抛物线与三角形的面积

合集下载

第五讲+抛物线中三角形的面积问题

第五讲+抛物线中三角形的面积问题

第五讲抛物线中三角形的面积问题一、抛物线内接三角形的面积问题:例、如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax²+bx+c(a≠0)经过A、B、C三点。

⑴求此抛物线的函数表达式和顶点M坐标;⑵求S△MBC;归纳:怎样求坐标系内任意三角形的面积问题:二、抛物线中三角形的等积变化:1、在抛物线上是否存在点D,使得△ABC和△ABD面积相等,若存在,求出点D的坐标,若不存在,说明理由。

2、在抛物线上是否存在点E,使得△ABC和△BCE面积相等,若存在,求出点E的坐标,若不存在,说明理由。

S△ABC。

若存在,求出点M的坐标;若不存在,请说明理由3、在抛物线上是否存在点M,使S△MBC= 134、(2011成都)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√?若存在,求出点M的坐标;若不存在,说明理由.5、点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C 运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH 的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;6、在抛物线的对称轴上有一点P的纵坐标为5,在直线上BC求一点M使得S△PBM∶S△ABC=1:5.7、在直线BC下方抛物线上是否存在一个点F,使得△BCF的面积最大,若存在,求出点F的坐标,并求出最大面积,若不存在,说明理由。

练习:1、如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求A、B两点坐标;(2)求抛物线的解析式;(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.2、(2010玉溪)如图,在平面直角坐标系中,点A的坐标为(1,△AOB(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.yAB。

三角形标准二次抛物线的面积形心公式必须牢记

三角形标准二次抛物线的面积形心公式必须牢记
Ai
第6章
6.3 结构位移计算的一般公式 单位荷载法
一、虚功方程的意义及应用
[uN
vQ
m
]BI AI

(i)
(i)
BI ( pu qv m)ds
Ai
BI (N Q M )ds ( i ) Ai
1、意义:虚功方程的每一项都是广义力与广义位移的 乘积。
第6章
4、上述各种位移统称为“广义位移”。与广义 位移相对应的力称为“广义力”。
二、计算结构位移的目的
1、刚度验算:电动吊车梁跨中挠度 fmax≤l/600。
2、计算超静定结构必须考虑位移条件。
3、施工技术的需要。
P
P
P
P
P
P/2
P/2
c
c CV
4、结构的动力计算和稳定分析中,都常需计算结 构的位移。
复习思考
(1)图乘法的适用条件是什么?
(2)图乘法的公式是怎样的?说明各符号的物理意 义。如何图乘?
(3)使用图乘法时应注意什么问题 ?
第6章
图乘法应满足的条件 1、杆件为等截面直杆。 2、EI为常数。 3、MK、MP图形中至少有一个为直线图形。
返回
第6章
图乘法公式及其物理意义
ห้องสมุดไป่ตู้
y
MP(x)
d
dx
T P
4、虚功对应的两种状态及应满足的条件:
(1)虚力状态:为求真实位移而虚设的力状态,它应满足 静力平衡条件。
(2)虚位移状态:为求真实力而虚设的位移状态,它应满 足变形协调条。
第6章
二、变形杆件体系的虚功方程
“杆件AB处于一静力可能的力状态,设另有一与其无关的 几何可能的位移状态,则前者的外力由于后者的位移所做的 虚外功T等于前者的切割面内力由于后者的变形所作的虚变 形功V”。

抛物线上三角形面积

抛物线上三角形面积

抛物线上三角形面积
1、如图,抛物线2(1)y x k =++与x 轴交于A 、B 两点,与y 轴交于点(0,3)c -。

(1)求抛物线的对称轴及k 的值;
(2)抛物线的对称轴上存在一点P ,使得PA +PC 的值最小,求此时点P 的坐标;
(3)点M 是抛物线上一动点,且在第三象限.
① 当M 点运动到何处时,△AMB 的面积最大?求出
△AMB 的最大面积及此时点M 的坐标;
② 当M 点运动到何处时,四边形AMCB 的面积最大?
求出四边形AMCB 的最大面积及此时点M 的坐标.
2、如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .
(1)求抛物线和直线AB 的解析式;
(2) 求△CAB 的铅垂高CD 及CAB S △;
(3) 设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使
S △PAB =8
9S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.
x C O y A B D 1
3、如图,已知抛物线2
=-++与一直线
y x bx c
相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m 的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.。

抛物线焦点弦三角形的面积(抛物线的弦相关的问题)

抛物线焦点弦三角形的面积(抛物线的弦相关的问题)

