥BC ,则∠FAD =∠______.( )(5)若∠ABC +∠BCD =180°,则_____∥_____.( )答案:答案略第5题. 如图,(1)如果AD //BC ,那么根据两直线平行,同旁内角互补,可得______+∠ABC =180;(2)如果AB //CD ,那么根据两直线平行,同旁内角互补,可得________+∠ABC =180dc ba12 34 5FEA 1 CD 4 23 ABCD答案:(1)∠DAB ;(2)∠BCD第6题. 如图,(1)如果AD //BC ,那么根据__________________,可得________=∠1; (2)如果AB //CD ,那么根据__________________,可得______=∠1.答案:(1)两直线平行,同位角相等,∠EBC ; (2)两直线平行,内错角相等,∠ADF (答案并不唯一)第7题. 工人师傅在铺设电缆时,为了检验三条电缆是否相互平行,工人师傅只检查了其中两条是否与第三条平行即可,这种做法是否正确?答___,理由是___.答案:正确,平行与同一条直线的两条直线平行.第8题. 如图,已知//,12,58AD BC B ∠=∠∠=,则C ∠=________.答案:61第9题. 如图,DE //BC ,CD 是∠ACB 的平分线,50ACB ∠=,则∠EDC =________.答案:25第10题. 如图,已知AB //CD ,AD //BC ,那么∠A 与∠C 有怎样的大小关系?为什么?答案:∠A =∠C ,理由略第11题. 如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则ABEC DF1BOC ∠=____________.ABCE F O答案:125第12题. 如图,AB //CD ,BC //DE ,则∠B+∠D =________. 答案:180第13题. 如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠=_________.答案:54第14题. 直线l 同侧有A ,B ,C 三点,如果A ,B 两点确定的直线l 1,与B ,C 两点确定的直线l 2都与直线l 平行,则A ,B ,C 三点____,其理由是_____________________答案:在同一直线上,过直线外一点有且只有一条直线与已知直线平行.第15题. 如图,已知AB //CD ,ABCDE F1 23 ABCD E(1)你能找到∠B 、∠D 和∠BED 的关系吗?(2)如果∠B =46,∠D =58,则∠E 的度数是多少?答案:(1)∠B +∠D =∠BED ;(2)104第16题. 如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG =40°,则∠EGF 的度数是 ( ) (A )60° (B )70° (C )80° (D )90°第14题ABDCGFEDCBA第13题l答案:B第17题. 已知:如图4,直线a b ∥,直线c a 与,b ∠相交,若2115=,1∠=则 .答案:65;第18题. 如图,已知AB CD ∥,EF 分别交AB 、CD 于点E 、F ,170∠= ,则2∠的度数是 .答案:11012c ab图4ABDCEF12 (第8题)第19题. 在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE BC ∥,30ADE ∠=,120C A ∠=∠= ,则( )A.60B.45C.30D.20答案:CAECBD。
平行线的证明试题总集含答案
平行线的证明试题总集含答案(共79页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《平行线的证明》单元测试题一、 填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º ,则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________4.写出“同位角相等,两直线平行”的题设为_______,结论为_______.5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________.8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、 选择题9.下列语句是命题的是 【 】(A)延长线段AB (B)你吃过午饭了吗 (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】 (A)75º (B)45º (C)105º (D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角” 是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】 (A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】C A BDE E C D B A 1 3 24 第5题第6题 第7题A BC D E F G 12DABCE第10题(A)锐角三角形 (B)钝角三角形(C)直角三角形(D)无法确定三、解答证明题15.如图,AD=CD,AC平分∠DAB,求证DC∥AB.16.如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.17.如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?C ABD1218.如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE、CE分别是△ABC的内角、外角的平分线,∠A=40°,求∠E的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
