高考数学一轮复习 热点难点精讲精析 2.11导数及其应用.doc

合集下载

高考数学一轮复习导数及其应用多选题知识点总结附解析

高考数学一轮复习导数及其应用多选题知识点总结附解析

高考数学一轮复习导数及其应用多选题知识点总结附解析一、导数及其应用多选题1.已知(0,1)x ∈,则下列正确的是( )A .cos 2x x π+<B .22xx <C .22sin 24x x x >+ D .1ln 1x x <- 【答案】ABC 【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+, 令()sin 2x f x =,()224xh x x =+ ()()f x f x -=-,()sin2xf x =是奇函数, ()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t =, 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =单调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.2.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.3.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =B .直线:1l x =-在点()1,0P -处“切过”曲线()2:1C y x =+C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD【分析】分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】对于A 选项,由3y x =,可得23y x '=,则00x y ='=,所以,曲线C 在点()0,0P 处的切线方程为0y =,当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧, A 选项正确;对于B 选项,由()21y x =+,可得()21y x '=+,则10x y =-'=,而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;对于C 选项,由sin y x =,可得cos y x '=,则01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos xy x x ==,可得21cos y x'=,01x y ='=,所以,曲线C 在点()0,0P 处的切线方程为y x =,当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()2221sin 10cos cos xg x x x=-=-≤',所以,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减.当02x π-<<时,()()00g x g >=,即tan x x >;当02x π<<时,()()00g x g <=,即tan x x <.满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.4.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴21x x -==≥,B 对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-,且3y x y x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.5.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( ) A .1,2a b == B .3,3a b =-=- C .0,2a b >< D .0,0a b <>【答案】ABC 【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解. 【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得1x =2x =当x 变化时,()'f x ,()f x 的变化情况如下表:f b b ⎛== ⎝,当3ax -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞; 要使函数()f x 有且只有一个零点,作草图或则需0303a f a f ⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a ab -<<,B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f ⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a ab ->>,D 选项,0,0a b <>,不一定满足,故D 不符合题意; 故选:ABC 【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.6.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1xxx f x e e-=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e ex xxf x -=-的定义域为{}|0x x ≠,且 ()()sin sin x x x xx xf x f x e e e e----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1x xx f x e e -=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee-----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.7.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1 D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减【答案】ACD 【分析】先求出函数的导数,然后对四个选项进行逐一分析解答即可, 对于选项A :当0,2x π⎛⎫∈ ⎪⎝⎭时,可得()0f x '<,可得()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减;当,2x ππ⎡⎤∈⎢⎥⎣⎦,可得()0f x '<,可得()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,最后作出判断; 对于选项B :由()f x 在区间(]0,π上单调递减可得()()12f x f x >,可得1212sin sin x x x x >,进而作出判断; 对于选项C :由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==,进而作出判断;对于选项D :()()()sin g x g x xg x x ''''=+-,可得()()sin xg x f x x''==,然后利用导数研究函数()g x '在区间(]0,π上的单调性,可得()()0g x g π''≤=,进而可得出函数()g x 在(]0,π上的单调性,最后作出判断.【详解】()2cos sin x x xf x x-'=, (]0,x π∈, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,由三角函数线可知tan x x <, 所以sin cos xx x<,即cos sin x x x <,所以cos sin 0x x x -<, 所以()0f x '<,所以()f x 在区间0,2π⎛⎫⎪⎝⎭上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦,cos 0x ≤,sin 0x ≥,所以cos sin 0x x x -<,()0f x '<, 所以()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以()f x 在区间(]0,π上单调递减,故选项A 正确;当120x x π<<≤时,()()12f x f x >, 所以1212sin sin x x x x >,即1221sin sin x x x x ⋅<⋅,故选项B 错误; 由三角函数线可知sin x x <,所以sin 1x x x x <=,sin ()0f πππ==, 所以当(]0,x π∈时,()[)0,1f x ∈,故选项C 正确; 对()()cos g x xg x x '=+进行求导可得:所以有()()()sin g x g x xg x x ''''=+-,所以()()sin x g x f x x''==,所以()g x ''在区间(]0,π上的值域为[)0,1, 所以()0g x ''≥,()g x '在区间(]0,π上单调递增,因为()0g π'=,从而()()0g x g π''≤=,所以函数()g x 在(]0,π上单调递减,故选项D 正确. 故选:ACD.【点睛】方法点睛:本题考查导数的综合应用,对于函数()sin x f x x=的性质,可先求出其导数,然后结合三角函数线的知识确定导数的符号,进而确定函数的单调性和极值,最后作出判断,考查逻辑思维能力和运算求解能力,属于中档题.8.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1-B .0C .1D .2 【答案】CD【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出.【详解】解:∵函数()()()221x f x x e a x =-+-,∴()()()()()12112x x f x x e a x x e a '=-+-=-+, ①若0a =,那么()()0202xf x x e x =⇔-=⇔=, 函数()f x 只有唯一的零点2,不合题意;②若0a >,那么20x e a +>恒成立,当1x <时,()0f x '<,此时函数为减函数;当1x >时,()0f x '>,此时函数为增函数;此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+- ()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <,则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意;③若02e a -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增, 当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减, 当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()(1)20x f x x e a '=-+>恒成立,故()f x 单调递增, 故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦ (){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意;④若2e a =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增, 故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若 2e a <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=,即()()()120x f x x e a '=-+>恒成立,故()f x 单调递增, 当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=, 即()()()120x f x x e a '=-+<恒成立,故()f x 单调递减, 当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增, 故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意; 综上所述,a 的取值范围为()0,∞+,故选:CD.【点睛】本题考查利用导数研究函数的零点问题,属于较难题.。

高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

2.11 导数在研究函数中的应用(一)[重点保分 两级优选练]A 级一、选择题1.(2017·某某模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞) D.(-∞,-1)∪(1,+∞) 答案 B解析 函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.若函数f (x )=(x 2-2x )e x在(a ,b )上单调递减,则b -a 的最大值为( ) A .2 B. 2 C .4 D .2 2 答案 D解析 f ′(x )=(2x -2)e x +(x 2-2x )e x =(x 2-2)e x,令f ′(x )<0,∴-2<x <2, 即函数f (x )的单调递减区间为(-2,2). ∴b -a 的最大值为2 2.故选D.3.函数f (x )=(x -1)(x -2)2在[0,3]上的最小值为( ) A .-8 B .-4 C .0 D.427答案 B解析 f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合单调性,只要比较f (0)与f (2)即可.f (0)=-4,f (2)=0.故f (x )在[0,3]上的最小值为f (0)=-4.故选B.4.(2017·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞) 答案 A 解析 设g (x )=f xe2x,则g ′(x )=f ′x -2f xe2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.故选A.5.(2017·某某某某一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值X 围为( )A .a <1B .a ≤1 C.a <2 D .a ≤2 答案 D解析 由f (x )=x 2-a ln x ,得f ′(x )=2x -a x, ∵f (x )在(1,+∞)上单调递增,∴2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, ∵x ∈(1,+∞)时,2x 2>2,∴a ≤2.故选D.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) A .a <b <c B .c <a <b C .c <b <a D .b <c <a 答案 B解析 由f (x )=f (2-x )可得对称轴为x =1,故f (3)=f (1+2)=f (1-2)=f (-1). 又x ∈(-∞,1)时,(x -1)f ′(x )<0,可知f ′(x )>0.即f (x )在(-∞,1)上单调递增,f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即c <a <b .故选B. 7.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x=e -x⎝ ⎛⎭⎪⎫-x +12x =e -x ·1-2x 2x. 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f ⎝ ⎛⎭⎪⎫12=1e·12=12e.故选B. 8.已知函数f (x )=ax-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值X 围是( )A .a >2B .a <3C .a ≤1 D.a ≥3 答案 C解析 函数f (x )的定义域是(0,+∞),不等式a x-1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解,令h (x )=x -x ln x ,可得h ′(x )=1-(ln x +1)=-ln x ,令h ′(x )=0,可得x =1,当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0,可得当x =1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.故选C.9.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值X 围为( )A .[2,+∞) B.[4,+∞) C .{4} D .[2,4] 答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当0<a ≤1时,f ′(x )=3ax 2-3=3a ⎝⎛⎭⎪⎫x +1a ⎝ ⎛⎭⎪⎫x -1a ,f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且 f ⎝ ⎛⎭⎪⎫1a =-2a+1≥0, 解得a =4.综上所述,a =4.故选C.10.(2018·某某一模)已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值X 围是( )A.⎝⎛⎦⎥⎤-∞,2e B.⎝ ⎛⎭⎪⎫-∞,2eC .(-∞,0]D .(-∞,0) 答案 B解析 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln xx在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值X 围是⎝⎛⎭⎪⎫-∞,2e .故选B.二、填空题11.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值X 围为________.答案 [1,+∞)解析 f ′(x )=mx +1x-2≥0对一切x >0恒成立.m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1时,函数g (x )取得最大值1,故m ≥1.12.(2017·西工大附中质检)已知f (x )是奇函数,且当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值是1,则a =________.答案 1解析 由题意,得x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12有最大值-1,f ′(x )=1x -a ,由f ′(x )=0,得x =1a ∈(0,2),且x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0,f (x )单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=-1,解得a =1.13.(2018·东北三校联考)已知定义在R 上的奇函数f (x )的图象为一条连续不断的曲线,f (1+x )=f (1-x ),f (1)=a ,且当0<x <1时,f (x )的导函数f ′(x )满足f ′(x )<f (x ),则f (x )在[2017,2018]上的最小值为________.答案 a解析 由f (1+x )=f (1-x )可得函数f (x )的图象关于直线x =1对称.又f (x )是定义在R 上的奇函数,则f (0)=0,且f (x )的图象关于点(0,0)对称,所以f (x )是以4为周期的周期函数,则f (x )在[2017,2018]上的图象与[1,2]上的图象形状完全相同.令g (x )=f xex,则g ′(x )=f ′x -f xex<0,函数g (x )在(0,1)上递减,则g (x )<g (0)=0,所以f ′(x )<f (x )<0,则函数f (x )在(0,1)上单调递减.又由函数的对称性质可得f (x )在(1,2)上单调递增,则f (x )在[2017,2018]上的最小值为f (2017)=f (1)=a .14.(2018·启东中学调研)已知函数f (x )=e x+a ln x 的定义域是D ,关于函数f (x )给出下列命题:①对于任意a ∈(0,+∞),函数f (x )是D 上的减函数; ②对于任意a ∈(-∞,0),函数f (x )存在最小值;③存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0成立; ④存在a ∈(-∞,0),使得函数f (x )有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号) 答案 ②④解析 由f (x )=e x+a ln x ,可得f ′(x )=e x +a x,若a >0,则f ′(x )>0,得函数f (x )是D 上的增函数,存在x ∈(0,1),使得f (x )<0即得命题①③不正确;若a <0,设e x+a x=0的根为m ,则在(0,m )上f ′(x )<0,在(m ,+∞)上f ′(x )>0,所以函数f (x )存在最小值f (m ),即命题②正确;若f (m )<0,则函数f (x )有两个零点,即命题④正确.综上可得,正确命题的序号为②④.B 级三、解答题15.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a.当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.综上得,当a ≤0时,f (x )的单调递增区间为(0,+∞),无递减区间;当a >0时,f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. (2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,∴当12<a <ln 2时,f (x )的最小值是f (1)=-a ;当ln 2≤a <1时,f (x )的最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . 16.(2017·某某某某联考)已知函数f (x )=e x-ax ,a >0. (1)记f (x )的极小值为g (a ),求g (a )的最大值; (2)若对任意实数x 恒有f (x )≥0,求a 的取值X 围.解 (1)函数f (x )的定义域是(-∞,+∞),f ′(x )=e x-a ,令f ′(x )>0,得x >ln a , 所以f (x )的单调递增区间是(ln a ,+∞); 令f ′(x )<0,得x <ln a ,所以f (x )的单调递减区间是(-∞,ln a ), 函数f (x )在x =ln a 处取极小值,g (a )=f (x )极小值=f (ln a )=e ln a -a ln a =a -a ln a . g ′(a )=1-(1+ln a )=-ln a ,当0<a <1时,g ′(a )>0,g (a )在(0,1)上单调递增; 当a >1时,g ′(a )<0,g (a )在(1,+∞)上单调递减,所以a =1是函数g (a )在(0,+∞)上唯一的极大值点,也是最大值点,所以g (a )max =g (1)=1.(2)当x ≤0时,a >0,e x-ax ≥0恒成立, 当x >0时,f (x )≥0,即e x-ax ≥0,即a ≤e xx.令h (x )=e x x ,x ∈(0,+∞),h ′(x )=e x x -e x x2=exx -1x 2, 当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,故h (x )的最小值为h (1)=e , 所以a ≤e,故实数a 的取值X 围是(0,e].17.(2017·某某湘中名校联考)设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,则方程x 2-ax +1=0的判别式Δ=a 2-4. ①当|a |≤2时,Δ≤0,f ′(x )≥0,故f (x )在(0,+∞)上单调递增.②当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上恒有f ′(x )>0,故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0, 故f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2), 所以k =f x 1-f x 2x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1.于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a .则ln x 1-ln x 2x 1-x 2=1.即ln x1-ln x2=x1-x2.亦即x2-1x2-2ln x2=0(x2>1).(*)再由(1)知,函数h(t)=t-1t-2ln t在(0,+∞)上单调递增,而x2>1,所以x2-1x2-2ln x2>1-11-2ln 1=0.这与(*)式矛盾.故不存在a,使得k=2-a.。