抛物线焦点弦三角形的面积本内容主要研究抛物线焦点弦三角形的面积.以抛物线的顶点及其焦点弦的两个端点为顶点的三角形,称为抛物线的焦点弦三角形.给出三种抛物线焦点弦三角形的面积公式,根据已知条件合理选择.例:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B.2 C.322 D.22解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),因为|AF |=3,所以x 1+1=3,x 1=2,代入抛物线方程得122y =,故A (2,22),所以直线AB 的方程为22(1)=-y x ,由22220,4x y y x⎧--=⎪⎨=⎪⎩得2240y --=. 所以122y y +y 1y 2=-4,则22121219||1()[()4]222AB y y y y ⎡⎤=++-=⎢⎥⎣⎦.又可求得圆点O 到直线AB 的距离为223,故△AOB 的面积为1922322222S =⨯⨯=.[一题多解]设∠AFx =θ(0<θ<π)及|BF |=m ,则点A 到准线l :x =-1的距离为3,得1323cos cos 3θθ=+⇔=,又 232cos()1cos 2,=+π-⇔===+m m BF m m θθ,△AOB 的面积为113||||sin 1(3)22233S OF AB θ=⨯⨯⨯=⨯⨯+⨯=. 答案:C注意:前法是解决此类问题的通法,一般通过求弦长和点到直线的距离进行求解,后法则有一定的技巧性.整理:B AOF过抛物线22(0)y px p =>的焦点F 作直线交抛物线于A ,B 两点,且11(,)A x y ,22(,)B x y ,O 为坐标原点.则△AOB 的面积为(1)121||||2S OF y y =⨯⨯-=; (2) 1||2=⨯⨯S AB d ,d 为点O 到直线AB 的距离; (3)11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅其中∠AFx =θ(0<θ<π).再看一个例题:例:设F 为抛物线C :y 2=4x 的焦点,过F 且倾斜角为60°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )解:抛物线的焦点F 的坐标为(1,0),设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0), ∠AFx =60°所以直线AB 的方程为3(1)=-y x ,由23(1),4⎧=-⎪⎨=⎪⎩y x y x得231020-+=x x . 所以12103x x +=,则1216||3AB x x p =++=. 又11sin sin 22OAB OBF OAF S S S OF BF OF AF θθ∆∆∆=+=⋅⋅+⋅⋅ ()11sin sin 22OF AF BF OF AB θθ=⋅+=⋅⋅ 故△AOB 的面积为116341=32323∆=⨯⨯⨯OAB S总结:1.根据已知条件合理选择我三种抛物线焦点弦三角形的面积公式.2.掌握抛物线的焦点弦长计算方法.练习:1.已知抛物线C 的顶点在坐标原点O ,焦点为F (1,0),经过点F 的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若△AOB 的面积为4,求|AB |.2. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )C.6332D.943. 已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时,△AEF 为正三角形,则此时△OAB 的面积为( )A.4C.3D.3。

2017年中考数学复习指导抛物线内接三角形面积的计算通法

2017年中考数学复习指导抛物线内接三角形面积的计算通法

抛物线内接三角形面积的计算通法一、问题的提出(2016年酒泉中考题)如图1(1),已知抛物线经过(3,0)A ,(0,3)B 两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图1(1),动点E ,从O 点出发,沿着OA 的方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从点A 出发,沿着AB /秒的速度向终点B 匀速运动,当EF 中任意一点到达终点时另一点也随之停止运动.连结EF ,设运动时间为t 秒,当t 为何值时,AEF V 为直角三角形?(3)如图1(2),取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.本题第(3)问是求抛物线内接不规则三角形的最大面积问题,解这类问题有没有一种通用的方法呢?值得我们探究.二、几种特殊情况1.抛物线内接三角形有一边在x 轴上:(这里约定A 点的横坐标记为A x ,A 点的纵坐 标记为为A y )如图2(1),有1122ABC A B C S AB OC x x y ∆=⨯=-⨯. 如图2(2),有1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 如图2(3),有 1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 2.抛物线内接三角形有一边与x 轴平行:如图3(1),有1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABC B A D C S AB OC x x y y ∆=⨯=-⨯-; 如图3(2),有 1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABCB A DC S AB OC x x y y ∆=⨯=-⨯-.在以上特殊情况下,只要求出A 、B 、C 、D 的坐标,代入即可以求出抛物线内接三角形的面积.三、建立模型当抛物线内接三角形的三边均不与坐标轴平行时(如图4),三角形的面积又该怎么计算呢?解题的基本思路是将任意三角形转化为上述特殊的三角形,然后类比解决.如图4,过点C 作“轴的垂线交AB 于点D ,则ABC ∆被分成了两个以CD 为一公共边的三角形.过点A 作AE CD ⊥于点E ,过B 作BF CD ⊥于点F ,则11()22ABC CDA ABC S S S CD AE CD BF CD AE BF ∆∆∆=+=⨯+⨯=⨯+,C D CD y y =-,C A B C AE BF x x x x +=-+-.A CB x x x <<Q ,A B AE BF x x ∴+=-,12ABC A B C D S x x y y ∆∴=---. 综合上述,已知三角形三个顶点坐标,可得抛物线内接ABC ∆的面积公式: 设,A B D a x x h y C y =-=-- .a 为两点的横坐标之差,可看成是两点之间的水平距离,可以称为水平宽; h 表示的是两点的纵坐标之差,可称为铅直高.在坐标系中,不规则三角形的面积公式可表示为:12ABC S ah ∆=. 此公式适用于坐标系中的任意三角形,它和一般三角形的面积公式形成了完美的一致. 当三角形的三个顶点都在抛物线上时,点的横坐标不可能州样,不妨设A C B x x x <<. 则A a x x B =--,即是水平宽.过点C 作x 轴的垂线,与直线AB 的交点记为D ,则C D h y y =-,即是铅直高,于是有1122ABC A B C D S ah x x y y ∆==-⋅-. 四、问题解决上述问题中,过点P 作//PN x 轴,垂足为N ,交AB 于点M (如图1(2)),抛物线解析式为223y x x =-++,直线AB 的解析式为3y x =-+.设(,3)N x x -+,则2(,23)M x x x -++.于是有 12ABC A B P M S x x y x ∆=-⋅- 21(30)(23)(3)2x x x ⎡⎤=-⋅-++--+⎣⎦ 23922x x =-+23327()228x =--+, 即当32x =时,ABP V 面积最大,最大面积是278,此时P 点的坐标为327(,)28. 五、模型应用(动点B 在定点A 与C 之内)例1 如图5,二次函数与x 轴交于点C ,与y 轴交于点A ,B 为直线AC 下方抛物线上一点,求ABC V 面积的最大值.解 易得点(0,4)A -,点(6,0)C ,则水平宽6A C a x x =-=.直线AC 的解析式为243y x =-. 设点B 的坐标为213(,4)34x x x --, 则点D 的坐标为2(,4)3x x -. 铅垂高22144(4)323B D h y y x x =-=----2123x x =-+, 故222116(2)6(3)923ABC S x x x x x ∆=⨯⨯-+=-+=--+. 06x <<Q ,当3x =时,即当点(3,5)B -时,ABC ∆面积最大,最大面积是9.评注 题中的ABC ∆满足公式中的,A C 为定点,B 为一动点,但在运动过程中,B 的横坐标介于,A C 的横坐标之间,所以直接套用公式即得.由此题可看出,在这种动点问题中,水平宽是两个定点间的水平跨度,铅直高即是由动点向x 轴作垂线,垂线与两定点的连线交于一点,动点和这个交点在竖直方向的跨度.六、模型拓展(动点P 在定点A 与C 之外)例2 如图6(1),二次函数与x 轴交于点C ,与y 轴交于点A ,直线AB 与x 轴平行,且点B 在抛物线上,点P 是直线AC 上方抛物线上的动点,是否存在点P ,使2P A C A B C S S ∆∆=,若存在,求出点P 的坐标,若不存在,说明理由.解析 由题意不难得出8ABC S ∆=,要使2PAC ABC S S ∆∆=,即求16PAC S ∆=.因为PAC ∆为动点三角形,由通用公式PAC S ah ∆=,其中a 为水平宽,6C A a x x =-=, h 为铅直高,应该过动点P 向x 轴作垂线;交直线AC 于点D ,则P D h y y =-.问题是此时动点P 不在两定点,A C 之间,而是运动到了两定点,A C 之外,那么通用公式还成立吗?由图6(2)可知,当动点P 在两定点,A C 之外时,1122PAC PDC PDA S S S PD CE PD AF ∆∆∆=-=⨯-⨯ 111()()222C A PD CE AF PD x x ah =-=⨯-=. 由此可见,当动点运动到两定点之外时,通用公式依然成立.区别是:动点在两定点之间时,动点图形的面积是两个规则图形的面积之和,用的是加法运算;动点在两定点之外时,动点图形的面积是两个规则图形的面积之差,用的是减法运算.。