四年级上册数学平行线与垂直专项训练
四年级上册数学平行线与垂直专项训练示例文章篇一:《有趣的四年级上册数学平行线与垂直专项训练》我呀,是个四年级的小学生。
在我们的数学世界里,有好多超级有趣的东西呢,就像一个充满魔法的王国。
今天呀,我就想和大家说说我们正在学的平行线与垂直专项训练。
平行线是什么呢?我觉得平行线就像两个特别有礼貌的好朋友,总是保持着一定的距离,永远不会靠得太近或者离得太远。
在我们的课本上,那些直直的线,就像两条铁轨一样。
你看呀,铁轨要是不平行,那火车可就惨了,肯定会出轨的呀!这就好比我们走路,如果两只脚不是平行着向前走,那肯定会摔跟头的。
我们在作业本上画平行线的时候,就感觉像是在给这两个好朋友安排好固定的路线,让它们规规矩矩地并排走呢。
有一次,老师让我们在教室里找平行线。
哇,这可太有趣了。
我一下子就看到了黑板的上下两条边,那可不就是平行线嘛。
我大声地跟同桌说:“你看,黑板的上边和下边就像一对平行线兄弟呢。
”同桌还调皮地说:“那它们是不是在比赛谁更直呀?”然后我们都哈哈大笑起来。
还有窗户的左右边框,也是平行线呀。
这时候,后面的同学也喊起来:“桌椅的两条腿也是平行线呢!”大家你一言我一语,感觉整个教室都充满了数学的味道。
那垂直呢?垂直就像是两个线朋友突然来了个90度的鞠躬,特别的有礼貌而且很有规则。
我把垂直想象成一个小士兵站得笔直,然后它的影子和它自己就形成了垂直的关系。
就像我们盖房子的时候,柱子和地面就是垂直的关系。
要是柱子不垂直于地面,那房子可就歪歪扭扭的,说不定一阵风就能把它吹倒呢。
这多像我们平时站队呀,如果我们站得不垂直,歪歪斜斜的,那整个队伍看起来就乱套了。
在做专项训练题的时候,可真是有笑有泪呢。
有些题特别简单,就像1 + 1 = 2一样。
比如说给我们一个简单的图形,让我们找出里面的平行线和垂直线。
我眼睛一瞟就能找出来,心里就特别得意,感觉自己就像个数学小天才呢。
可是呀,有些题就像小怪兽一样难对付。
有一道题是让我们根据一些角度来判断两条线是不是垂直。
新思维系列七年级数学平行线的特征课后拓展训练
平行线的特征1.下列说法正确的有 ( )①两条直线与另外一条直线相交,同位角相等;②两条直线与另外一条直线相交,如果同位角相等,那么内错角也相等; ③如果同一平面内的两条直线都和另一条直线垂直,那么这两条直线平行;④两条直线与另外一条直线相交,如果∠1与∠2是同旁内角,∠1与∠3是内错角,那么∠2与∠3互补.A .4个B .3个C .2个D .1个2.如图2—53所示,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为 ( )A .155°B .50°C .45°D .25°3.如图2—54所示,在ΔABC 中,∠ACB =90°,DE 过点C 且平行于AB , 若∠BCE =35°,则∠A 的度数为 ( )A .35°B .45°C .55°D .65°4.如图2—55所示,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,若 ∠FEB =110°,则∠EFD 等于 ( )A .50°B .60°C .70°D .110°5.如图2—56所示,在不等边三角形ABC 中,DE ∥BC ,∠ADE =60°,则图中等于60°的角还有 .6.有这样一道题:如图2—57所示,已知BA ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,试判断∠1与∠2的度数有怎样的关系,并说明理由。
小颖的判断是∠1与∠2互为余角,这是正确的.但是她写的说明不完整,请你给予补充.因为BE 是∠ABC 的平分线,所以∠2=21 , 又因为CE 是∠BCD 的平分线,所以∠2=21 , 所以∠1十∠2=21( + ), 而AB ∥CD ,根据两直线平行,同旁内角互补,得 + = .所以∠l+∠2=90°,即∠1与∠2互余.7.如图2—58所示,∠1=∠2,∠3=∠B,AC∥DE,且B,C,D在—条直线上,试说明AE∥BD.8.如图2—59所示,AD∥BC,∠A=100°,BD平分∠ABC,求∠ABD和∠ADB的度数.9.如图2—60所示,AC∥BD,EF与AC,BD分别交于点A,B,AM和BN分别是∠EAC 和∠ABD的平分线.试说明AM∥BN.参考答案1.C[提示;②③正确,故选C.)2.D[提示:由∠ADE与∠ADB互补可求出∠ADB的度数,再根据两直线平行,内错角相等,即可得出∠DBC的度数.因为∠ADE+∠ADB=180°,∠ADE=155°,所以∠ADB=25°.因为AD∥BC,所以∠DBC=∠ADB=25°(两直线平行,内错角相等).故选D.] 3.C[提示:因为∠ACB=90°,∠BCE=35°,所以∠ACD=55°.因为DE∥AB,所以∠A=∠ACD=55°,故选C.]4.C[提示:根据两直线平行,同旁内角互补可知∠EFD=70°.]5.∠B[提示:因为DE∥BC,所以∠ADE=∠B.]6.∠ABC ∠BCD ∠ABC ∠BCD ∠ABC ∠BCD180°7.解:因为A C∥DE,所以∠2=∠4.因为∠l=∠2,所以∠1=∠4,所以AB∥CE(内错角相等,两直线平行),所以∠B=∠ECD(两直线平行,同位角相等).因为∠3=∠B,所以∠3=∠ECD,所以A E∥BD(内错角相等,两直线平行).8.∠ABD和∠AD B都等于40°.9.提示:先说明∠EAC=∠ABD,再说明∠EAM=∠ABN.。