高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版

高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版
答案 -32 3
解法一:因为 f(x)=2sinx+sin2x=2sinx(1+cosx),所以[f(x)]2=4sin2x(1 +cosx)2=4(1-cosx)(1+cosx)3,设 cosx=t,则 y=4(1-t)(1+t)3(-1≤t≤1), 所以 y′=4[-(1+t)3+3(1-t)(1+t)2]=4(1+t)2(2-4t),所以当-1<t<21时, y′>0;当21<t<1 时,y′<0。所以函数 y=4(1-t)(1+t)3(-1≤t≤1)在-1,21 上单调递增,在12,1上单调递减,所以当 t=12时,ymax=247;当 t=±1 时, ymin=0。所以 0≤y≤247,即 0≤[f(x)]2≤247,所以-32 3≤f(x)≤32 3,所以 f(x)的最小值为-32 3。
(ⅱ)当 0<2a<1,即 0<a<2 时,由 f′(x)>0,得 0<x<a2或 x>1; 由 f′(x)<0,得a2<x<1。 则函数 f(x)的单调递增区间为0,a2,(1,+∞), 函数 f(x)的单调递减区间为a2,1。 (ⅲ)当2a=1,即 a=2 时,f′(x)≥0 恒成立,则函数 f(x)的单调递增区 间为(0,+∞)。
2.函数的极值与导数
(1)函数的极小值
若函数 y=f(x)在点 x=a 处的函数值 f(a)比它在点 x=a 附近其他点的函数
值 都小
,且 f′(a)=0,而且在点 x=a 附近的左侧 f′(x)<0 ,右
侧 f′(x)>0 ,则 x=a 叫做函数的极小值点,f(a)叫做函数的极小值。
(2)函数的极大值
1.函数 f(x)在区间(a,b)上递增,则 f′(x)≥0,“f′(x)>0 在(a,b)上成 立”是“f(x)在(a,b)上单调递增”的充分不必要条件。

高考数学一轮复习课件_2.11导数在研究函数中的应用

高考数学一轮复习课件_2.11导数在研究函数中的应用

【答案】
A
4.(2012·陕西高考)设函数f(x)=xex,则(
A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=-1为f(x)的极大值点 D.x=-1为f(x)的极小值点
)
【解析】
∵f(x)=xex,
∴f′(x)=ex+xex=ex(1+x).
∴当f′(x)≥0时, 即ex(1+x)≥0,即x≥-1, ∴x≥-1时函数y=f(x)为增函数. 同理可求,x<-1时函数f(x)为减函数. ∴x=-1时,函数f(x)取得极小值. 【答案】 D
值.
1.f′(x)>0是f(x)在(a,b)内单调递增的充要条件吗?
【提示】
函数 f(x) 在 (a , b) 内单调递增,则 f′(x)≥0 ,
f′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件.
2.导数值为0的点一定是函数的极值点吗?它是可导函
数在该点取得极值的什么条件? 【提示】 不一定.如函数f(x)=x3,在x=0处,有f′(0)
(2012·课标全国卷)设函数f(x)=ex-ax-2. (1)求f(x)的单调区间; (2) 若 a = 1 , k 为整 数 , 且 当 x>0 时, (x - k)f′(x) + x + 1>0,求k的最大值. 【思路点拨】 (1) 分 a≤0 和 a > 0两种情况解不等式 f′(x)
>0与f′(x)<0.
A.(2,+∞) C.( 2,+∞)
B.(0,2) D.(0, 2)
【解析】
4 f′(x)=1- 2,令f′(x)<0, x
4 1- 2<0, x ∴ ∴0<x<2, x>0, ∴f(x)的减区间为(0,2).
【答案】

高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本

高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本
一轮总复习·数学(理)
第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1

a.

f′(x)

1 x

ax

a

1

-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞

B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符

高三数学一轮复习第2章函数导数及其应用第11课时导数应用精品课件文北师大.ppt

高三数学一轮复习第2章函数导数及其应用第11课时导数应用精品课件文北师大.ppt
(1)求函数的单调区间; (2)求函数的极大值与极小值的差. 解析: (1)∵y′=3x2+6ax+3b, 由题意得132++61a2+a+3b3=b=-03 , 解得a=-1,b=0, 则y=x3-3x2+c,y′=3x2-6x. 解y′=3x2-6x>0,得x<0或x>2;
解y′=3x2-6x<0,得0<x<2. ∴函数的单调递增区间是(-∞,0),(2,+∞), 单调递减区间是(0,2). (2)由(1)可知函数在x=0时取得极大值c,在x=2时取得极小值c-4, ∴函数的极大值与极小值的差为c-(c-4)=4.
• (1)分析实际问题中各量之间的关系,列出 实际问题的数学模型,写出实际问题中变量 之间的函数关系y=f(x),根据实际意义确定 定义域;
• (2)求函数y=f(x)的导数f′(x),解方程f′(x)= 0得出定义域内的实根,确定极值点;
• (3)比较函数在区间端点和极值点处的函数 值大小,获得所求的最大(小)值;
【变式训练】 3.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=
1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10 10

若x=23时,y=f(x)有极值. (1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
解析: (1)由 f(x)=x3+ax2+bx+c,得 f′(x)=3x2+2ax +b.
• 设函数f(x)在[a,b]上连续,在(a,b)内可 导,求f(x)在[a,b]上的最大值和最小值的步 骤
• (1)求函数y=f(x)在(a,b)内的极值.
• (2)将函数y=f(x)的各极值与端点处的函数 值f(a)、f(b)比较,其中最大的一个是最大值, 最小的一个是最小值.