抛物线上动点p的三角形面积-定义说明解析

抛物线上动点p的三角形面积-定义说明解析

抛物线上动点p的三角形面积-概述说明以及解释1.引言1.1 概述在数学中,抛物线是一种具有特定形状的曲线,其形状类似于开口向上的U形。

它是由一个定点和一条直线(称为准线或直线段)确定的曲线,其中定点被称为焦点,准线表示为直线段AB。

抛物线是一种非常重要的曲线,广泛应用于物理学、工程学等领域。

本文将围绕着抛物线上的动点P展开讨论。

在抛物线上,动点P具有自由运动的能力,并且可以在曲线上任意选择不同的位置。

我们将重点研究动点P所形成的三角形的面积,并探究如何计算这个面积。

通过研究动点P在抛物线上的运动以及三角形的面积计算方法,我们可以深入理解抛物线曲线的几何特征,并且可以应用这些知识解决实际问题。

同时,对抛物线上动点P的三角形面积的意义和应用也将在文章中进行探讨。

最后,在总结部分我们将对本文的内容进行总结,并展望未来对抛物线相关问题的研究方向。

本文旨在提供一个清晰的抛物线上动点P三角形面积的计算方法,并希望读者通过阅读本文能够对抛物线的几何特性有更深入的了解。

【1.2 文章结构】本文将分为以下几个部分来探讨抛物线上动点P的三角形面积的计算方法。

每个部分的内容如下:(1)引言:在引言部分,我们将概述本文的主题和研究对象,并介绍文章的结构和目的。

同时,我们也将对抛物线的定义和性质进行简要介绍。

(2)正文:在正文部分,我们将分为三个小节来详细阐述抛物线上动点P的三角形面积的计算方法。

首先,我们会介绍抛物线的定义和性质,包括其数学表达和几何特征。

然后,我们会讨论动点P在抛物线上的运动规律,这一部分将包括动点P在不同位置的情况下的三角形面积的变化规律。

最后,我们将介绍具体的计算方法,包括利用向量、坐标和参数方程等不同的方法来计算动点P的三角形面积。

(3)结论:在结论部分,我们将对前面的研究结果进行总结,并探讨抛物线上动点P的三角形面积的一些意义和应用。

同时,我们也会展望未来可能的研究方向和可进一步发展的领域。

通过以上的安排,我们旨在全面而系统地介绍抛物线上动点P的三角形面积的计算方法,并探讨其应用的可能性,为相关领域的研究和实践提供一定的参考和指导。

与抛物线有关的两个重要三角形

与抛物线有关的两个重要三角形

与抛物线有关的两个重要三角形刘伟 重庆市北碚区江北中学(400714)二次函数是初等函数中最为重要的一个函数,其图象抛物线,进一步加强了代数与几何的联系,其中蕴含的数学思想和方法,对学生观察问题、研究问题、解决问题是十分有益的。

二次函数的图象抛物线与坐标轴交点构成的有关线段、三角形面积等代数与几何综合问题,是历年中考数学压轴题的重点和热点。

抛物线c bx ax y ++=2,当△=b 2-4ac >0时,抛物线与x 轴必有两个交点为)0,(1x A 、)0,(2x B ;当0=x 时,抛物线与y 轴相交于点C (0,c )。

设抛物线的顶点为P ,此时我们得到与抛物线有关的两个重要三角形:△ABC 与△ABP 。

那么这两个三角形的面积、形状与抛物线的系数a,b,c, 有怎样的内在联系呢?下面就此问题作如下探讨:一、关于△ABC∵抛物线与x 轴的两个交点为)0,(1x A 、)0,(2x B ,则02=++c bx ax 。

根据一元二次方程根与系数的关系有:ac x x a b x x =-=+2121, 所以A 、B 两点间的距离.4444)()(22222121221212aa acb a ac b a c a b x x x x x x x x AB ∆=-=-=⨯-⎪⎭⎫ ⎝⎛-=-+=-=-= 即 aAB ∆= …………………………………………(1) 这就是抛物线与x 轴的两个交点之间的距离公式。

而|OC|=|y c |=|c|, 所以S △ABC =.212121∆⋅=⋅∆⋅=⋅a c c a OC AB 即 S △ABC =.2∆⋅ac ……………………………………(2) 这就是抛物线与两坐标轴交点构成三角形的面积公式。