七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习
专题第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【解析】解:(1)由平行公理可知,过直线a外的一点B画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与(1)中所作的直线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)在同一平面内,过直线外一点一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.2.请你动手试试,过一条直线外的一点作这条直线的平行线,能作几条?由此能得出一个什么数学结论.____________________________.【解答】解:过一条直线外的一点作这条直线的平行线,能做1条,理由是:过直线外一点有且只有一条直线与这条直线平行.故答案为:能做一条,过直线外一点有且只有一条直线与这条直线平行.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【解析】解:AB∥CD.理由:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠E为直角,即∠E=90°(已知),∴∠α+∠β=90°(直角三角形的两个锐角互余),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.完成下面的证明,括号内填根据.如图,直线a、b、c被直线l所截,量得∠1=65°,∠2=115°,∠3=65°.求证:a∥b证明:∠1=65°,∠3=65°∴_______∴___________________∵∠2=115°,∠3=65°∴____________∴___________________∴a∥b【解答】证明:∵∠1=65°,∠3=65°∴∠1=∠3,∴a∥c(同位角相等,两直线平行),∵∠2=115°,∠3=65°∴∠2+∠3=180°,∴b∥c(同旁内角相等,两直线平行)∴a∥b(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)故答案为:∠1=∠3;a∥c(同位角相等,两直线平行);∠2+∠3=180°;b ∥c(同旁内角相等,两直线平行).2.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).3.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠_____=____°(______)∵∠1=30°∴∠BAD=∠_____+∠___=_____°又∵∠B=60°∴∠BAD+∠B=_____°∴AD∥BC(______________)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【解析】解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.【解答】解:∠AEC=2∠AFC.理由:如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠AEG=∠BAE,∠CEG=∠DCE,∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,同理可得∠AFC=∠BAF+∠DCF,∵∠BAE,∠DCE的平分线相交于点F,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.2.课上教师呈现一个问题:已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F作MN∥CD.分析思路:①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;⑤从而可求∠EFG的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)辅助线:过点P作PN∥EF交AB于点N.分析思路:①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;③又已知∠1的度数,所以只需求出∠2的度数;④由已知EF⊥AB,可得∠4=90°;⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;⑥从而可以求出∠EFG的度数.(2)如图,过点O作ON∥FG,∵ON∥FG,∴∠EFG=∠EON∠1=∠ONC=30°,∵AB∥CD,∴∠ONC=∠BON=30°,∵EF⊥AB,∴∠EOB=90°,∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.3.