高考数学1轮复习 热点难点精讲精析 2.11导数及其应用

高考数学1轮复习 热点难点精讲精析 2.11导数及其应用

2021年(高|考)一轮复习热点难点精讲精析:一、变化率与导数、导数的运算 (一 )利用导数的定义求函数的导数 1、相关链接(1 )根据导数的定义求函数()y f x =在点0x 处导数的方法: ①求函数的增量00()()y f x x f x ∆=+∆-;②求平均变化率00()()f x x f x y x x+∆-∆=∆∆; ③得导数00()lim x yf x x∆→∆'=∆ ,简记作:一差、二比、三极限 .(2 )函数的导数与导数值的区间与联系:导数是原来函数的导函数 ,而导数值是导函数在某一点的函数值 ,导数值是常数 .2、例题解析 〖例1〗求函数x =1处的导数 .解析:y∆=-=x 0x 0x 1y x y 1limlim[.x 21y |.2∆→∆→==∆=∆∆==-∆∴'=-〖例2〗一质点运动的方程为283s t =- .(1) 求质点在[1 ,1 +Δt]这段时间内的平均速度;(2) 求质点在t =1时的瞬时速度 (用定义及求求导两种方法 )分析 (1 )平均速度为s t∆∆; (2 )t =1时的瞬时速度即283s t =-在t =1处的导数值 . 解答: (1 )∵283s t =-∴Δs =8 -3(1 +Δt)2-(8 -3×12) = -6Δt -3(Δt)2,63sv t t-∆==--∆∆. (3) 定义法:质点在t =1时的瞬时速度00lim lim(63)6t t sv t t ∆→∆→∆==--∆=-∆(4) 求导法:质点在t 时刻的瞬时速度2()(83)6v s t t t ''==-= ,当t =1时 ,v = -6×1 = -6.注:导数的物理意义建立了导数与物体运动的瞬时速度之间的关系 .对位移s 与时间t 的关系式求导可得瞬时速度与时间t 的关系 .根据导数的定义求导数是求导数的根本方法 ,请按照 "一差、二比、三极限〞的求导步骤来求 .(二 )导数的运算 1、相关链接(1 )运用可导函数求导法那么和导数公式 ,求函数()y f x =在开区间 (a,b )内的导数的根本步骤: ①分析函数()y f x =的结构和特征; ②选择恰当的求导法那么和导数公式求导; ③整理得结果 .(2 )对较复杂的函数求导数时 ,诮先化简再求导 ,特别是对数函数真数是根式或分式时 ,可用对数的性质转化真数为有理式或整式求解更为方便 .(3 )复合函数的求导方法求复合函数的导数 ,一般是运用复合函数的求导法那么 ,将问题转化为求根本函数的导数解决 . ①分析清楚复合函数的复合关系是由哪些根本函数复合而成的 ,适中选定中间变量; ②分步计算中的每一步都要明确是对哪个变量求导 ,而其中特别要注意的是中间变量;③根据根本函数的导数公式及导数的运算法那么 ,求出各函数的导数 ,并把中间变量转换成自变量的函数;④复合函数的求导熟练以后 ,中间步骤可以省略 ,不必再写出函数的复合过程 . 2、例题解析〖例〗求以下函数的导数 .()()()()()()()222x x x 251y 2x 1(3x 1)x x 12y x x 13y 3e 2elnx 4y x 15y 32x =-+-+=++=-+=+=-思路分析:此题考查导数的有关计算 ,借助于导数的计算公式及常见的初等函数的导数 ,可以容易求得.解答:(1)方法一:由题可以先展开解析式然后 再求导:y =(2x 2-1)(3x +1) =6x 3+2x 2-3x -1 , ∴y ′ =(6x 3+2x 2 -3x -1)′=(6x 3)′ +(2x 2)′ -(3x)′ =18x 2+4x -3. 方法二:由题可以利用乘积的求导法那么进行求导: y ′ =(2x 2 -1)′(3x +1) +(2x2 -1)(3x +1)′ =4x(3x +1) +3(2x 2-1) =12x 2+4x +6x 2-3 =18x 2+4x -3.(2)根据题意把函数的解析式整理变形可得:()()()()22222222222x x 1x x 12x 2x y 1,x x 1x x 1x x 12x x 12x 2x 12x 2y x x 1x x 1-+++-===-++++++++-+-∴'=-=++++ (3)根据求导法那么进行求导可得:y ′ =(3x e x )′ -(2x )′ +e ′ =(3x )′e x +3x (e x )′ -(2x )′ =3x ln3·e x +3x e x -2x ln2 =(3e)x ln3e -2x ln2(4)根据题意利用除法的求导法那么进行求导可得:()()()()()()()2222222222(lnx)x 1lnx x 1y x11x 1lnx 2x x 12lnx 1x .x 1x x 1'+-+''=++--+==++(5)设μ =3 -2x ,那么y =(3 -2x)5是由y =μ5与μ =3 -2x 复合而成 ,所以y ′ =f ′μ·μ′x =(μ5)′·(3 -2x)′ =5μ4·( -2) = -10μ4 = -10(3 -2x)4.规律总结:一般说来 ,分式函数求导 ,要先观察函数的结构特征 ,可化为整式函数或较为简单的分式函数;对数函数的求导 ,可先化为和、差的形式;三角函数的求导 ,先利用三角函数公式转化为和或差的形式.复合函数的求导过程就是对复合函数由外层逐层向里求导.每次求导都针对最|外层 ,直到求到最|里层为止.所谓最|里层是指此函数已经可以直接引用根本初等函数导数公式进行求导.(三 )导数的几何意义 【例】曲线31433y x =+ , (1) 求曲线在点P(2,4)处的切线方程; (2) 求曲线过点P(2,4)的切线方程; (3) 求斜率为4的曲线的切线方程 .思路分析: "该曲线过点P(2 ,4)的切线方程〞与 "该曲线在点P(2 ,4)处的切线方程〞是有区别的:过点P(2 ,4)的切线中 ,点P(2 ,4)不一定是切点;在点P(2 ,4)处的切线 ,点P(2 ,4)是切点.解答: (1 )(2,4)P 在曲线31433y x =+上 ,且2y x '=∴在点P(2,4)处的切线的斜率k =2|x y =' =4;∴曲线在点P(2,4)处的切线方程为y -4 =4(x -2),即4x -y -4 =0.(2 )设曲线31433y x =+与过点P(2,4)的切线相切于点 A (x 0 ,301433x + ) ,那么切线的斜率020|x x k y x ='== ,∴切线方程为y - (301433x + ) =20x (x -0x ) ,即23002433y x x x =-+∵点P(2,4)在切线上 ,∴4 =220x -302433x + ,即3200340x x -+= ,∴322000440x x x +-+= ,∴ (x 0 +1 )(x 0 -2)2=0 解得x 0 = -1或x 0 =2故所求的切线方程为4x -y -4 =0或x -y +2 =0. (3 )设切点为 (x 0,y 0 )那么切线的斜率为k =x 02=4, x 0 =±2.切点为 (2 ,4 ) , ( -2 , -4/3 ) ∴切线方程为y -4 =4(x -2)和y +4/3 =4(x +2) 即4x -y -4 =0和12x -3y +20 =0注:(1)求函数f(x)图象上点P(x 0,f(x 0))处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知k =f′(x0) ,故当f′(x0)存在时 ,切线方程为y -f(x0) =f′(x0)(x -x0).(2)要深入体会切线定义中的运动变化思想:①两个不同的公共点→两公共点无限接近→两公共点重合(切点);②割线→切线.(3 )可以利用导数求曲线的切线方程 ,由于函数y =f(x)在x =x0处的导数表示曲线在点P(x0,f(x0))处切线的斜率 ,因此 ,曲线y =f(x)在点P(x0,f(x0))处的切线方程 ,可按如下方式求得:第|一 ,求出函数y =f(x)在x =x0处的导数 ,即曲线y =f(x)在点P(x0,f(x0))处切线的斜率;第二 ,在切点坐标和切线斜率的条件下 ,求得切线方程y =y0 +f′(x0)(x -x0);如果曲线y =f(x)在点P(x0,f(x0))处的切线平行于y轴(此时导数不存在)时 ,由切线的定义可知 ,切线的方程为x =x0.二、导数在函数中的应用与生活中的优化问题举例(一 )利用导数研究函数的单调性1、相关链接(1 )求可导函数单调区间的一般步骤和方法 ,如以下图:即:①确定函数f(x)的定义域;②求f ,(x) ,令f ,(x) =0 ,求出它们在定义域内的一切实根;③把函数f(x)的间断点 (即f(x)无定义点 )的横坐标和上面的各实数根按由小到大的顺序排列起来 ,然后用这些点把函数f(x)的定义区间分成假设干个小区间 .④确定f ,(x)在各个开区间内的符号 ,根据f ,(x)的符号判定函数f(x)在每个相应小开区间内的增减性 .注:当f(x)不含参数时 ,也可通过解不等式f ,(x)>0 (或f ,(x)<0 )直接得到单调递增 (或递减 )区间 .(2 )证明可导函数f(x)在 (a,b )内的单调性的步骤①求f ,(x);②确认f ,(x)在 (a,b )内的符号;③作出结论:f ,(x)>0时为增函数;f ,(x)<0时为减函数 .(3 )函数的单调性 ,求参数的取值范围 ,应注意函数f(x)在 (a,b )上递增 (或递减 )的充要条件应是f ,(x)≥0 (或f ,(x)≤0 ) ,x∈ (a,b )恒成立 ,且f ,(x) 在 (a,b )的任意子区间内都不恒等于0 ,这就是说 ,函数f(x)在区间上的增减性并不排斥在区间内个别点处有f ,(x) =0 ,甚至|可以在无穷多个点处f ,(x0) =0 ,只要这样的点不能充满所给区间的任何一个子区间 .2、例题解析〖例〗】(2021·北京模拟)假设函数f(x) =lnx -12ax2-2x存在单调递减区间,求实数a的取值范围.思路解析:函数f(x)存在单调减区间,就是不等式f′(x)≤0有实数解,考虑到函数的定义域为(0, +∞),所以此题就是要求f′(x)≤0在(0, +∞)上有实数解.解答:f′(x) = 1x-ax -2 =2ax2x1x+--.因为函数f(x)存在单调递减区间,所以f′(x)≤0有解.又因为函数的定义域为(0, +∞),那么ax2 +2x -1≥0在x∈(0, +∞)内有解.(1)当a>0时,y =ax2 +2x -1为开口向上的抛物线,ax2 +2x -1≥0,总可以找到x>0的解;(2)当a<0时,y =ax2 +2x -1为开口向下的抛物线,要使ax2 +2x -1≥0总有大于0的解,那么Δ =4 +4a ≥0且方程ax2 +2x -1 =0至|少有一个正根,此时 -1≤a<0.(3)当a =0时,显然符合题意.综上所述,实数a的取值范围是[ -1, +∞).(二 )利用导数研究函数的极值与最|值1、相关链接(1 )求函数f(x)极值的步骤即:①确定函数f(x)的定义域;②求导数f ,(x);③求方程f ,(x) =0的根 .④检查在方程的根的左右两侧的符号 ,确定极值点 (最|好通过列表法 ) .如果左正右负 ,那么f(x)在这个根处取得极大值;如果左负右正 ,那么f(x)在这个根处取得极小值;如果f ,(x)在点x0的左右两侧符号不变 ,那么f(x0)不是函数极值 .(2 )可导函数极值存在的条件①可导函数的极值点x0一定满足 f ,(x0) =0,但当 f ,(x0) =0时 ,x0不一定是极值点 .如f(x) =x3,f ,(0) =0,但x =0不是极值点 .②可导函数y =f(x)在点x0处取得极值的充要条件是f ,(x) =0 ,且在x0左侧与右侧f ,(x0)的符号不同 .(3 )设函数f(x)在[a,b]上连续 ,在 (a,b )内可导 ,求f(x)在[a,b]上的最|大值和最|小值的步骤①求函数y =f(x)在 (a,b )内的极值;②将函数y =f(x)的各极值与端点处的函数值f(a),f(b)比拟 ,其中最|大的一个是最|大值 ,最|小的一个是最|小值 .③根据最|值的定义 ,求在闭区间[a,b]上连续 ,开区间 (a,b ),内可导的函数的最|值时 ,可将过程简化 ,即不用判断使f ,(x) =0成立的点是极大值点还是极小值点 ,直接将极值点与端点的函数值进行比拟 ,就可判定最|大 (小 )值 .④定义在开区间 (a,b )上的可导函数 ,如果只有一个极值点 ,该极值点必为最|值点 .2、例题解析〖例1〗函数f(x) =x3 +ax2 +bx +5,记f(x)的导数为f′(x).(1)假设曲线f(x)在点(1,f(1))处的切线斜率为3 ,且x =23时 ,y =f(x)有极值,求函数f(x)的解析式.(2)在(1)的条件下 ,求函数f(x)在[ -4,1]上的最|大值和最|小值.思路解析:在求解(1)时 ,可以通过切线斜率和极值点求得a,b 的值 ,从而求得函数的解析式.在求解(2)时只需要列出极值变化表 ,比照区间端点值求得最|值即可.解答:(1 )由题意 ,得解得 ,所以(2 )由 (1 )知 ,令,得当x 变化时 ,的变化情况如表:∴在上的最|大值为13 ,最|小值为 -11.〖例2〗函数()2f x x |x a |,a R.=-∈(1 )当0a ≤时 ,求证函数()()f x ,-∞+∞在上是增函数;(2 )当a =3时 ,求函数()f x 在区间[0 ,b]上的最|大值 .解答:(1)a 0≤时 ,()()()23230f x x x a x ax,f x x a '=-=-=-≥因故()f x 在R 上是增函数 .(4分)(2)3a =时 ,()((323333303x x x f x x |x |x x x ⎧-≥⎪=-=⎨-<≤⎪⎩①假设03b <≤时 ,()()323330f x x x ,f x x '=-=-=由得:1x =(Ⅰ)假设01b <≤时 ,()()0f x ,f x '≥在[0 ,b]上单增 ,故()()33max f x f b b b ,==- (Ⅱ)假设13b <≤时 ,因()()01010x ,f x ;x b,f x .''<<><<<故()()12max f x f ==. ②假设3b >时 ,由①知()f x 在03,⎡⎤⎣⎦上的最|大值为2 ,下求()f x 在(3,b ⎤⎦上的最|大值 ,因()2330f x x '=-> ,故()()33maxf x f b b b.==-又()()()()323323212202b b b b b b b b ⎧-≥⎪--=+-=⎨<<⎪⎩ 综合①、② 知:()()()()3332212301maxb b b f x b b b b ⎧-≥⎪=<<⎨⎪-<≤⎩ (12分)(四 )利用导数解决实际生活中的优化问题 1、相关链接利用导数解决生活中的优化问题时:(1)既要注意将问题中涉及的变量关系用函数关系表示 ,还要注意确定函数关系式中自变量的定义区间.(2)一定要注意求得函数结果的实际意义 ,不符合实际的值应舍去.(3)如果目标函数在定义区间内只有一个极值点 ,那么根据实际意义该极值点就是最|值点. 2、例题解析〖例〗⊥BC,OA ∥BC,且AB =BC =2AO =4 km,曲线段OC 是以点O 为顶点且开口向右的抛物线的一段,如果要使矩形的相邻两边分别落在AB,BC 上,且一个顶点落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最|大?并求出最|大的用地面积(精确到0.1 km 2).思路解析:矩形工业园的用地面积与它落在抛物线段OC 上的具体位置有关 ,因此应设法将落在OC 上的点用一个变量表示出来 ,然后用这一变量表示矩形工业园的用地面积 ,而要设出相应的变量 ,那么应首|先建立直角坐标系.解答:以O点为坐标原点 ,OA所在的直线为y轴建立直角坐标系(如下图) ,依题意可设抛物线为y2 =2px(p>0)且C(4,2).∴22 =2p·4,∴p =12,故所设抛物线方程为y2 =x(0≤x≤4).设x≤x≤4)是曲线段OC上的任意一点 ,那么在矩形PQBN中 ,|PQ| =2 x=4 -x,所以工业区的面积为S =|PQ|·x =32x- -2x +412x +8 ,∴S′ =123x2- -2 +212x- ,令S′ =0 ,得3x +412x -4 =0,(12x +2)(312x -2) =0,∴x =49.故当x∈[0,49)时 ,S′>0,S是关于x的增函数;当x∈[49,4]时 ,S′<0,S是关于x的减函数 , ∴x =49时 ,S取得最|大值 ,此时x 83,|PN| =4 -x =329,∴S =8322563927⨯=≈9.5,∴S max≈9.5(km2).∴把工业园规划成长为329km,宽为83km的矩形 ,工业园的面积最|大 ,最|大面积约为9.5 km2.注:①生活中的优化问题 ,往往涉及到函数的最|值 ,求最|值可利用单调性 ,也可直接利用导数求公众号:惟微小筑最|值 ,要掌握求最|值的方法和技巧 .②在求实际问题中的最|大值或最|小值时 ,一般先设自变量、因变量 ,建立函数关系式 ,并确定其定义域 ,利用求函数最|值的方法求解 ,注意结果应与实际情况相符合 .用导数求解实际问题中的最|大(小 )值时 ,如果函数在区间内只有一个极值点 ,那么根据实际意义该极值点也就是最|值点 .。