二、关于△ABP由抛物线的对称性可知,它的形状、大小由P ,A ,B 三点坐标确定。

由(1)知:aAB ∆=. 设D 是抛物线对称轴与x 轴的交点,则|PD|=|y p |=.4442aa b ac ∆=- 设∠PAB=α,在Rt △PAD 中,..4:,21242ααtg a a AD PD tg =∆∆=∆⋅∆==平方整理得 于是我们得到:①当α=600时,△ABP 为等边三角形,此时α24tg =∆02604tg ==12;②当α=450时,△ABP 为等腰直角三角形,此时α24tg =∆02454tg ==4。

抛物线中三角形面积公式

抛物线中三角形面积公式

抛物线中三角形面积公式
抛物线中三角形面积公式:
1. 定义:当平行于抛物线准线交于抛物线上两点P1,P2时,形成的三角形称为抛物线上的三角形。

2. 公式:三角形面积可以求出:S=|P1P2·P3|/2,其中P3是平行于抛物线准线交于抛物线上三角形三边上的点。

3. 运用:若平行于抛物线准线即为x轴,则可以根据公式计算:
S=|P1P2·P3|/2=|x1x2·c|/2,其中c为抛物线在某点P的切线的斜率的倒数。

4. 应用:因为求不定积分的计算比求定积分快得多,所以应用抛物线中三角形面积公式常用于求定积分。

因为抛物线的斜率的倒数在抛物线的任一点P都存在,所以由于任一点P,可以将抛物线分解为若干个三角形,从而将求定积分问题转化为求不定积分问题,大大降低了计算难度。

抛物线中三角形面积最值问题的七种求解策略

抛物线中三角形面积最值问题的七种求解策略

图10的正切函数值,则问题便可逐步解决.解析在上找点£,使= 由外角定理,知•①易知直线S C 解析式为y-6.设 £(m ,m -6),由 fi (6,0),D (2, -8),则 B £2 = (m -6)' + (m -6)2, ED 2 = (m - 2)2 + (m + 2)2.由 B £ = £7),知(;n -6)2 +(m -6)2 = (m -2)2 +(m + 2)2,解得 m =|,即 £(夺,-爭)•又易知 C £>2 + fiC 2 = fi /)2,则乙BCD = 90。

