人教版新课标高中数学选修1—1测试题(含答案)
新课标人教版高二数学选修1-1综合测试卷(word文档有答案)
新课标人教版高二数学选修1-1综合测试卷一.选择题(本大题共12小题,每小题3分,共36分)1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2. “0<mn ”是“方程122=+ny mx 表示焦点在y 轴上的双曲线”的( ) A .充分而不必要条件 B . 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 4.双曲线121022=-y x 的焦距为( ) A .22 B .24 C .32 D .34 5. 设x x x f ln )(=,若2)(0='x f ,则=0x ( ) A . 2e B . e C . ln 22 D .ln 2 6. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .2B .3C .12D .138.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x 9.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.已知对任意实数x ,有()(),()()f x f x g x g x -=--=,且0>x 时'()0,'()0f x g x >>,则0<x 时( )A .'()0,'()0f x g x >>B .'()0,'()0f x g x ><C .'()0,'()0f x g x <>D .'()0,'()0f x g x <<二.填空题(本大题共4小题,每小题4分,共16分)13.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 .14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________15.已知双曲线11222-=-+ny n x n = . 16.命题p :若10<<a ,则不等式0122>+-ax ax 在R 上恒成立,命题q :1≥a 是函数xax x f 1)(-=在),0(+∞上单调递增的充要条件;在命题①“p 且q ”、②“p 或q ”、③“非p ”、④“非q ”中,假命题是 ,真命题是 . 三.解答题(本大题共5小题,共40分)17(本小题满分8分)已知函数8332)(23+++=bx ax x x f 在1x =及2x =处取得极值.(1)求a 、b 的值;(2)求()f x 的单调区间.18(本小题满分10分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆;(2)抛物线的焦点是双曲线14491622=-y x 的左顶点.19(本小题满分10分) 已知椭圆193622=+y x ,求以点)2,4(P 为中点的弦所在的直线方程.20(本小题满分10分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:)1200(880312800013≤<+-=x x x y .已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21(本小题满分10分)已知双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点为)0,2(1-F 、)0,2(2F 点)7,3(P 在双曲线C 上. (1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程.参考答案一.选择题(本大题共12小题,每小题3分,共36分)1-6 BBCDBD 7-12 ACABCB二.填空题(本大题共4小题,每小题4分,共16分)13. ),31[+∞ 14. 8 15. 12-或24 16. ①、③, ②、④. 三.解答题(本大题共5小题,共48分)17(本小题满分8分)解:(1)由已知b ax x x f 366)(2++='因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根 故3-=a 、4=b(2)由(1)可得81292)(23++-=x x x x f )2)(1(612186)(2--=+-='x x x x x f 当1<x 或2>x 时,0)(>'x f ,)(x f 是增加的;当21<<x 时,0)(<'x f ,)(x f 是减少的。
人教版高中数学选修1-1综合测试卷B(含答案).doc
数学选修1-1测试卷一、选择题:1、已知a、b为实数,则2" >2"是的( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件2、给出命题:若函数y = .f(x)是幕函数,则函数y = f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.OB.lC.2D.33、已知命题p:H VxG[l,2],x2-a>0,,J^题/?,/+2仮+2-0 = 0”,若命题“0人厂是真命题,则实数。
的取值范围是 ( )A.(-oo,-2]U{l}B.(-汽-2] U [1,2]C.[l,+8)D.[-2,l]4、设函数/(兀)在定义域内可导,y = /(x)的图象如左图所示,则导函数y = /©)可能为( )2 25、设片和坊为双曲线—1(。
>0#>0)的两个焦点,若耳,只,P(0,2b)是正三角形的三个顶点, CT b~则双曲线的离心率为()3,5A.-B.2C.-D.32 26、设斜率为2的直线/过抛物线y2 = ax{a 0)的焦点F,且和y轴交于点九若厶0AF(0为朋标原点)的而积为4,则抛物线方程为( )A. =±4xB. y2=±SxC. y2 = 4xD. y2 = 8x7、如图,曲线y = f(x)上任一点P的切线PQ交x轴于Q,过P作PT垂直于x轴于T,若△P7Q的面积为-,则y与y'的关系满足(・)A. y =)/B. y = -y"C. y - y1D. y2 - y'8^ 己知);=/(x)是奇函数,当XG (0,2) lit, f(x) = Inx-ax{a >—),当xw (-2,0)吋,/(x)的最小值为1,则a的值等于( )1 1 」A.—B.—C.—D..14 3 29、设函数y = /(X)在(。
0)上的导函数为广(x),r(x)在(a,b)上的导函数为f\x),若在(a,b)上,/"(X)<0恒成立,贝I」称函数函数/(兀)在(Q0)上为“凸函数已知当m<2时,/(兀)=-x3-—nu2 +无在6 2 (—1,2)上是“凸函数二则f(x)在(—1,2)上()A.既有极人值,也有极小值B.既有极人值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值己知两条曲线y = x2~l与)vi-F 在点兀。
高中数学选修1-1测试卷及答案3套
高中数学选修一测试卷及答案3套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( )A .1B .3C .9D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4 B .f (x )=13x 2+4C .f (x )=3x 3+4x +4 D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+a x(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1.(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax-1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.答案1.B 2.B 3.D 4.C 5.A 6.D 7.B 8.B 9.D 10.D 11.D 12.C 13.[3,8) 14.x 24-y 212=115.-b 2a216.5717.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A .即2<x <3满足不等式2x 2-9x +a <0.