高考数学一轮复习 2.11导数的概念及运算课件 文

高考数学一轮复习 2.11导数的概念及运算课件 文
提示:不一定.还有可能有2个或3个或无数多个公共点.
精品
11
1.(2014·郑州质量预测)已知函数 f(x)的导函数为 f′(x),且
满足 f(x)=2xf′(e)+ln x,则 f′(e)=( )
A.1
B.-1
C.-e-1
D.-e
解析:f′(x)=2f′(e)+1x,∴f′(e)=2f′(e)+1e,
精品
5
(2)f(x)在x=x0处的导数
函数y=f(x)在x=x0处的瞬时变化率是
lim
Δx→0
fx0+Δx-fx0 Δx

Δy
lim
Δx→0
Δx
,称其为函数y=f(x)
在x=x0处的导数,记作f ′(x0)或 y′|x=x0 ,
即f ′(x0)=
lim
Δx→0
fx0+Δx-fx0 Δx
.
精品
6
(3)导函数
∴f′(e)=-1e=-e-1,选 C.
答案:C
精品
12
2.曲线 y=x+x 2在点(-1,-1)处的切线方程为(
)
A.y=2x+1
B.y=2x-1
C.y=-2x-3 D.y=-2x-2
精品
13
解析:∵y′=x+x+2-22x=x+2 22, ∴在点(-1,-1)处的切线方程的斜率为-12+22=2. ∴切线方程为 y+1=2(x+1),即 y=2x+1.
求函数的导数时,要准确地把函数分割为基本函数的和、差、 积、商及其复合运算的形式,再利用运算法则求导数.对于不具 备求导法则结构形式的要适当恒等变形;对于比较复杂的函数, 如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此 时,可将解析式进行合理变形,转化为较易求导的结构形式,再 求导数.但必须注意变形的等价性,避免不必要的运算失误.