.qi n由 C (0, -6),£(|■,-$),Z )(2, -8),知 CD =2^",C £=^,P J lain^CED = j .②由①②和 A C(?B = 2 A CflD ,则 tan Z _ C(?B =当点<?在点B 左侧时,(),( -8,0).当点<?在点B 右侧时,(?2(8,0).综上,(?( -8,0)或(8,0).从上面题目的解答可以发现:抛物线中角的存在 性问题,一般运用角的特殊性及坐标条件构造基本图形,并运用图形的性质,进行推理得出有关相等线段, 并表示出有关点的坐标,代入二次函数或一次函数的 解析式,或运用勾股定理计算作答.在解答过程中,既 要构造几何图形,根据几何直观和几何性质、定理理性分析、推理,还要运用函数与方程知识进行计算和 数据分析.综合运用几何推理、函数与方程思想等多 方面技能,有较强的综合性及创新探究意识,可以很 好地考查学生的综合素养[2].“问题是数学的心脏”,数学的真正组成部分是问 题和解,在学习过程中,在一定学习范围或主题内,围 绕一定目标或某一中心问题,按照一定的逻辑结构精 心设计一组问题,即为“一题多问”,采用“一题多问” 的方式,用同一道题目将多个知识点表现出来,可以 帮助学生梳理旧知,形成网络,将数学技能及方法得 以综合运用.“一题多问”引导学生从不同角度、不同 方位进行不同层次的思考,提高学生分析问题、解决 问题和提出问题的能力,可以让学生跳出“题海”,提 高解题效益,提升数学素养.参考文献:[1 ]罗峻,段利芳.一次函数与反比例函数图象相交的性质 之证明与运用[J ]•数理化学习(初中版),2018(12) :23 -28.[2]罗峻,段利芳.当完美正方形偶遇美丽的45度角[J ]. 理科考试研究(初中),2019,26(22) :29 -32.(收稿日期:2020 -09 -21 )抛物线中三角形面积最值问题的七种求鮮策略段昆山(易县教育局教研室河北保定074200)摘要:以二次函数为栽体,结合几何图形求面积最值问题具有难度大、综合性强,区分度高的特表.本文以某地初 三上学期期末考试试卷最后一题为例,谈一谈此类问题的七种求解策略.关键词:最值问题;转化;面积;求解策略纵观近年各地中考试卷,以二次函数为载体,结 合几何图形求面积最值问题的题型是各地中考的高 频考点之一.这类试题综合运用多种数学思想方法, 不仅考查了二次函数与三角形面积的相关知识,又为后续学习高中知识奠定了基础.1试题呈现题目如图1,在平面直角坐标系中,抛物线y = <M c 2 +心+2(a #0)与.t 轴交于两点(点4在点B作者简介:段昆山(1976 -),男,河北保定人,本科,中学一级教师,研究方向:数学教育.的左侧),与y 轴交于点C ,抛物线经过点£»(- 2,- 3) 和点£(3,2),点P 是第一象限抛物线上的一个动点.(1) 求抛物线的表达式;(2) 当A B P C 的面积取最大值时,求A fiP C 面积 及点P 的坐标.2试题解析 2. 1第(1)问解析将点A £的坐标代人函数表达式,得丄_ 了,3_r故抛物线的表达式为y +2.2.2第(2)问解析 2. 2. 1分割法三角形面积通常用面积公 式(底乘髙的一半)来求,在平面 直角坐标系中求斜三角形的面 积用这个公式难度大,那如何求 呢?那就需要运用转化的方法 把斜三角形分割成底与高分别 与坐标轴平行的三角形,充分利用定点的横纵坐标来求三角形面积•如图2,过点P 作丄;c 轴于点F ,A fiP C 被分 割成两个三角形,即A //P C 和所以SA B P C =S 娜c + SAW ,过点C 作C Z )丄/^于点Z ),过点B 作BE _L PF 于点 E ,S A H P C =夸PH x CD.解法1如图3,连接S C ,过点P 作W ///y 轴交S C 于点//,将点C ,S 代入一次函数表达式,可得直线的表达式为y = -+ 2.设点 P U ,+如 +2),则点+2).所以 S A P C B =-%2 +4%.f 4a -2b +2 =-3, 19a +36+2=2,解得,根据二次函数性质,利用配方法,当* = 2时, S apm 的最大值为4.故当A B P C 的面积取最大值时,点P (2,3),S A P C B 二 4.2.2.2补形法在平面直角坐标系中求斜 三角形的面积不仅可以运用分 割法,也可以转换思路,用补形 的方法把不规则图形转化成规 则图形,将斜三角形面积转化 成矩形面积减去三角形的面 积,再充分利用定点的横纵坐标,就可以求斜三角形面积了 • 图4如图4,过点P 作轴,垂足为点£,过点5作 fiZ )丄/)£,垂足为点£»,贝丨J 四边形为矩形•所以S APCB = S 酿形OBOE - S A P E (: 一 S APDB _ S a (X b .解法2如图5,过点P 作轴,垂足为点£,过点B 作丄/)£;,垂足为点/),所以四边形 OBD £为矩形.所以 s A PC b 二 S 四边形〇B D e : — S A P E (: - S _ s A 0C B 二(-+ ^-x + 2) x 4 - (- -^-x2 + -^-x ) x x x ~y - (4-x) x (- ~^x2 ++ 2) x -^--4=-x ~+ 4x.根据二次函数性质,利用配方法,当x =2时,^ A P C B的最大值为4.故当A B P C的面积取最大值时,点P(2,3),■5而=4_2.2.3铅垂法如图6,过A P S C的顶点分别作出水平线的垂线, 外侧两条垂线间的距离叫做水平宽.中间的垂线与 S C相交于点£,线段就叫做铅垂高.如图7,因为S apcb=S A peb+S&PCE二y PE x EU +j PE x EF =所以铅垂法本质上也是分割法.,铅垂高I图7解法3如图8,过点P作P//丄;c轴交B C于点//,设点 ,-+ 2),则点 //(x,+ 2)•所以11,312^apcb =^2^~^2X+Y"x+2+y*-2)x4=-x+4x.在直线B C上.根据平行线间的距离相等,所以ABPC 和A B fiC的高相等,底是BC.所以厶B P C和A B//C的面积相等.求A B P C的面积就转化成求A//£C的面积.解法4如图10,过点Z3作户////沉交7轴于点 所以 S&P C B= S A C H B-将点c,B代人一次函数表达式,可得直线C B的表达式为y= - 士;':+ 2.因为W///S C,所以设直线P//的表达式为y根据二次函数性质,利用配方法,当x= 2时,S apos的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.4平行线法如图9,W///B C,点//,P在直线W/上,点5,CH E P设点户(%,- y i2 + y x+ 2),所以-2 =-—x +b,b22+ ~z~x + 2 + ~z~x2,//C=-y^2+2x+2-2TT22x.x2 +2x+PJflll S A P C B = ^H C xOB =-x2-t-4x.利用配方法,当x= 2时,S A P(:iB的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.5相似法如图11,求三角形的面积可以用面积公式足为点D.所以BC= VOC2 + OB2 = 7^5.求三角形的 面积只要求出高就可以了.高如何求呢?我 们仔细观察图形发现丄SO,所以™//y轴.所以 APHC= AOCB•因为P E±B C,所以 APEH=厶COB.所以ABOC w•所以g = I I所以= PH^~° .这样就可以求出高了.解法5如图12,过点P作丄BC,垂足为点 £,PD丄50交 SC 于点 由题意,5C= VOC1+ OB2 = 2/5 ,APEH^ABOC.m i0BPH = BC'因为+ 2x,PE PH x BOBC¥(-士解法6如图13,过点P作P£//fiC,因为将点C,B代入一次函数表达式,同理可得直线C Z?的表达式为;^=-士尤+2.所以设直线的表达式为y=-+ 6.1,j=- y x + b-H i2+3+2y= - ~z~x+ ~zrx+1.1/22整理,得-士尤2 +~|~尤+2=-士a:+ 6 一士丨2 +2% +2-6=0.所以 A =4-4 x(-士)x(2 -6) =8 -26 =0.解得6=4_所以点P(2,3),A P C fi最大值为4 .2.2.7中点法如图14,设直线S C与抛物线交于B,C两点,直线B C的解析式可设为y= ^+ n,抛物线解析式可设为y= m2 +心+ C,求其交点坐标就是联立两解析式’所以 ax2 + + c = n w c + n_ 整理,得[y= mx+ n.ax2+ (b- m)x+ c- n= 0. fffVJs x, + x2 = ——因为直a%2 +2a〇,所以 S A P C fl =^^(-士尤2 +2幻x2V^x士 =-x2 + 4x.利用配方法,当* =2时,S A P efl的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB-4-2.2.6切线法如图13,若使点P在抛物线上,S A P eB最大,则需 使P£//BC,且与抛物线有且只有一个交点才能使心^8最大.因为底B C确定,只要高最大.因为点P 在抛物线上与抛物线有且只有一个交点时,SC 边上的高才最大.线B C平移到与抛物线只有一个交点时,七即& = 也就是%所以过点P作*轴的垂线,垂足M是O S的中点.所以当抛物线被直线 B C所截,P为抛物线上一动点(此时点P为线段SC 与抛物线所组成的封闭图形上抛物线上一点)丄%轴于点m,交s c于点yv,当点yv为b c中点时,s APC8 的面积有最大值.解法7如图15,过点尸作P////S C,所以& = X B+X C^所以点P 坐标为(2,3).所以=S 四边形"W /Y ;+ S APMB ""SA O R Cx (2+ 3) x 2+冬 x 2x 3_4-x 2x 4=4.' 2 2此法适用于填空、选择或验证.3感悟解法这一类以二次函数为载体,结合几何图形求面积最值问题的题型涉及的知识面多、难度大、综合性强, 要想顺利解答此类问题,必须抓住以下几点.(1)立足转化,抓住动点(设动为定).合理构造辅助线,以转化 思想为基本出发点,抓住动点,根据不同思路过动点 作平行,或作垂直等辅助线,把复杂问题转化为简单问题,把未知问题转换为已知问题.(2)数形结合,设 出动点坐标.充分挖掘已知条件与隐含条件,要明确 角边在数量关系变化中哪些是保持不变的量,哪些是 变化的量.哪些是变化的量.这需要在充分理解的基 础上,进行多方位思考、多角度着手、多层次探索m , 利用相似、面积公式、根与系数的关系等知识,表示出相关的数量关系.(3)根据相关的数量关系,把面积表示成一个含有某未知量的二次函数关系式,然后利用 公式法或配方法求出最值.参考文献:[1] 段昆山.构造图形求准确数形结合找临界一•一类“儿何”型新定义压轴题解法浅析[J ].中学数学教学,2020(01) :79 -80.[2]周威.圆锥曲线中几个特殊三角形面积最值问题探究[J ].理科考试研究,2020(09) :25 - 27.(收稿日期:2020 _08-15)指向“深度学习”的教学课壹教学策略李娜沈南山(合肥师范学院数学与统计学院安徽合肥230601)摘要:从认知结构观点来看,“深度学习”是一种理解性的学习,注重学习思维的批利性、学习内容的整合性、知识体系的建构性和知识学习的迁移性.指向深度学习的数学课堂教学需要深入追问学什么、怎么学、学得怎么样三个教 学本源问题,其教学策略应当注重数学知识对象的多重表征、数学学习脚手架的适时搭建、数学学习问题的逻辑引领、 数学学习方法的积极反思等.关键词:初中数学;深度学习;教学策略1 “深度学习”的基本特征“深度学习”(Deep Learning )最早由美国学者 Marlon 等人于1976年提出的一个比较性学习概念, 是相对于孤立记忆和非批判性接受知识的浅层学习 (Surface Learning )而言的.随后国内外学者对“深度 学习”开展理论与实践研究,其基本内涵是在教师引 领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程,并 在这个过程中学生掌握学科的核心知识,理解学习的 过程,把握学科的本质及思想方法,形成积极的内在 学习动机、高级的社会性感情、积极的态度、正确的价 值观等m .“深度学习”的基本特征蕴含理论和实践两个层 面.理论上,从知识结构观点来看,深度学习是基于学基金项目:合肥师范学院研究生创新基金项目“深度学习理念下初中数学课堂问题提出的教学实践研究”(项目编号:2020yjs 033).作者简介:李娜( 1995 -),女,安徽阜阳人,硕士研究生,研究方向:数学教育;沈南山(1964 -),男,安徽六安人,博士,教授,研究方向:数学课程与教学论研究.。