问题情境:(1)如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.【解析】解:如图,∵∠3=∠4(已知),∴AE∥BC(内错角相等,两直线平行),∴∠EDC=∠5(两直线平行,内错角相等).∵∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC∥AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°,∴BE∥CF(同旁内角互补,两直线平行).2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【解析】解:(1)如图1,过P作PE∥l1,∵l1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC,则∠A=∠1.∵AC∥BD,∴PE∥BD,∴∠B=∠EPB.∵∠APB=∠BPE﹣∠1,∴∠APB=∠B﹣∠A;(3)如图3,过点A作MN∥BC,则∠B=∠1,∠C=∠2.∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关系,并说明理由.【解答】解:CF⊥AB,理由如下:∵∠1=∠A(已知)∴AC∥FG(同位角相等,两直线平行)∴∠2=∠ACF(两直线平行,内错角相等)∴∠2+∠3=180°(已知)∴∠ACF+∠3=180°∴DE∥CF(同旁内角互补,两直线平行)∴∠DEF=∠1+∠2∵DE⊥AB∴∠1+∠2=90°∴CF⊥AB2.如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于,AM平分∠EAF,AN平分∠BAE,证明:∠AFG =2∠MAN.【解答】证明:(1)因为∠DCE+∠ECG=180°,∠CEG+∠CGA+∠ECG=180°,所以∠DCE=∠CEG+∠CGA因为CD⊥AG所以∠DCE﹣∠CGA=∠CEG=90°又因为∠DCE﹣∠HAE=90°所以∠CGA=∠HAE所以BH∥DI(2)因为AM平分∠EAF AN平分∠BAE所以∠EAM=∠F AM∠EAN=∠BAN又因为∠MAN=∠EAN﹣∠EAM所以∠MAN=∠BAN﹣∠F AM又因为∠BAN=∠BAF+∠F AN∠F AM=∠MAN+∠F AN所以∠MAN=∠BAF﹣∠MAN所以∠BAF=2∠MAN又所以BH∥DI所以∠AFG=∠BAF所以∠AFG=2∠MAN.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【解析】解:(1)“两个锐角的和是钝角位”是假命题,如30°和40°的和为70°;(2)“在同一平面内,垂直于同一条直线的两条直线互相平行”为真命题.已知:如图,在同一平面内,直线b⊥a,直线c⊥a.证明:如图,∵b⊥a,c⊥a,∴∠1=90°,∠2=90°,∴∠1=∠2,∴b∥c.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.已知:三条不同的直线a、b、c在同一平面内:①a∥b;②a⊥c;③b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,其中一个事项作为结论(用如果…那么…的形式,写出命题,例如:如果a⊥c、b⊥c、那么a∥b).(1)写出一个真命题,并证明它的正确性;(2)写出一个假命题,并举出反例.【解答】解:(1)如果a⊥c、b⊥c、那么a∥b;理由:如图,∵a⊥c、b⊥c,∴∠1=90°,∠2=90°,∴∠1=∠2,∴a∥b.(2)如果a⊥c、b⊥c、那么a⊥b;反例:见上图,如果a⊥c、b⊥c、那么a∥b.2.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【解答】已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.【答案】两条直线都垂直于同一条直线这两条直线互相平行【解析】解:把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.“垂直于同一直线的两直线平行”改写成为“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.题设:两条直线都垂直于同一条直线;结论为:这两条直线互相平行.故答案为:两条直线都垂直于同一条直线这两条直线互相平行2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.【答案】57°【解析】解:如图,设AD与BC′交于点E.∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∠ADC=90°,∴∠3=∠4,∠1=∠2+∠4.∵△BDC′是由△BDC翻折得到,∴∠2=∠4,∠C=∠C′=90°,∠BDC=∠BDC′∴∠2=∠3,∵∠ADC′=24°,∴∠1=90°﹣∠EDC′=66°,∵∠1=∠2+∠4=2∠2,×66°=33°,∴∠2=∠3=12∴∠BDC=∠D-∠3=90°-33°=57°.故答案为57°.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?