高考数学一轮复习 第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理-人教版高三全

高考数学一轮复习 第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理-人教版高三全

第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理[A 组·基础达标练]1.函数f (x )=x 4-4x 3+4x 2的极值点是( ) A .x =0 B .x =1C .x =2D .x =0,x =1和x =2 答案 D解析 f ′(x )=4x 3-12x 2+8x =4x (x 2-3x +2)=4x (x -1)(x -2),则结合列表可得f (x )的极值点为x =0,x =1和x =2.2.[2015·某某一检]已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示.则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞) 答案 B解析 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5),选B.3.[2016·某某师大附中月考]若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,518B .(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞) 答案 C解析 f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.4.[2013·某某高考]已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12答案 D解析 f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2. 即曲线y 1=1+ln x 与y 2=2ax 有两个不同交点,如图.由直线y =x 是曲线y =1+ln x 的切线,可知:0<2a <1,且0<x 1<1<x 2.∴a ∈⎝ ⎛⎭⎪⎫0,12. 由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0, 当x 1<x <x 2时,f ′(x )>0, 当x >x 2时,f ′(x )<0,∴f (x 2)>f (1)=-a >-12,故选D.5.[2015·某某一模]若定义在R 上的函数f (x )满足f (x )+f ′(x )>1,f (0)=4,则不等式f (x )>3ex +1(e 为自然对数的底数)的解集为( )A .(0,+∞) B.(-∞,0)∪(3,+∞) C .(-∞,0)∪(0,+∞) D.(3,+∞) 答案 A解析 由f (x )>3ex +1得,e x f (x )>3+e x ,构造函数F (x )=e x f (x )-e x-3,对F (x )求导得F ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1].由f (x )+f ′(x )>1,e x >0,可知F ′(x )>0,即F (x )在R 上单调递增,又因为F (0)=e 0f (0)-e 0-3=f (0)-4=0,所以F (x )>0的解集为(0,+∞),所以选A.6.[2013·某某高考]已知e 为自然对数的底数,设函数f (x )=(e x-1)(x -1)k(k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x-1,f ′(1)≠0,故A ,B 错;当k =2时,f (x )=(e x-1)(x -1)2,f ′(x )=(x 2-1)e x -2x +2=(x -1)[(x +1)e x-2],故f ′(x )=0有一根为x 1=1,另一根x 2∈(0,1).当x ∈(x 2,1)时,f ′(x )<0,f (x )递减;当x∈(1,+∞)时,f ′(x )>0,f (x )递增,∴f (x )在x =1处取得极小值,故选C.7.[2016·东北八校月考]已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.答案 4解析 ∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧f ′2=3×22+6a ×2+3b =0,f ′1=3×12+6a ×1+3b =-3,⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值X 围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -1x -3x,由f ′(x )=0得函数f (x )的两个极值点为1,3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.9.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.答案 -13解析 f ′(x )=-3x 2+2ax , 根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13. 10.[2015·某某一检]已知函数f (x )=ln x -x1+2x .(1)求证:f (x )在区间(0,+∞)上单调递增; (2)若f [x (3x -2)]<-13,某某数x 的取值X 围.解 (1)证明:由已知得f (x )的定义域为(0,+∞). ∵f (x )=ln x -x1+2x, ∴f ′(x )=1x -1+2x -2x 1+2x 2=4x 2+3x +1x 1+2x 2. ∵x >0,∴4x 2+3x +1>0,x (1+2x )2>0. ∴当x >0时,f ′(x )>0. ∴f (x )在(0,+∞)上单调递增.(2)∵f (x )=ln x -x 1+2x ,∴f (1)=ln 1-11+2×1=-13.由f [x (3x -2)]<-13得f [x (3x -2)]<f (1).由(1)得⎩⎪⎨⎪⎧x 3x -2>0x3x -2<1,解得-13<x <0或23<x <1.综上所述,x 的取值X 围是⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫23,1.11.[2015·某某一检]已知函数f (x )=x ·ln x ,g (x )=ax 3-12x -23e .(1)求f (x )的单调递增区间和最小值;(2)若函数y =f (x )与函数y =g (x )的图象在交点处存在公共切线,某某数a 的值. 解 (1)∵f ′(x )=ln x +1,由f ′(x )>0,得x >1e,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 又当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,则f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,则f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, ∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫1e =-1e .(2)∵f ′(x )=ln x +1,g ′(x )=3ax 2-12,设公切点的横坐标为x 0,则与f (x )的图象相切的直线方程为:y =(ln x 0+1)x -x 0, 与g (x )的图象相切的直线方程为:y =⎝⎛⎭⎪⎫3ax 20-12x -2ax 30-23e ,∴⎩⎪⎨⎪⎧ln x 0+1=3ax 2-12,-x 0=-2ax 30-23e解之得x 0ln x 0=-1e ,由(1)知x 0=1e ,∴a =e26.12.[2016·某某检测]已知f (x )=e x(x 3+mx 2-2x +2). (1)假设m =-2,求f (x )的极大值与极小值;(2)是否存在实数m ,使f (x )在[-2,-1]上单调递增?如果存在,求m 的取值X 围;如果不存在,请说明理由.解 (1)当m =-2时,f (x )=e x (x 3-2x 2-2x +2),其定义域为(-∞,+∞).则f ′(x )=e x(x 3-2x 2-2x +2)+e x (3x 2-4x -2)=x e x (x 2+x -6)=(x +3)x (x -2)e x, ∴当x ∈(-∞,-3)或x ∈(0,2)时,f ′(x )<0; 当x ∈(-3,0)或x ∈(2,+∞)时,f ′(x )>0;f ′(-3)=f ′(0)=f ′(2)=0,∴f (x )在(-∞,-3)上单调递减,在(-3,0)上单调递增; 在(0,2)上单调递减,在(2,+∞)上单调递增, ∴当x =-3或x =2时,f (x )取得极小值; 当x =0时,f (x )取得极大值, ∴f (x )极小值=f (-3)=-37e -3,f (x )极小值=f (2)=-2e 2, f (x )极大值=f (0)=2.(2)f ′(x )=e x(x 3+mx 2-2x +2)+e x (3x 2+2mx -2)=x e x [x 2+(m +3)x +2m -2]. ∵f (x )在[-2,-1]上单调递增, ∴当x ∈[-2,-1]时,f ′(x )≥0. 又∵当x ∈[-2,-1]时,x e x<0, ∴当x ∈[-2,-1]时,x 2+(m +3)x +2m -2≤0,∴⎩⎪⎨⎪⎧f ′-2=-22-2m +3+2m -2≤0,f ′-1=-12-m +3+2m -2≤0,解得m ≤4,∴当m ∈(-∞,4]时,f (x )在[-2,-1]上单调递增.[B 组·能力提升练]1.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值X 围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-5,-2] 答案 C解析 f ′(x )=3x 2-3=0,得x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a,6-a 2)上有最小值, 则函数f (x )极小值点必在区间(a,6-a 2)内, 即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2. 解a <1<6-a 2,得-5<a <1, 不等式a 3-3a ≥f (1)=-2,即a 3-3a +2≥0,即a 3-1-3(a -1)≥0, 即(a -1)(a 2+a -2)≥0, 即(a -1)2(a +2)≥0, 即a ≥-2.故实数a 的取值X 围是[-2,1). 故选C.2.[2016·某某调研]已知函数f (x )=ln x +1ln x ,则下列结论中正确的是( )A .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是增函数B .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是减函数C .∀x >0,且x ≠1,f (x )≥2D .∃x 0>0,f (x )在(x 0,+∞)内是增函数 答案 D解析 由已知得,f ′(x )=1x ·ln 2x -1ln 2x(x >0且x ≠1),令f ′(x )=0,得ln x =±1,得x =e 或x =1e.当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )>0;当x ∈⎝⎛⎭⎪⎫1e,1,x ∈(1,e)时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.故x =1e和x =e 分别是函数f (x )的极大值点和极小值点,但是由函数的定义域可知x ≠1,故函数f (x )在x ∈⎝ ⎛⎭⎪⎫1e ,e 内不是单调的,所以A ,B 错;当0<x <1时,ln x <0,此时f (x )<0,C 错;只要x 0≥e,则f (x )在(x 0,+∞)内是增函数,D 正确.3.[2015·某某高考]已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =f x 1-f x 2x 1-x 2,n =g x 1-g x 2x 1-x 2.现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中的真命题有________(写出所有真命题的序号). 答案 ①④解析 ①f (x )=2x是增函数,∴对任意不相等的实数x 1,x 2,都有f x 1-f x 2x 1-x 2>0,即m >0,∴①成立.②由g (x )=x 2+ax 图象可知,当x ∈⎝⎛⎭⎪⎫-∞,-a 2时,g (x )是减函数,∴当不相等的实数x 1、x 2∈⎝⎛⎭⎪⎫-∞,-a 2时,g x 1-g x 2x 1-x 2<0,即n <0,∴②不成立. ③若m =n ,则有f x 1-f x 2x 1-x 2=g x 1-g x 2x 1-x 2,即f (x 1)-f (x 2)=g (x 1)-g (x 2),f (x 1)-g (x 1)=f (x 2)-g (x 2),令h (x )=f (x )-g (x ), 则h (x )=2x-x 2-ax ,h ′(x )=2x ln 2-2x -a ,令h ′(x )=2xln 2-2x -a =0, 得2xln 2=2x +a .由y =2x ln 2与y =2x +a 的图象知, 存在a 使对任意x ∈R 恒有2xln 2>2x +a , 此时h (x )在R 上是增函数. 若h (x 1)=h (x 2),则x 1=x 2, ∴③不成立. ④若m =-n ,则有f x 1-f x 2x 1-x 2=-g x 1-g x 2x 1-x 2,f (x 1)+g (x 1)=f (x 2)+g (x 2),令φ(x )=f (x )+g (x ), 则φ(x )=2x+x 2+ax ,φ′(x )=2x ln 2+2x +a .令φ′(x )=0,得2xln 2+2x +a =0, 即2xln 2=-2x -a .由y 1=2xln 2与y 2=-2x -a 的图象可知,对任意的a ,存在x 0,使x >x 0时y 1>y 2,x <x 0时y 1<y 2,故对任意的a ,存在x 0,使x >x 0时,φ′(x )>0,x <x 0时φ′(x )<0, 故对任意的a ,φ(x )在R 上不是单调函数.故对任意的a ,存在不相等的实数x 1,x 2,使m =-n , ∴④成立. 综上,①④正确.4.已知函数f (x )=e x-ln (x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0. 解 (1)f ′(x )=e x-1x +m. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x-ln (x +1),x ∈(-1,+∞). 函数f ′(x )=e x -1x +1在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m ≤2,x ∈(-m ,+∞)时,ln (x +m )≤ln (x +2),故只需证当m =2时f (x )>0. 当m =2时,f ′(x )=e x-1x +2在(-2,+∞)上单调递增. 又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)上有唯一的解x 0,且x 0∈(-1,0). 当x ∈(-2,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0. 故当x =x 0时,f (x )取极小值. 故f ′(x )=0得e x 0=1x 0+2,ln (x 0+2)=-x 0. 故f (x )≥f (x 0)=1x 0+2+x 0=x 0+12x 0+2>0.综上所述,当m ≤2时,f (x )>0.。

高考数学统考一轮复习 第二章 函数、导数及其应用 第十一节 导数在研究函数中的应用 第2课时 导数

高考数学统考一轮复习 第二章 函数、导数及其应用 第十一节 导数在研究函数中的应用 第2课时 导数

学习资料第二章函数、导数及其应用第十一节导数在研究函数中的应用第二课时导数与函数的极值、最值课时规范练A组—-基础对点练1.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则()A.a<-1B.a>-1C.a>-错误!D.a<-错误!解析:∵y=e x+ax,∴y′=e x+a。

∵函数y=e x+ax有大于零的极值点,则方程y′=e x+a=0有大于零的解,∵x>0时,-e x<-1,∴a=-e x<-1.故选A。

答案:A2.(2020·岳阳模拟)下列函数中,既是奇函数又存在极值的是()A.y=x3B.y=ln(-x)C.y=x e-x D.y=x+错误!解析:A、B为单调函数,不存在极值,C不是奇函数,故选D.答案:D3.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图像不可能为y=f(x)图像的是()解析:因为[f(x)e x]′=f′(x)e x+f(x)(e x)′=[f(x)+f′(x)]e x,且x=-1为函数f(x)e x的一个极值点,所以f(-1)+f′(-1)=0;选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0。

答案:D4.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()A.-37 B.-29C.-5 D.以上都不对解析:f′(x)=6x2-12x=6x(x-2),所以f(x)在[-2,0]上单调递增,在(0,2]上单调递减.所以x=0为极大值点,也为最大值点.所以f(0)=m=3,所以m=3。

所以f(-2)=-37,f(2)=-5.所以最小值是-37.答案:A5.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为()A.2 B.3C.6 D.9解析:∵f(x)=4x3-ax2-2bx+2,∴f′(x)=12x2-2ax-2b,又∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0⇒a+b=6,∵a>0,b>0,a+b≥2错误!,∴ab≤9,当且仅当a=b=3时等号成立.故选D.答案:D6.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()A.11或18 B.11C.18 D.17或18答案:C7.(2020·南昌调研)已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值解析:当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是f(x)的极值点.当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且在x=1附近的左侧f′(x)<0,当x>1时,f′(x)>0,∴f(x)在x=1处取得极小值.故选C.答案:C8.(2020·山东临沂模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>错误!),当x∈(-2,0)时,f(x)的最小值为1,则a=()A.错误!B.错误!C.错误!D.1解析:因为f(x)是奇函数,所以f(x)在(0,2)上的最大值为-1。