抛物线三角形OAB面积

抛物线三角形OAB面积

抛物线三角形OAB面积
抛物线三角形,又称平抛三角形,是物理学和数学中两个重要的概念,也是和古典力学有关的抛体运动中经常出现的问题。

一个抛物线三角形是指,一直线段从O点开始,沿抛物线从A点到B点终止构成的一个三角形,因为一条直线所构成的三角形有一定的抛物线,所以叫做抛物线三角形。

要求求抛物线三角形OAB面积,要做到既能求出结果,又能准确地描述抛物线三角形时,可以使用力学中的抛体运动知识。

在抛体运动中,射程和时间的有效结合,可以得到对应抛物线的一般公式,把它代入就能得到相应的抛物线三角形的位置和面积。

由上述可知,若要求抛物线三角形OAB的面积,先由力学抛体运动中的变量计算出抛物线方程,然后再求出抛物线三角形ABO的面积。

可将此类计算分为三种情况:要么抛物线具有十字形,AB两点对应抛物线上的两个拐点;要么AB两点在同一条抛物线上,都在抛物线的根号一侧;要么AB两点在同一条抛物线上,但都在抛物线的根号后侧。

此外,计算抛物线三角形OAB面积时,可以通过求得抛物线的顶点位置O的极坐标来计算:求解抛物线的三个不等式,得到对应的极坐标,由极坐标可以方便地求出抛物线三角形极面积。

总之,求抛物线三角形OAB面积有多种方法,由于这种三角形相当一般,有使用力学知识计算抛物线方程的方法,也有求极面积的方法。

根据具体情况的需求可以选择不同的方式,计算出抛物线三角形对应的位置和面积。

抛物线内接直角三角形的一个性质及应用

抛物线内接直角三角形的一个性质及应用

抛物线内接直角三角形的一个性质及应用抛物线内接直角三角形是几何学中一个重要的定理,它告诉我们:如果一个直角三角形的一个顶点在抛物线上,那么其它两个顶点的坐标也会在这个抛物线上。

本文将简要介绍抛物线内接直角三角形的定义、性质及其应用。

首先,抛物线内接直角三角形定义为:一个直角三角形,其中一个顶点在抛物线上,另外两个顶点也在抛物线上,且抛物线的准线和直角三角形的两条腰都相交。

因此,抛物线内接直角三角形的性质有以下三点:
1)直角三角形的一个顶点在抛物线上,另外两个顶点也在同一
条抛物线上;
2)抛物线的准线与直角三角形的腰相交;
3)抛物线内接直角三角形的面积小于等于抛物线面积的一半。

此外,抛物线内接直角三角形还有一些其它特性:抛物线内接直角三角形的高度等于抛物线的端点之间的距离;两点定理说明了任何一点到抛物线上的点的距离等于直角三角形的斜边的长度。