【解析】解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?【解析】解:C,D,E三点共线.理由:因为过直线AB外一点C有且只有一条直线与AB平行,直线CD、DE都经过点C 且与AB平行,所以直线CD、DE重合,所以点C、D、E三点共线.5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?【解析】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°(垂直的定义).所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;【解析】解:(1)假命题.反例为:两个锐角分别为40°,60°,它们的和为100°,为钝角;(2)假命题.反例为:a=1,b=﹣3,但是a2=1<b2=9.7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.【解析】解:∵∠EFG=90°,∠E=35°,∴∠FGH=180°-∠EFG-∠E=180°-90°-35°=55°.∵GE平分∠FGD,∴∠FHG=∠HGD=55°.∵AB∥CD,∴∠FHG=∠HGD =55°.∴∠FHE=180°-∠FHG=180°-55°=125°.在△EFH中,∠EFB=180°-∠FHE-∠E=180°-125°-35°20°.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.【解析】证明:(1):∵AB∥CD,∴∠4=∠BAF(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠4=∠DAC,(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).。
平行线的特征练习
平行线的特征练习一.目标导航1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.2.经历探索直线平行的条件的过程,会识别内错角和同旁内角,并能利用判定定理解决一些问题.二.基础过关1.如图,两条直线a 、b 被第三条直线c 所截,如果a ∥b ,∠1=70°,那么∠2=________.1题图 2题图 3题图 2.如图,若AB ∥CD ,∠C =60º,则∠A +∠E = . 3.如图,已知∠1=∠2,∠3=125°,那么∠4的度数为 . 4.推理填空,如图∵∠B = .∴AB ∥CD ( )∵∠DGF =∴CD ∥EF ( ) ∵AB ∥EF∴∠B + =180°( )5.两条平行线被第三条直线所截,一组同位角的角平分线互相______.6.对于同一平面内的三条直线a, b, c ,总结出下列五个论断:①a ∥b ,②b ∥c ,③a ⊥b ,④a ∥c ,⑤a ⊥c ;以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:________________.7.如图,AB ∥CD ,AD ∥BC ,则图中与∠A 相等的角有_____个.8.两条直线被第三条直线所截,则( )A .同位角相等B .内错角相等C .同旁内角相等D .以上结论都不对 9.如果两个角的一边在同一条直线上,另一条边互相平行,那么这两个角只能( ) A .相等 B .互补 C .相等或互补 D .相等且互补21c bal 4l 3l 2l 11234EBDCAGCE FDBA10.如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A 是120°,第二次拐的角∠B 是150°第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( )A .120°B .130°C .140°D .150°7题图 10题图 11题图 12题图 11.如图,如果AD ∥BC ,则有①∠A+∠B=180°;②∠B+∠C=180°;③∠C+∠D=180°,上述结论中正确的是( ) A .只有① B .只有② C .只有③ D .只有①和③ 12.如图,如果AB ∥CD ,CD ∥EF ,那么∠BCE 等于( ) A .∠1+∠2 B .∠2-∠1 C .180°-∠2 +∠1 D .180°-∠1+∠2三.能力提升13.已知:如图,CD ⊥AB 于D ,E 是BC 上一点,EF ⊥AB 于F .∠l=∠2. 求证:∠AGD=∠ACB .13题图14.如图,直线AD 与AB 、CD 相交于 A 、D 两点,EC 、BF 与AB 、CD 交于点E 、C 、B 、F ,∠l=∠2,∠B=∠C. 求证:∠A=∠D .F DCEB A DC BA EFC DBA2121FD GACE四.聚沙成塔如图某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB 平行的DE方向继续铺设.如果∠ABC=135°,∠BCD=65°,那么∠CDE的度数应为多少?B。
平行线的特征
分析 解答
因为梯形的上下两底是平行的, 观察图形可知,AD∥BC,且∠B与 已知的∠A是同旁内角,∠C与已知 的∠D也是同旁内角,所以根据平行
线的性质“两直线平行,同旁内角互 补”可以建立∠B与∠A, ∠C与∠D 之间的数量关系,从而使问题得解.