(word完整版)高三理科数学一轮总复习导数及其应用教师用书95891

(word完整版)高三理科数学一轮总复习导数及其应用教师用书95891

第三章导数及其应用高考导航知识网络3.1 导数的概念与运算典例精析题型一 导数的概念【例1】 已知函数f (x )=2ln 3x +8x , 求0Δlim→x f (1-2Δx )-f (1)Δx 的值.【解析】由导数的定义知:0Δlim→x f (1-2Δx )-f (1)Δx =-20Δlim →x f (1-2Δx )-f (1)-2Δx =-2f ′(1)=-20.【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx →0时, 平均变化率ΔyΔx 的极限.【变式训练1】某市在一次降雨过程中,降雨量y (mm)与时间t (min)的函数关系可以近似地表示为f (t )=t 2100,则在时刻t =10 min 的降雨强度为( ) A.15 mm/minB.14 mm/min C.12mm/minD.1 mm/min 【解析】选A. 题型二 求导函数【例2】 求下列函数的导数. (1)y =ln(x +1+x 2); (2)y =(x 2-2x +3)e 2x ; (3)y =3x 1-x. 【解析】运用求导数公式及复合函数求导数法则. (1)y ′=1x +1+x2(x +1+x 2)′=1x +1+x 2(1+x 1+x 2)=11+x 2.(2)y ′=(2x -2)e 2x +2(x 2-2x +3)e 2x=2(x 2-x +2)e 2x . (3)y ′=13(x 1-x 32)-1-x +x (1-x )2=13(x 1-x 32)-1(1-x )2 =13x 32- (1-x ) 34-【变式训练2】如下图,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=;0Δlim→x f (1+Δx )-f (1)Δx =(用数字作答).【解析】f (0)=4,f (f (0))=f (4)=2, 由导数定义0Δlim→x f (1+Δx )-f (1)Δx =f ′(1).当0≤x ≤2时,f (x )=4-2x ,f ′(x )=-2,f ′(1)=-2. 题型三 利用导数求切线的斜率【例3】 已知曲线C :y =x 3-3x 2+2x , 直线l :y =kx ,且l 与C 切于点P (x 0,y 0) (x 0≠0),求直线l 的方程及切点坐标.【解析】由l 过原点,知k =y 0x 0 (x 0≠0),又点P (x 0,y 0) 在曲线C 上,y 0=x 30-3x 20+2x 0, 所以y 0x 0=x 2-3x 0+2. 而y ′=3x 2-6x +2,k =3x 20-6x 0+2. 又 k =y 0x 0,所以3x 20-6x 0+2=x 20-3x 0+2,其中x 0≠0, 解得x 0=32.所以y 0=-38,所以k =y 0x 0=-14,所以直线l 的方程为y =-14x ,切点坐标为(32,-38).【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.【变式训练3】若函数y =x 3-3x +4的切线经过点(-2,2),求此切线方程. 【解析】设切点为P (x 0,y 0),则由 y ′=3x 2-3得切线的斜率为k =3x 20-3.所以函数y =x 3-3x +4在P (x 0,y 0)处的切线方程为 y -y 0=(3x 20-3)(x -x 0). 又切线经过点(-2,2),得2-y 0=(3x 20-3)(-2-x 0),① 而切点在曲线上,得y 0=x 30-3x 0+4, ② 由①②解得x 0=1或x 0=-2. 则切线方程为y =2 或 9x -y +20=0.总结提高1.函数y =f (x )在x =x 0处的导数通常有以下两种求法: (1) 导数的定义,即求0Δlim→x ΔyΔx =0Δlim →x f (x 0+Δx )-f (x 0)Δx 的值;(2)先求导函数f ′(x ),再将x =x 0的值代入,即得f ′(x 0)的值. 2.求y =f (x )的导函数的几种方法: (1)利用常见函数的导数公式; (2)利用四则运算的导数公式; (3)利用复合函数的求导方法.3.导数的几何意义:函数y =f (x )在x =x 0处的导数f ′(x 0),就是函数y =f (x )的曲线在点P (x 0,y 0)处的切线的斜率.3.2 导数的应用(一)典例精析题型一 求函数f (x )的单调区间【例1】已知函数f (x )=x 2-ax -a ln(x -1)(a ∈R ),求函数f (x )的单调区间. 【解析】函数f (x )=x 2-ax -a ln(x -1)的定义域是(1,+∞). f ′(x )=2x -a -ax -1=2x (x -a +22)x -1,①若a ≤0,则a +22≤1,f ′(x )=2x (x -a +22)x -1>0在(1,+∞)上恒成立,所以a ≤0时,f (x )的增区间为(1,+∞).②若a >0,则a +22>1,故当x ∈(1,a +22]时,f ′(x )=2x (x -a +22)x -1≤0;当x ∈[a +22,+∞)时,f ′(x )=2x (x -a +22)x -1≥0,所以a >0时,f (x )的减区间为(1,a +22],f (x )的增区间为[a +22,+∞).【点拨】在定义域x >1下,为了判定f ′(x )符号,必须讨论实数a +22与0及1的大小,分类讨论是解本题的关键.【变式训练1】已知函数f (x )=x 2+ln x -ax 在(0,1)上是增函数,求a 的取值范围. 【解析】因为f ′(x )=2x +1x -a ,f (x )在(0,1)上是增函数,所以2x +1x -a ≥0在(0,1)上恒成立,即a ≤2x +1x恒成立.又2x +1x ≥22(当且仅当x =22时,取等号).所以a ≤22,故a 的取值范围为(-∞,22].【点拨】当f (x )在区间(a ,b )上是增函数时⇒f ′(x )≥0在(a ,b )上恒成立;同样,当函数f (x )在区间(a ,b )上为减函数时⇒f ′(x )≤0在(a ,b )上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.题型二 求函数的极值【例2】已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极小值点还是极大值点,并说明理由. 【解析】(1)f ′(x )=3ax 2+2bx +c . 因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0,即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎪⎪⎩⎪⎪⎨⎧-==-② ,13① ,032ac ab又f (1)=-1,所以a +b +c =-1.③ 由①②③解得a =12,b =0,c =-32.(2)由(1)得f (x )=12x 3-32x ,所以当f ′(x )=32x 2-32>0时,有x <-1或x >1;当f ′(x )=32x 2-32<0时,有-1<x <1.所以函数f (x )=12x 3-32x 在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1.【点拨】求函数的极值应先求导数.对于多项式函数f (x )来讲, f (x )在点x =x 0处取极值的必要条件是f ′(x )=0.但是, 当x 0满足f ′(x 0)=0时, f (x )在点x =x 0处却未必取得极值,只有在x 0的两侧f (x )的导数异号时,x 0才是f (x )的极值点.并且如果f ′(x )在x 0两侧满足“左正右负”,则x 0是f (x )的极大值点,f (x 0)是极大值;如果f ′(x )在x 0两侧满足“左负右正”,则x 0是f (x )的极小值点,f (x 0)是极小值.【变式训练2】定义在R 上的函数y =f (x ),满足f (3-x )=f (x ),(x -32)f ′(x )<0,若x 1<x 2,且x 1+x 2>3,则有( )A.f (x 1)<f (x 2)B.f (x 1)>f (x 2)C.f (x 1)=f (x 2)D.不确定【解析】由f (3-x )=f (x )可得f [3-(x +32)]=f (x +32),即f (32-x )=f (x +32),所以函数f (x )的图象关于x =32对称.又因为(x -32)f ′(x )<0,所以当x >32时,函数f (x )单调递减,当x <32时,函数f (x )单调递增.当x 1+x 22=32时,f (x 1)=f (x 2),因为x 1+x 2>3,所以x 1+x 22>32,相当于x 1,x 2的中点向右偏离对称轴,所以f (x 1)>f (x 2).故选B.题型三 求函数的最值【例3】 求函数f (x )=ln(1+x )-14x 2在区间[0,2]上的最大值和最小值.【解析】f ′(x )=11+x -12x ,令11+x -12x =0,化简为x 2+x -2=0,解得x 1=-2或x 2=1,其中x 1=-2舍去.又由f ′(x )=11+x -12x >0,且x ∈[0,2],得知函数f (x )的单调递增区间是(0,1),同理, 得知函数f (x )的单调递减区间是(1,2),所以f (1)=ln 2-14为函数f (x )的极大值.又因为f (0)=0,f (2)=ln 3-1>0,f (1)>f (2),所以,f (0)=0为函数f (x )在[0,2]上的最小值,f (1)=ln 2-14为函数f (x )在[0,2]上的最大值.【点拨】求函数f (x )在某闭区间[a ,b ]上的最值,首先需求函数f (x )在开区间(a ,b )内的极值,然后,将f (x )的各个极值与f (x )在闭区间上的端点的函数值f (a )、f (b )比较,才能得出函数f (x )在[a ,b ]上的最值.【变式训练3】(2008江苏)f (x )=ax 3-3x +1对x ∈[-1,1]总有f (x )≥0成立,则a =. 【解析】若x =0,则无论a 为何值,f (x )≥0恒成立. 当x ∈(0,1]时,f (x )≥0可以化为a ≥3x 2-1x3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,x ∈(0,12)时,g ′(x )>0,x ∈(12,1]时,g ′(x )<0.因此g (x )max =g (12)=4,所以a ≥4.当x ∈[-1,0)时,f (x )≥0可以化为 a ≤3x 2-1x 3,此时g ′(x )=3(1-2x )x 4>0, g (x )min =g (-1)=4,所以a ≤4. 综上可知,a =4.总结提高1.求函数单调区间的步骤是: (1)确定函数f (x )的定义域D ; (2)求导数f ′(x );(3)根据f ′(x )>0,且x ∈D ,求得函数f (x )的单调递增区间;根据f ′(x )<0,且x ∈D ,求得函数f (x )的单调递减区间.2.求函数极值的步骤是: (1)求导数f ′(x ); (2)求方程f ′(x )=0的根;(3)判断f ′(x )在方程根左右的值的符号,确定f (x )在这个根处取极大值还是取极小值. 3.求函数最值的步骤是:先求f (x )在(a ,b )内的极值;再将f (x )的各极值与端点处的函数值f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.3.3 导数的应用(二)典例精析题型一 利用导数证明不等式 【例1】已知函数f (x )=12x 2+ln x .(1)求函数f (x )在区间[1,e]上的值域; (2)求证:x >1时,f (x )<23x 3.【解析】(1)由已知f ′(x )=x +1x,当x ∈[1,e]时,f ′(x )>0,因此f (x )在 [1,e]上为增函数. 故f (x )max =f (e)=e 22+1,f (x )min =f (1)=12,因而f (x )在区间[1,e]上的值域为[12,e 22+1].(2)证明:令F (x )=f (x )-23x 3=-23x 3+12x 2+ln x ,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x ,因为x >1,所以F ′(x )<0, 故F (x )在(1,+∞)上为减函数. 又F (1)=-16<0,故x >1时,F (x )<0恒成立, 即f (x )<23x 3.【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A.f ′(x )>0,g ′(x )>0B.f ′(x )>0,g ′(x )<0C.f ′(x )<0,g ′(x )>0D.f ′(x )<0,g ′(x )<0 【解析】选B. 题型二 优化问题【例2】 (2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 【解析】(1)设需新建n 个桥墩,则(n +1)x =m , 即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256(m x -1)+mx (2+x )x=256m x+m x +2m -256.(2)由(1)知f ′(x )=-256m x 2+12mx 21 =m2x2(x 23-512).令f ′(x )=0,得x 23=512.所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数.所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.【变式训练2】(2010上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米).【解析】设圆柱底面半径为r ,高为h , 则由已知可得4(4r +2h )=9.6,所以2r +h =1.2. S =2.4πr -3πr 2,h =1.2-2r >0,所以r <0.6. 所以S =2.4πr -3πr 2(0<r <0.6). 令f (r )=2.4πr -3πr 2,则f ′(r )=2.4π-6πr . 令f ′(r )=0得r =0.4.所以当0<r <0.4,f ′(r )>0; 当0.4<r <0.6,f ′(r )<0.所以r =0.4时S 最大,S max =1.51. 题型三 导数与函数零点问题【例3】 设函数f (x )=13x 3-mx 2+(m 2-4)x ,x ∈R .(1)当m =3时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)已知函数f (x )有三个互不相同的零点0,α,β,且α<β.若对任意的x ∈[α,β],都有f (x )≥f (1)恒成立,求实数m 的取值范围.【解析】(1)当m =3时,f (x )=13x 3-3x 2+5x ,f ′(x )=x 2-6x +5.因为f (2)=23,f ′(2)=-3,所以切点坐标为(2,23),切线的斜率为-3,则所求的切线方程为y -23=-3(x -2),即9x +3y -20=0.(2)f ′(x )=x 2-2mx +(m 2-4). 令f ′(x )=0,得x =m -2或x =m +2.当x ∈(-∞,m -2)时,f ′(x )>0,f (x )在(-∞,m -2)上是增函数; 当x ∈(m -2,m +2)时,f ′(x )<0,f (x )在(m -2,m +2)上是减函数; 当x ∈(m +2,+∞)时,f ′(x )>0,f (x )在(m +2,+∞)上是增函数.因为函数f (x )有三个互不相同的零点0,α,β,且f (x )=13x [x 2-3mx +3(m 2-4)],所以⎩⎨⎧≠->--.0)4(3,0)4(12)3(222m m m 解得m ∈(-4,-2)∪(-2,2)∪(2,4). 当m ∈(-4,-2)时,m -2<m +2<0,所以α<m -2<β<m +2<0.此时f (α)=0,f (1)>f (0)=0,与题意不合,故舍去. 当m ∈(-2,2)时,m -2<0<m +2, 所以α<m -2<0<m +2<β.因为对任意的x ∈[α,β],都有f (x )≥f (1)恒成立, 所以α<1<β.所以f (1)为函数f (x )在[α,β]上的最小值.因为当x =m +2时,函数f (x )在[α,β]上取最小值, 所以m +2=1,即m =-1. 当m ∈(2,4)时,0<m -2<m +2, 所以0<m -2<α<m +2<β.因为对任意的x ∈[α,β],都有f (x )≥f (1)恒成立, 所以α<1<β.所以f (1)为函数f (x )在[α,β]上的最小值.因为当x =m +2时,函数f (x )在[α,β]上取最小值, 所以m +2=1,即m =-1(舍去). 综上可知,m 的取值范围是{-1}.【变式训练3】已知f (x )=ax 2(a ∈R ),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围. 【解析】(1)当a >0时,F (x )的递增区间为(1a ,+∞),递减区间为(0,1a); 当a ≤0时,F (x )的递减区间为(0,+∞). (2)[12ln 2,1e). 总结提高在应用导数处理方程、不等式有关问题时,首先应熟练地将方程、不等式问题直接转化为函数问题,再利用导数确定函数单调性、极值或最值.3.4 定积分与微积分基本定理典例精析题型一 求常见函数的定积分 【例1】 计算下列定积分的值. (1)⎰21(x -1)5d x ;(2)⎰2π(x +sin x )d x .【解析】(1)因为[16(x -1)6]′=(x -1)5, 所以⎰21 (x -1)5d x =6)1(61-x 12=16. (2)因为(x 22-cos x )′=x +sin x , 所以⎰2π0(x +sin x )d x =)cos 2(2x x -12π=π28+1. 【点拨】(1)一般情况下,只要能找到被积函数的原函数,就能求出定积分的值;(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;(3)对于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;(4)当被积函数具有奇偶性时,可用以下结论:①若f (x )是偶函数时,则⎰-a a f (x )d x =2⎰a 0f (x )d x ; ②若f (x )是奇函数时,则⎰-a a f (x )d x =0. 【变式训练1】求⎰-55(3x 3+4sin x )d x . 【解析】⎰-55(3x 3+4sin x )d x 表示直线x =-5,x =5,y =0和曲线y =3x 3+4sin x 所围成的曲边梯形面积的代数和,且在x 轴上方的面积取正号,在x 轴下方的面积取负号.又f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ).所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数,所以⎰-50(3x 3+4sin x )d x =-⎰05(3x 3+4sin x )d x , 所以⎰-55(3x 3+4sin x )d x =⎰-50(3x 3+4sin x )d x +⎰05(3x 3+4sin x )d x =0. 题型二 利用定积分计算曲边梯形的面积【例2】求抛物线y 2=2x 与直线y =4-x 所围成的平面图形的面积.【解析】方法一:如图,由⎩⎨⎧-==,4,22x y x y 得交点A (2,2),B (8,-4),则S =⎰02[2x -(-2x )]d x +⎰28[4-x -(-2x )]d x=0223324x +28)32224(232x x x +-=163+383=18. 方法二:S =⎰-42[(4-y )-y 22]d y =42)61214(32---y y y =18. 【点拨】根据图形的特征,选择不同的积分变量,可使计算简捷,在以y 为积分变量时,应注意将曲线方程变为x =φ(y )的形式,同时,积分上、下限必须对应y 的取值.【变式训练2】设k 是一个正整数,(1+x k )k 的展开式中x 3的系数为116,则函数y =x 2与y =kx -3的图象所围成的阴影部分(如图)的面积为.【解析】T r +1=C r k (x k )r ,令r =3,得x 3的系数为C 3k 1k 3=116,解得k =4.由⎩⎨⎧-==34,2x y x y 得函数y =x 2与y =4x -3的图象的交点的横坐标分别为1,3.所以阴影部分的面积为S =⎰13(4x -3-x 2)d x =(2x 2-3x -13)313x =43. 题型三 定积分在物理中的应用【例3】 (1) 变速直线运动的物体的速度为v (t )=1-t 2,初始位置为x 0=1,求它在前2秒内所走过的路程及2秒末所在的位置;(2)一物体按规律x =bt 3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方,试求物体由x =0运动到x =a 时阻力所做的功.【解析】(1)当0≤t ≤1时,v (t )≥0,当1≤t ≤2时,v (t )≤0,所以前2秒内所走过的路程为s =⎰01v (t )d t +⎰12(-v (t ))d t =⎰01(1-t 2)d t +⎰12(t 2-1)d t=01)31(3t t -+12)31(3t t -=2.2秒末所在的位置为x 1=x 0+⎰02v (t )d t =1+⎰02(1-t 2)d t =13. 所以它在前2秒内所走过的路程为2,2秒末所在的位置为x 1=13. (2) 物体的速度为v =(bt 3)′=3bt 2.媒质阻力F 阻=kv 2=k (3bt 2)2=9kb 2t 4,其中k 为比例常数,且k >0.当x =0时,t =0;当x =a 时,t =t 1=(a b)31, 又d s =v d t ,故阻力所做的功为W 阻=⎰阻F d s =⎰01t kv 2·v d t =k ⎰01t v 3d t = k ⎰01t (3bt 2)3d t =277kb 3t 71 = 277k 3a 7b 2. 【点拨】定积分在物理学中的应用应注意:v (t )=⎰a ba (t )d t ,s (t )=⎰ab v (t )d t 和W =⎰a b F (x )d x 这三个公式.【变式训练3】定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F [1,log 2(x 2-4x +9)]的图象为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 向曲线C 1作切线,切点为B (n ,t )(n >0),设曲线C 1在点A ,B 之间的曲线段与线段OA ,OB 所围成图形的面积为S ,求S 的值.【解析】因为F (x ,y )=(1+x )y ,所以f (x )=F (1,log 2(x 2-4x +9))=)94log(22+-x x =x 2-4x +9,故A (0,9),又过坐标原点O 向曲线C 1作切线,切点为B (n ,t )(n >0),f ′(x )=2x -4. 所以⎪⎩⎪⎨⎧-=+-=,42,942n nt n n t 解得B (3,6), 所以S =⎰03(x 2-4x +9-2x )d x =(x 33-3x 2+9x )03=9. 总结提高1.定积分的计算关键是通过逆向思维求得被积函数的原函数.2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.3.利用定积分求平面图形面积的步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把曲边梯形的面积表示成若干个定积分的和;(4)计算定积分,写出答案.。