抛物线内接直角三角形有许多实际应用,其中最为重要的是在机械设计中,抛物线被用来设计螺旋形线路,使得机械运动更加均匀,减少了摩擦力,减少了损耗。

在建筑过程中,抛物线也被用来设计电梯的曲线,使其运行曲线十分柔和,降低了电梯的震动,减少了乘客的不适感受。

另外,抛物线内接直角三角形也被用于医学领域中的X 射线成像技术,使得X射线的扫描更加准确,精确诊断病症。

综上所述,抛物线内接直角三角形是几何学中一个重要的定理,它描述了三角形和抛物线之间的关系,它的定义、性质和应用在许多不同的领域中有广泛的应用,它能够减少摩擦力、降低震动,使X射线扫描更准确,为人类带来科学和技术上的进步。

证明抛物弓形的面积是等底等高三角形的

证明抛物弓形的面积是等底等高三角形的

在数学中,证明抛物线弓形的面积等于等底等高三角形的面积是一个有趣且充满挑战的数学问题。

通过深度和广度的评估,我们可以从简到繁、由浅入深地探讨这个主题,让我们一起来深入探讨一下。

1. 概述让我们明确一下抛物线弓形和等底等高三角形的定义。

抛物线弓形是指由抛物线与两条相连的弧线所围成的形状,而等底等高三角形是指具有相等底边和相等高度的三角形。

现在,我们的目标是证明这两个不同形状的面积是相等的。

2. 抛物线弓形的面积让我们来回顾一下抛物线的性质。

抛物线的面积可以通过积分来求解,具体来说,可以通过定积分来计算抛物线上方和下方的面积,并将两者相减得到抛物线的面积。

这是一个非常深入的数学计算过程,需要对定积分有一定的了解和掌握才能进行计算。

在这里,我们可以使用“抛物线”和“面积”这两个关键词来引出抛物线弓形的面积计算公式,以及相关的数学概念和原理。

3. 等底等高三角形的面积接下来,让我们转向等底等高三角形的面积计算。

等底等高三角形的面积是通过底边和高度的乘积除以2来计算的,这是一个非常基础和简单的数学原理。

我们可以使用“等底等高三角形”和“面积”这两个关键词来引出等底等高三角形的面积计算公式,以及相关的数学概念和原理。

4. 证明过程现在,让我们开始证明抛物线弓形的面积确实等于等底等高三角形的面积。

通过对抛物线弓形和等底等高三角形的面积公式进行推导和分析,我们可以得出它们面积相等的结论。

具体的数学推导过程可以通过数学符号和公式来展现,以便让读者更加深入地理解证明的过程。

5. 个人观点和理解在我看来,这个证明过程不仅仅是数学知识的应用,更重要的是在这个过程中培养了我对数学的逻辑思维和严谨推导的能力。

这个证明过程也让我对抛物线和等底等高三角形的性质有了更深刻的理解,这对于我日后在数学领域的学习和应用将会起到重要的作用。

6. 总结通过对抛物线弓形和等底等高三角形的面积进行全面评估和证明过程的深入探讨,我们可以得出它们面积相等的结论。

抛物线中的三角形面积

抛物线中的三角形面积

2 如图:抛物线 y 与 轴的另一交点为 B点,与y x 2 x 3 x 轴交于点C,点D是抛物线的顶点。
(5)连结CD,AD,AC.则S△ACD=
y D
C
1
.
A(-1,0)
C(O,3) D(1,4)
在直角坐标系中求面积常用方法: A
o
x
△ACD
1.寻找横向或纵向的边为底是计算面积的基本方 法。 2.不能直接求出面积时,用割补法进行转化(构 造横向或纵向的边为底是常用的方法)
M
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物 线交于H点,若直线BC把△PCH分成面积之比为2∶3的 两部分,请求出P点的坐标

解:(3)设P点的坐标为(a,0),因为线段BC过B,C两点,所以BC所
在的直线方程为 . E ( a , a5 ) 那么,PH与直线 BC的交点坐标为 . 2 PH与抛物线的交点坐标为 H . ( a , a 4 a 5 ) 由题意,得
y
D(1,4)
3
A
C
-1
B
O
3xx 1源自 x 2 x 3 x 如图:抛物线 y 与 轴的另一交点为 B点, 与y轴交于点C,点D是抛物线的顶点。
2
(2)连结AC,BC.则S△ABC= 6
y
C
.
A(-1,0) B(3,0) C(0,3)
A
o
B
x
△ABC
1 S CO ABC AB 2 1 43 6 2
1.寻找横向或纵向的边为底是计算三角形面积 的基本方法。 2.不能直接求出面积时,用割补法进行转化(构造 横向或纵向的边为底是常用的方法)
三角形面积等于水平宽与铅垂高乘积的一半.

探究抛物线中三角形面积求法

探究抛物线中三角形面积求法

★探究抛物线中三角形面积求法OK 1.欢迎指导2、3、4、5、6、7、8、9、10.感谢各位专家和老师11.谢谢指导 12、冲向中考:答案(1)y=-21x 2+25x-2 ;(2)设D(m ,-0.5m 2+2.5m-2),作DH ⊥OX 轴于点H 则①当0≤m ≤1时S △DCA =-m 2+4m(=S △OAC -S △DHC -S 梯形OADH );②当1≤m ≤4时S △DCA =-m 2+4m(=S △OAC -S △DHC +S 梯形OADH );当m=2时S △DCA 最大=4;此时D(2,1) 13、解:由y=2x 及y=x 2-2x+3解得x=1,y=2及x=3,y=6.∴A(1,2),B(3,6)又C(0,3),分别作AH ⊥OX,BM ⊥OX 于H,M 点,S △ABC ==S 梯形OCBM - S 梯形OCAH -S 梯形HABM =227-25-8=314、15、16、Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上。