5、例题讲解
如图是梯形有上底的一部分, 已经量得∠A=115°, ∠D =100°,那么梯形的另外 两个角各是多少度?
从中,你发现了平行线的特征了吗?
平行线的特征
两条平行直线被第三条直线直线所截, 同位角相等,内错角相等,同旁内角互补。
简记为: 两直线平行,同位角相等。 两直线平行,内错角相等。
两直线平行,同旁内角互补。
回忆平行线判定定理的符号语言的表述,参照上图形,将 上述性质定理怎样用符号语言表达出呢?
符号语言:(不唯一) 性质定理1.∵ a∥b ∴∠1=∠5 (两直线平行,同位角相等) 性质定理1.∵ a∥b ∴∠3=∠5 (两直线平行,内错角相等) 性质定理1.∵ a∥b ∴∠3+∠6=180o (两直线平行,同旁内角互补)
复习导入,创设情景
上节课我们学习了平行线的判定,回忆所学内容看下面的问题
1. 如图
(1)∵ ∠1 =∠2(已知)
c
∴ AB∥CD( 同位角相等,两直线平行 ).
1 34
a (2)∵ ∠2 ∠=3(已知)
∴AB∥CD( 内错角相等,两直线平行 )
2
b
(3)∵∠2+∠4= 180(。已知)
∴ AB∥CD( 同旁内角互补,两直线平行 ).
分析 解答
解:
∵AD ∥BC(已知) ∴ ∠A+∠B= 180° ,
∠D+∠C= 180° (两直线 平行,同旁内角互补)
平行与垂直的特征、性质 小学数学 随堂练习
一、选择题1. 钟表到3点整时,时针与分针的关系是()。
A.互相平行B.互相垂直C.不垂直也不平行2. 如图,点A到直线的所有连线中,()最短。
A.AE B.AD C.AB3. 如图,五一大街有4条路线通往小军家,长度分别约是:1千米600米,800米,1千米和1500米,其中B路线与五大街是互相垂直的。
根据下图可以判断B 路线的长度是()。
A.1500米B.1千米C.800米D.1千米600米4. 下面________幅图中的两条直线互相垂直?A.B.C.D.E.5. 如图,在两条平行线之间,甲的面积是48平方厘米,乙的面积是36平方厘米,丙的面积()平方厘米。
A.12 B.84 C.48 D.36二、填空题6. 下图中,与AB平行的线段有( )条;与CD垂直的线段有( )条。
7. 在同一个平面内,两条直线相交成( )度,它们的位置关系是互相( )。
8. 把一张正方形纸左右对折两次,再打开,这几条折痕互相( ).9. 三角尺上最大的角是( )度,这个角的两条边互相( )。
10. 长方形的长和宽互相______。
三、解答题11. 如图。
(1)过点A画已知直线l的垂线。
(2)量出点A到直线l的距离是。
(3)以点B为顶点,引出一条射线,与已知直线相交成75°的角。
12. (1)量出∠C=()度。
(2)过点C画出线段AB的垂线。
13. 如图,四边形 ABCD 是平行四边形.(1)AD∥(),DC∥().(2)量一量,∠1=()°,∠1 是一个()角.(3)过点O画出平行四边形 ABCD 两条不同的高.14. 四一班在运动会的开幕式上表演了精彩的方队节目,这是他们的队形示意图。
(1)节目开始的造型是一个长方形,请把这个长方形补充完整,标出长和宽的长度。
(2)站在方队外边的A点是一位领队表演者,他与第一排同学中的B同学的距离最近吗?如果不是,请画出距离A同学最近的同学的位置。
(保留作图痕迹)。
2.3 平行线的特征(原卷版)
第二单元第3课时平行的特征一、选择题1.下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是 ( ) . A.① B.②和③ C.④ D.①和④2. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是 ( )A.45° B.135° C.45°或135° D.不能确定3.如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°4.如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为( )A.150° B.130° C.120° D.100°5.如图,OP∥QR∥ST,则下列等式中正确的是( )A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°6. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有( )A.5个 B.4个 C.3个 D.2个7.如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°8.