高考数学导数及其应用考点

高考数学导数及其应用考点

高考数学导数及其应用考点高考数学中,导数及其应用是一个重要的考点,它不仅在函数的研究中发挥着关键作用,还与实际问题的解决紧密相关。

一、导数的定义导数的定义是函数在某一点处的瞬时变化率。

如果函数$y = f(x)$在点$x_0$ 处的增量$\Delta y = f(x_0 +\Delta x) f(x_0)$与自变量的增量$\Delta x$ 之比当$\Delta x \to 0$ 时的极限存在,那么这个极限值就称为函数$y = f(x)$在点$x_0$ 处的导数,记作$f'(x_0)$。

通俗来讲,导数就像是函数图象在某一点处的“斜率”,它反映了函数在这一点处的变化快慢程度。

二、导数的几何意义导数的几何意义是函数在某一点处的切线斜率。

函数$y = f(x)$在点$x_0$ 处的导数$f'(x_0)$,就是曲线$y = f(x)$在点$(x_0, f(x_0))$处的切线斜率。

通过导数,我们可以求出函数图象在某一点处的切线方程。

假设切点为$(x_0, y_0)$,导数为$f'(x_0)$,那么切线方程为$yy_0 = f'(x_0)(x x_0)$。

三、基本初等函数的导数公式1、常数函数的导数:$(C)'= 0$ ,其中$C$ 为常数。

2、幂函数的导数:$(x^n)'= nx^{n 1}$。

3、正弦函数的导数:$(\sin x)'=\cos x$ 。

4、余弦函数的导数:$(\cos x)'=\sin x$ 。

5、指数函数的导数:$(a^x)'= a^x \ln a$ ($a > 0$ 且$a \neq 1$ );特别地,$(e^x)'= e^x$ 。

6、对数函数的导数:$(\ln x)'=\frac{1}{x}$;$({\log}_a x)'=\frac{1}{x \ln a}$($a > 0$ 且$a \neq 1$ )。

熟练掌握这些基本初等函数的导数公式,是解决导数问题的基础。

高考数学第一轮复习课件之导数及其应用

高考数学第一轮复习课件之导数及其应用

总结词
利用导数解决生活中的优化问题。
示例
某企业生产某产品的总成本函数为$C(x) = 25x + 4000$,总收入函数为$R(x) = 100x - 0.01x^{2}$,利用导数求出利润最大时的产量。
总结词
通过求导判断数列的单调性,利用单调性研究数列的极限,进而解决一些数列问题。
详细描述
示例
已知数列${ a_{n}}$满足$a_{n + 1} = a_{n} + frac{1}{n(n + 1)}$,求证数列${ a_{n}}$收敛,可以利用导数研究数列的单调性和极限,进而证明结论。
详细描述
导数可以用来研究函数的极值点,即导数为0的点。在这些点附近,函数值可能会发生显著变化。通过求导找到极值点后,我们可以进一步分析这些点的性质,如判定是极大值还是极小值,并求出相应的函数值,即最值。
03
CHAPTER
导数的综合应用
详细描述
通过建立函数关系,利用导数求出最优解,解决生活中的优化问题,如最大利润、最小成本等。
详细描述
总结词
导数的几何意义是切线的斜率。
详细描述
对于可导函数,其导数表示函数图像上某一点处的切线的斜率。这意味着,当函数在某一点可导时,该点的切线与函数图像在该点相切,切线的斜率即为该点的导数值。
总结词:导数的四则运算法则是导数运算的基本法则。详细描述:导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。加法法则指出两个函数的和或差的导数等于两个函数的导数的和或差的线性组合;减法法则指出两个函数的差相对于自变量的变化率等于被减数函数的导数减去减数函数的导数;乘法法则指出两个函数的乘积的导数等于两个函数的导数的乘积加上被乘数函数的导数乘以乘数函数的导数;除法法则指出两个函数的商的导数等于被除数函数的导数除以除数函数的导数减去被除数函数乘以除数函数的导数的商。这些法则可以用于推导复合函数的导数以及解决一些复杂的导数问题。