(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。

(2)有一点D坐标为(2,0),点P(m,n)是该抛物线上的一动点(其中m>0,n>0),连接DP交BC与点E。

①当△BDE是等腰三角形时,求此时E点坐标。

(要过程)②又连接CD、CP,△CDP是否有最大面积?若有,求出△CDP的最大面积和此时P点的坐标;若没有,请说明理由;解(1)∵△ABC为Rt△∴∠1+∠2=90°又由ox⊥oy∴∠1+∠3=90°∴∠1=∠3在△AOC △ACB中∠1=∠1,∠2=∠3∴△AOC∽△ACB∴OA:AC=OC:BC=AC:AB∴AC2=5OA又在Rt△AOC中OA2+OC2=AC2∴OA2+4=5OA∴OA2-5OA +4=0∴OA=4或OA=1∵OA<OB∴A(-1,0),B(4,0) ∴OA=1,OB=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线与三角形的面积-CAL-FENGHAI.-(YICAI)-Company One1抛物线与三角形的面积抛物线与三角形面积相结合的问题涉及代数、几何的许多定理、公式,有一定的难度,近年来的中考试题中,经常出现抛物线与三角形面积结合的综合题,以考查学生的综合运用所学知识解决问题的能力。

这节课我们共同来探索一下顶点都在抛物线2y ax bx c =++上的三角形面积的求法。

1、已知抛物线: 224233y x x =--+(1)求抛物线与坐标轴交点坐标及顶点坐标; (2)画出抛物线的草图;(3)设抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于C 点,顶点为D 。

求:①△DAB 和△CAB 的面积; ②四边形ABCD 的面积; ③ △ACD 的面积(4)求直线AC 的解析式;(5)抛物线上有一动点P 在直线AC 上方,问:是否存在一点P ,使△PAC 的面积最大,若存在,求出△PAC 的最大面积及P 点坐标;若不存在,请说明理由。

2、如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小若存在,求出Q 点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.A BC练习:1、在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少2、如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1AB M N D 图 2 O A BC M N P 图 1O AB M N 图 3 O3、(2011漳州中考题)如图1,抛物线y=mx2-1lmx+24m(m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=900.(1)填空:OB=________,)OC=________;(2)连结OA,将△OAC沿x轴翻折后得到△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值。

参考答案 (1)解:当x=0时,y=2∴抛物线与y 轴交点坐标为(0,2)当y=0时,解得:123,1x x =-= ∴抛物线与x 轴交点坐标为()()3,0-或1,0∵()222428213333y x x x =--+=-++∴抛物线的顶点坐标为81,3⎛⎫- ⎪⎝⎭(3)解:①1181642233DAB S AB DE ∆=⋅=⨯⨯= 1142422CAB S AB OC ∆=⋅=⨯⨯= 181812211223232871336DAE BCO ABCD OCDE S S S S ∆∆=++⎛⎫=⨯⨯+⨯+⨯+⨯⨯ ⎪⎝⎭=++=四边形梯形ACD S 871323322ADE AOC OCDE S S S ∆∆∆=+-=+-⨯⨯=梯形(4)解:设直线AC 的解析式为y kx b =+, ∵直线AC 经过()()3,00,2A C -和,∴可求得解析式为223y x =+ (5)过P 作PE//y 轴,交直线AC 于点E ;设P 、E 的坐标分别)232,(),23432,(2++--x x E x x x Dxx x x x DE 232)232()23432(22--=+-+--=∴3)23(344344)232(2122++-=--=⋅--=∴∆x xx x x S PAC当面积最大时点D 坐标为)25,23(-2、解:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩=……………………(2分) ∴23b c =-⎧⎨=⎩……………………(3分)∴抛物线解析式为:223y x x =--+(2)存在 理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小 ∵223y x x =--+ ∴C 的坐标为:(0,3) 直线BC 解析式为:3y x =+Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴ 12x y =-⎧⎨=⎩∴Q(-1,2)(3)答:存在。

理由如下: 设P 点2(23) (30)x x x x --+-<<,∵92BPC BOC BPCO BPCO S S S S ∆∆=-=-四边形四边形若BPCO S 四边形有最大值,则BPC S ∆就最大, ∴BPE BPCO PEOC S S S ∆+Rt 四边形直角梯形=11()22BE PE OE PE OC =⋅++ =2211(3)(23)()(233)22x x x x x x +--++---++=233927()2228x -+++当32x =-时,BPCO S 四边形最大值=92728+∴BPC S ∆最大=9279272828+-=当32x =-时,215234x x --+=∴点P 坐标为315( )24-,练习:1、解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN =. ∴ AN =43x . ……………2分∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ………………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD=21MN .在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .BDB图 1∴ AM MN ABBC=,即45x MN=. ∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==.在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BCAC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切.…………………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠∴ △AMO ∽ △ABP . ∴ 12AM AO ABAP==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 …………………………………………8分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC , ∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………………… 9分图 4P图 3MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………………11分综上所述,当83x =时,y 值最大,最大值是2. ……………………………12分2、(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为:22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图63、解:(1)OB=3,OC=8………………………………………………………………………4分 (2)连结AD ,交OC 于点E ∵四边形OACD 是菱形 ∴AD ⊥OC ,OE=EC=21×8=4 ∴BE=4—3=1 又∵∠BAC=900 ∴△ACE ~△BAE ∴AECEBE AE =∴AE 2=BE ·CE=1×4∴AE=2… ………………………………………………………………………6分∴点A 的坐标为(4,2)…………………………………………………………7分把点A 的坐标(4,2)代人抛物线y=mx 2-llmx+24m ,得m=-21∴抛物线的解析式为y=-21x 2+211x-12………………………………………9分(3) ∵直线x=n 与抛物线交于点M∴点M 的坐标为(n ,-21n 2+211n-12)由(2)知,点D 的坐标为(4,-2),由C 、D 两11 点坐标求得直线CD 的解析式为y=21x-4 ∴点N 坐标为(n ,21n-4). ∴MN=(-21n 2+211n-12)一(21n-4) =-21n 2 +5n-8……………………………………………………………11分 ∴S 四边形AMCN =S △AMN +S △CMN =21MN ·CE =21(-21n 2+5n-8) ·4 =-(n-5)2+9 …………………………………………………13分 ∴当n=5时,S 四边形AMCN 最大值 =9 …………………………………………14分。

相关文档
最新文档