如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于 ( ) .A.60° B.90° C.120° D.150°9.下列图形中,由AB∥CD,能得到∠1=∠2的是( ) .10.如图所示,已知AD与BC相交于点O,CD∥OE∥AB.如果∠B=40°,∠D=30°,则∠AOC的大小为( ) .A.60° B.70° C.80° D.120°二、填空题11. 画线段AB,延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=•AC,则线段CD=______AB.12.如图,已知AB∥CD,∠α= .13.如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A= .14.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.三、解答题15.已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2= ;(2)∠1+∠2+∠3= ;(3)∠1+∠2+∠3+∠4= ;(4)试探究∠1+∠2+∠3+∠4+…+∠n= .16.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?。
专题02 平行线的判定与性质(原卷版)七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴∥()∴∠EDC=∠DCB()又∠EDC=∠GFB(已知)∴∠DCB=(等量代换)∴∥()2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(①),因为EF平分∠CED(已知),所以∠DEF=②(角平分线的定义),所以∠CFE=∠CEF(③),因为∠A=∠CFE(已知),所以∠A=④(等量代换),所以EF∥AB(⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD()∴∠BEF=()∵∠B=∠ADG(添加条件)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG().5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,∴∠2=,(等量代换)∴AE∥FD∴∠A=∠BFD∵∠A=∠D(已知)∴∠D=(等量代换)∴∥CD∴∠B=∠C.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=(),∴EF∥(),又∵AB∥EF,∴AB∥CD().12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(),∠AMC+∠AMD=180°(),所以∠BAM=∠AMC().因为AE平分∠BAM,所以().因为MF平分∠AMC,所以,得(),所以().13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC()∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=°时,DE∥BC,当∠α=°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 平行线的特征
一、填空题:(每题4分,共28分)
1.如图1,AB ∥CD ,AF 分别交AB 、CD 于A 、C ,CE 平分∠D CF ,∠1=100 °,则∠2=_____.
2
1
F
E D
C
B A
G 1
F E
D
C
B
A
G
2
1
F
E
D
C
B A
(1) (2) (3)
2.如图2,AB ⊥EF ,CD ⊥EF ,∠1=∠F =45°,那么与∠F CD 相等的角有_________个,它们分别是___________________________。
3.如图3,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2=_________。
4.如图4,DH ∥EG ∥BC ,DC ∥EF ,图中与∠1相等的角有________________________。
K H G 1
F
E
D C
B
A D
C
B
A E
D C B A
(4) (5) (6) 5.如图5,AD ∥BC ,∠A 是∠ABC 的2倍。
(1)∠A =_______度。
(2)若BD 平分∠ABC ,则∠ADB =___________。