(江西专用)高考数学一轮复习 2.11 导数在研究函数中的应用课件 文 新人教A版

(江西专用)高考数学一轮复习 2.11 导数在研究函数中的应用课件 文 新人教A版
os
1 4 x>1 , 4
此时x满足的区间原函数是减函数,又原函数为奇函数,可得
选C正确. 【答案】C
3.已知函数f(x)的导数f'(x)=a(x+1)(x-a),若f(x)在x=a处取到极 大值,则a的取值范围是 ( (A)(-∞,1).
(C)(0,1).
)
(B)(-1,0).
出实际问题中变量之间的函数关系y=f(x)(注意函数的实际
需要的限制);
②求函数的导数f'(x),解方程f'(x)=0; ③比较函数在定义域的区间端点和使f'(x)=0的点的函数值 的大小,其中最大的为最大值,最小的为最小值.
1.函数f(x)=x+ln x的单调增区间为 ( (A)(-1,0).
题型2
利用导数研究函数的极值或最值
例2
已知函数f(x)=ex+2x2-3x.
(1)求证:函数f(x)在区间[0,1]上存在唯一的极值点; (2)当x≥ 时,若关于x的不等式f(x)≥ x2+(a-3)· x+1恒成立,求
1 2 5 2
实数a的取值范围.
【分析】根据极值点存在性可转化为存在唯一的零点来处 理,恒成立问题可以转化为求函数的最值问题来处理.
(C)(-∞,4].
) (B)(4,+∞).
(D)(-∞,4).
(2)函数y=2sin x+ex在[1,+∞)上 ( (A)为增函数. (C)先增后减. (B)为减函数. (D)先减后增.
)
【分析】利用导数取值的正负与函数的单调性之间的关系 求解,其中第(1)小题转化为不等式f'(x)≤0在(2,+∞)上的恒成
【答案】(1)C (2)A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考一轮复习热点难点精讲精析:2.11导数及其应用一、变化率与导数、导数的运算 (一)利用导数的定义求函数的导数 1、相关链接(1)根据导数的定义求函数()y f x =在点0x 处导数的方法: ①求函数的增量00()()y f x x f x ∆=+∆-;②求平均变化率00()()f x x f x y x x+∆-∆=∆∆; ③得导数00()lim x yf x x∆→∆'=∆,简记作:一差、二比、三极限。

(2)函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数。

2、例题解析 〖例1〗求函数x=1处的导数。

解析:y∆=-=x 0x 0x 1y x y 1lim lim[.x 21y |.2∆→∆→==∆=∆∆==-∆∴'=-〖例2〗一质点运动的方程为283s t =-。

(1) 求质点在[1,1+Δt]这段时间内的平均速度;(2) 求质点在t=1时的瞬时速度(用定义及求求导两种方法)分析(1)平均速度为s t∆∆; (2)t=1时的瞬时速度即283s t =-在t=1处的导数值。

解答:(1)∵283s t =-∴Δs=8-3(1+Δt)2-(8-3×12)=-6Δt-3(Δt)2,63sv t t-∆==--∆∆. (3) 定义法:质点在t=1时的瞬时速度00lim lim(63)6t t sv t t ∆→∆→∆==--∆=-∆(4) 求导法:质点在t 时刻的瞬时速度2()(83)6v s t t t ''==-=,当t=1时,v=-6×1=-6.注:导数的物理意义建立了导数与物体运动的瞬时速度之间的关系。

对位移s 与时间t 的关系式求导可得瞬时速度与时间t 的关系。

根据导数的定义求导数是求导数的基本方法,请按照“一差、二比、三极限”的求导步骤来求。

(二)导数的运算 1、相关链接(1)运用可导函数求导法则和导数公式,求函数()y f x =在开区间(a,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征; ②选择恰当的求导法则和导数公式求导; ③整理得结果。

(2)对较复杂的函数求导数时,诮先化简再求导,特别是对数函数真数是根式或分式时,可用对数的性质转化真数为有理式或整式求解更为方便。

(3)复合函数的求导方法求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决。

①分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量; ②分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量;③根据基本函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;④复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程。

2、例题解析〖例〗求下列函数的导数。

()()()()()()()222x x x 251y 2x 1(3x 1)x x 12y x x 13y 3e 2elnx 4y x 15y 32x =-+-+=++=-+=+=-思路分析:本题考查导数的有关计算,借助于导数的计算公式及常见的初等函数的导数,可以容易求得.解答:(1)方法一:由题可以先展开解析式然后 再求导:y=(2x 2-1)(3x+1)=6x 3+2x 2-3x-1, ∴y ′=(6x 3+2x 2-3x-1)′=(6x 3)′+(2x 2)′-(3x)′=18x 2+4x-3.方法二:由题可以利用乘积的求导法则进行求导: y ′=(2x 2-1)′(3x+1)+(2x2-1)(3x+1)′ =4x(3x+1)+3(2x 2-1)=12x 2+4x+6x 2-3 =18x 2+4x-3.(2)根据题意把函数的解析式整理变形可得:()()()()22222222222x x 1x x 12x 2x y 1,x x 1x x 1x x 12x x 12x 2x 12x 2y x x 1x x 1-+++-===-++++++++-+-∴'=-=++++ (3)根据求导法则进行求导可得:y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x ln3·e x +3x e x -2x ln2=(3e)x ln3e-2x ln2 (4)根据题意利用除法的求导法则进行求导可得:()()()()()()()2222222222(lnx)x 1lnx x 1y x 11x 1lnx 2x x 12lnx 1x .x 1x x 1'+-+''=++--+==++g g(5)设μ=3-2x ,则y=(3-2x)5是由y=μ5与μ=3-2x 复合而成,所以y ′=f ′μ·μ′x =(μ5)′·(3-2x)′=5μ4·(-2)=-10μ4=-10(3-2x)4.规律总结:一般说来,分式函数求导,要先观察函数的结构特征,可化为整式函数或较为简单的分式函数;对数函数的求导,可先化为和、差的形式;三角函数的求导,先利用三角函数公式转化为和或差的形式.复合函数的求导过程就是对复合函数由外层逐层向里求导.每次求导都针对最外层,直到求到最里层为止.所谓最里层是指此函数已经可以直接引用基本初等函数导数公式进行求导.(三)导数的几何意义 【例】已知曲线31433y x =+, (1) 求曲线在点P(2,4)处的切线方程; (2) 求曲线过点P(2,4)的切线方程; (3) 求斜率为4的曲线的切线方程。

思路分析:“该曲线过点P(2,4)的切线方程”与“该曲线在点P(2,4)处的切线方程”是有区别的:过点P(2,4)的切线中,点P(2,4)不一定是切点;在点P(2,4)处的切线,点P(2,4)是切点.解答:(1)(2,4)P Q 在曲线31433y x =+上,且2y x '= ∴在点P(2,4)处的切线的斜率k=2|x y ='=4;∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线31433y x =+与过点P(2,4)的切线相切于点A (x 0,301433x +),则切线的斜率020|x x k y x ='==,∴切线方程为y -(301433x +)=20x (x -0x ),即23002433y x x x =-+g∵点P(2,4)在切线上,∴4=220x -302433x +,即3200340x x -+=,∴322000440x x x +-+=,∴(x 0+1)(x 0-2)2=0 解得x 0=-1或x 0=2故所求的切线方程为4x-y-4=0或x-y+2=0. (3)设切点为(x 0,y 0)则切线的斜率为k=x 02=4, x 0=±2.切点为(2,4),(-2,-4/3) ∴切线方程为y-4=4(x-2)和y+4/3=4(x+2) 即4x-y-4=0和12x-3y+20=0注:(1)求函数f(x)图象上点P(x 0,f(x 0))处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知k=f′(x0),故当f′(x0)存在时,切线方程为y-f(x0)=f′(x0)(x-x0).(2)要深入体会切线定义中的运动变化思想:①两个不同的公共点→两公共点无限接近→两公共点重合(切点);②割线→切线.(3)可以利用导数求曲线的切线方程,由于函数y=f(x)在x=x0处的导数表示曲线在点P(x0,f(x0))处切线的斜率,因此,曲线y=f(x)在点P(x0,f(x0))处的切线方程,可按如下方式求得:第一,求出函数y=f(x)在x=x0处的导数,即曲线y=f(x)在点P(x0,f(x0))处切线的斜率;第二,在已知切点坐标和切线斜率的条件下,求得切线方程y=y0+f′(x0)(x-x0);如果曲线y=f(x)在点P(x0,f(x0))处的切线平行于y轴(此时导数不存在)时,由切线的定义可知,切线的方程为x=x0.二、导数在函数中的应用与生活中的优化问题举例(一)利用导数研究函数的单调性1、相关链接(1)求可导函数单调区间的一般步骤和方法,如下图:即:①确定函数f(x)的定义域;②求f’(x) ,令f’(x)=0,求出它们在定义域内的一切实根;③把函数f(x)的间断点(即f(x)无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间。

④确定f’(x)在各个开区间内的符号,根据f’(x)的符号判定函数f(x)在每个相应小开区间内的增减性。

注:当f(x)不含参数时,也可通过解不等式f’(x)>0(或f’(x)<0)直接得到单调递增(或递减)区间。

(2)证明可导函数f(x)在(a,b)内的单调性的步骤①求f’(x);②确认f’(x)在(a,b)内的符号;③作出结论:f’(x)>0时为增函数;f’(x)<0时为减函数。

(3)已知函数的单调性,求参数的取值范围,应注意函数f(x)在(a,b)上递增(或递减)的充要条件应是f’(x)≥0(或f’(x)≤0),x∈(a,b)恒成立,且f’(x) 在(a,b)的任意子区间内都不恒等于0,这就是说,函数f(x)在区间上的增减性并不排斥在区间内个别点处有f’(x) =0,甚至可以在无穷多个点处f’(x0) =0,只要这样的点不能充满所给区间的任何一个子区间。

2、例题解析〖例〗】(2011·北京模拟)若函数f(x)=lnx-12ax2-2x存在单调递减区间,求实数a的取值范围.思路解析:函数f(x)存在单调减区间,就是不等式f′(x)≤0有实数解,考虑到函数的定义域为(0,+∞),所以本题就是要求f′(x)≤0在(0,+∞)上有实数解.解答:f′(x)= 1x-ax-2=2ax2x1x+--.因为函数f(x)存在单调递减区间,所以f′(x)≤0有解.又因为函数的定义域为(0,+∞),则ax2+2x-1≥0在x∈(0,+∞)内有解.(1)当a>0时,y=ax2+2x-1为开口向上的抛物线,ax2+2x-1≥0,总可以找到x>0的解;(2)当a<0时,y=ax2+2x-1为开口向下的抛物线,要使ax2+2x-1≥0总有大于0的解,则Δ=4+4a≥0且方程ax2+2x-1=0至少有一个正根,此时-1≤a<0.(3)当a=0时,显然符合题意.综上所述,实数a的取值范围是[-1,+∞).(二)利用导数研究函数的极值与最值1、相关链接(1)求函数f(x)极值的步骤即:①确定函数f(x)的定义域;②求导数f’(x);③求方程f’(x)=0的根。

相关文档
最新文档