6.如图6,BA ∥DE ,∠B =150°,∠D =130°,则∠C 的度数是__________。
7.如图7,∠ACD =∠BCD ,DE ∥BC 交AC 于E ,若∠ACB =6 0°,∠B =74°,则∠EDC =___°,∠CDB =____°。
E D C
B
A F
E
D
C
B A
30︒
北
西
南
东
B A
γ
β
αD
C
B
A
(7) (8) (9) (10) 二、选择题:(每题4分,共28分)
8.如图8,由AC ∥ED ,可知相等的角有( ) A.6对 B.5对 C.4对 D.3对 9.如图9,由A 到B 的方向是( )
A.南偏东30°
B.南偏东60°
C.北偏西30°
D.北偏西60°
10.如图10,如果AB ∥CD ,则角α、β、γ之间的关系为( ) A. α+β+γ=360° B. α-β+γ=180° C. α+β-γ=180° D. α+β+γ=180°
11.如图11,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( ) A.60° B.50° C.30° D.20°
F E
D
C
B A F
E
D
C
B
A
(11) (12) 12.下列说法中,为平行线特征的是( )
①两条直线平行, 同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行. A.① B.②③ C.④ D.②和④
13.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( ) A.相等 B.互补 C.相等或互补 D.相等且互补
14.如图12,AB ⊥BC ,BC ⊥CD ,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )
A.是同位角且相等;
B.不是同位角但相等;
C.是同位角但不等;
D.不是同位角也不等 三、解答题:(共44分)
15.已知,如图,MN ⊥AB ,垂足为G ,MN ⊥CD ,垂足为H ,直线EF 分别交AB 、CD 于G 、Q ,∠GQC =120°,求∠EGB 和∠HGQ 的度数。
(7分)
Q
H G
M N
F
E
D
C B
A
16.如图,∠CAB =100°,∠ABF =130°,AC ∥MD ,BF ∥ME ,求∠DME 的度数,(7分)
M F
E D C
B
A
17.如图,DE ∥CB ,试证明∠AED =∠A +∠B 。
(7分)
E
D C
B
A
18.如图,∠1=∠2,∠C =∠D ,那么∠A =∠F ,为什么?(7)
1
4
32F
E
D C
B
A
19.如图,AB ∥CD ,∠1=∠2,∠BDF 与 ∠EFC 相等吗?为什么?(8分)
1
2
F E D
C
B A
20.如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠ AED 与∠C 的关系。
(8分)
1
54
32
F E
D
C
B
A
答案:
1. 50°
2. 4,∠F ,∠1,∠FAB ,∠ABG
3. 54°
4. ∠FEK ,∠DCF ,∠CKG ,∠EKD ,∠KDH
5.(1)120°(2)30°
6.80°
7.30°,76°
8.B 9.B 10.C 11.D 12.A 13.C 14.B 15. ∵MN ⊥AB ,MN ⊥CD ∴∠MGB=∠MHD=90° ∴AB ∥CD
∴∠EGB=∠EQH
∵∠EQH=180°-∠GQC=180°-120°
=60°
∴∠EGB=60°
∴∠EGM=90°-∠EGB=30°
∴∠EGB=60°,∠HGQ=30°
16. ∵AC∥MD,∠CAB=100°
∴∠CAB+∠AMD=180°,∠AMD=80°理可得∠EMF=50°
∴∠DME=∠AMB-∠AMD-∠EMB
=180°-80°-50°=50°
17.作EF∥AB交OB于F
∵EF∥AB
∴∠2=∠A,∠3=∠B
∵DE∥CB
∴∠1=∠3
∴∠1=∠B
∴∠1+∠2=∠B+∠A
∴∠AED=∠A+∠B
18. ∵∠2=∠3,∠1=∠2
∴∠1=∠3
∴DB∥EC
∴∠4=∠C
∵∠C=∠D
∴∠D=∠4
∴DF∥AC
∴∠A=∠F
19. ∠BEF=∠EFC,理由如下:
连结BC
∵AB∥CD
∴∠ABC=∠DCB
∵∠1=∠2
∴∠ABC-∠1=∠DCB-∠2
即∠EBC=∠BCF
∴BE∥CF
∴∠BEF=∠EFC
20.∠AED=∠C
∵∠1+∠2=180°
∵∠1+∠4=180°
∴∠2=∠4
∴EF∥AB
∴∠3=∠5
∵∠3=∠B
∴∠5=∠B
∴DE∥BC
∴∠C=∠AED.。