设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧f 2≤0f 3≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn . 由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=6433.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=x +22+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4x +22+y 2+4(x -2)=0, 即x +22+y 2=2-x ,化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎪⎨⎪⎧f ′1=2a -43a =1f 1=a -43a +b =2,解得⎩⎪⎨⎪⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y , 得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠± 3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0,即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a 3-a2+1=0,∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-ax 2,x ∈(0,+∞).令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a-1>1,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈⎝⎛⎭⎪⎫1,1a-1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增; x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a-1<0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝ ⎛⎭⎪⎫1,1a -1上单调递增,在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减.测试卷二(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.已知命题“p :x ≥4或x ≤0”,命题“q :x ∈Z ”,如果“p 且q ”与“非q ”同时为假命题,则满足条件的x 为( )A .{x |x ≥3或x ≤-1,x ∉Z }B .{x |-1≤x ≤3,x ∉Z }C .{-1,0,1,2,3}D .{1,2,3}2.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,则双曲线的离心率是( ) A. 2 B. 3 C. 5 D .24.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )A.x 24-y 212=1B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=15.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( )A.x 22-y 24=1B.x 24-y 22=1 C.y 24-x 22=1 D.y 22-x 24=1 7.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -58.函数f (x )=x 2-2ln x 的单调递减区间是( ) A .(0,1] B .[1,+∞)C .(-∞,-1],(0,1)D .[-1,0),(0,1]9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3C.303D.32610.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12D .-211.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )12.已知函数f (x )的导函数f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .1题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线x 2-y 23=1,那么它的焦点到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________.15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc . ②命题“若x ≥3且y ≥2,则x -y ≥1”为假命题. ③若p ∧q 为假命题,则p ,q 均为假命题. 其中正确说法的序号为________.16.双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两个焦点F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个焦点,Q 是椭圆上任意一点,从任一焦点向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.已知∀x ∈R ,r (x )为假命题且s (x )为真命题,求实数m 的取值范围.20.(12分)已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积.21.(12分)已知函数f (x )=x 3+bx 2+cx +d 的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0.(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.22.(12分)已知f (x )=23x 3-2ax 2-3x (a ∈R ),(1)若f (x )在区间(-1,1)上为减函数,求实数a 的取值范围; (2)试讨论y =f (x )在(-1,1)内的极值点的个数.答案1.D2.A 3.C4.A 5.C 6.D 7.B 8.A 9.C 11.A 12.C 13. 3 14. 2 15.①② 16.(1,3]17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0m >0⇔m >2.命题q :方程4x 2+4(m -2)x +1=0无实根⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0 ⇔1<m <3.∵“p 或q ”为真,“p 且q ”为假, ∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3,解得m ≥3或1<m ≤2.18.解设椭圆的方程为x 2a2+y 2b2=1 (a >b >0),F 1,F 2是它的两个焦点,Q 为椭圆上任意一点,QP 是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,则P 是F 2H 的中点,且|F 2Q |=|QH |,因此|PO |=12|F 1H |=12(|F 1Q |+|QH |)=12(|F 1Q |+|F 2Q |)=a , ∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2,2],∀x ∈R ,r (x )为假命题即sin x +cos x >m 恒不成立. ∴m ≥ 2. ① 又对∀x ∈R ,s (x )为真命题. ∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m <2. ② 故∀x ∈R ,r (x )为假命题,且s (x )为真命题, 应有2≤m <2.20.解 (1)由题意知b =1,e =c a =22,又∵a 2=b 2+c 2,∴a 2=2.∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, ∴直线与椭圆有两个公共点, 设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1x 2=23,∴|CD |=1+-22|x 1-x 2| =5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故S △CDF 2=12|CD |·d =4910.21.解 (1)由f (x )的图象经过P (0,2)知d =2,∴f (x )=x 3+bx 2+cx +2, f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0, 即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3,令3x 2-6x -3=0,即x 2-2x -1=0.解得x 1=1-2,x 2=1+ 2.当x <1-2或x >1+2时,f ′(x )>0. 当1-2<x <1+2时,f ′(x )<0.故f (x )=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∵f (x )在区间(-1,1)上为减函数, ∴f ′(x )≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′-1≤0f ′1≤0得-14≤a ≤14.故a 的取值范围是⎣⎢⎡⎦⎥⎤-14,14.(2)当a >14时,∵⎩⎪⎨⎪⎧f ′-1=4⎝⎛⎭⎪⎫a -14>0f ′1=-4⎝ ⎛⎭⎪⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0,∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f ′(x )>0,在(x 0,1)内,f ′(x )<0, 即f (x )在(-1,x 0)内单调递增,在(x 0,1)内单调递减, ∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <-14时,∵⎩⎪⎨⎪⎧f ′-1=4⎝ ⎛⎭⎪⎫a -14<0f ′1=-4⎝ ⎛⎭⎪⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0.∵f ′(x )=2x 2-4ax -3开口向上, ∴在(-1,x 0)内f ′(x )<0, 在(x 0,1)内f ′(x )>0.即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增, ∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点.当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.综上,当a >14或a <-14时,f (x )在(-1,1)内的极值点的个数为1,当-14≤a ≤14时,f (x )在(-1,1)内的极值点的个数为0.测试卷三(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x =1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x3.双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( )A .①②B .②③C .①④D .③④5.已知a 、b 为不等于0的实数,则a b>1是a >b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.若抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,m )是抛物线上一点,则经过点F 、M 且与l 相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( )A. 3B. 6C.233D.2638.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1 C.x 24-y 212=1 D .-x 24+y 212=1 9.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”;②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题;③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln xx的最大值为( )A .e -1B .eC .e 2D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________.15.已知F 1、F 2是椭圆C x 2a 2+y 2b2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________. 三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条件,求a 的取值范围.18.(12分)已知函数f (x )=x 3+bx 2+cx +d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0的一个根为2.(1)求c 的值; (2)求证:f (1)≥2.19.(12分) 如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.20.(12分)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,命题q :指数函数f (x )=(3-2a )x是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.21.(12分)已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,求实数a 的取值范围.22.(12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p>0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12). (1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.答案1.B 2.D3.C4.C5.D 6.D 7.C8.B 9.B 10.A11.A 12.C 13.⎣⎢⎡⎭⎪⎫13,+∞ 14.(0,2) 15.317.解 p :{x |2<x <10},q :{x |x <1-a ,或x >1+a }. 由綈q ⇒綈p ,得p ⇒q , 于是1+a <2,∴0<a <1.18.(1)解 ∵f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,∴f ′(0)=0.∵f ′(x )=3x 2+2bx +c ,∴f ′(0)=c =0. ∴c =0.(2)证明 ∵f (2)=0,∴8+4b +2c +d =0, 而c =0,∴d =-4(b +2).∵方程f ′(x )=3x 2+2bx =0的两个根分别为x 1=0,x 2=-23b ,且f (x )在[0,2]上是减函数,∴x 2=-23b ≥2,∴b ≤-3.∴f (1)=b +d +1=b -4(b +2)+1 =-7-3b ≥-7+9=2. 故f (1)≥2.19.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,直线ME 的方程为y -y 0=k (x -y 20).由⎩⎪⎨⎪⎧y -y 0=k x -y 20y 2=x得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 01-ky 0k.所以y E =1-ky 0k .同理可得y F =1+ky 0-k .∴k EF =y E -y F x E -x F =y E -y Fy 2E -y 2F=1y E +y F =-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x是增函数,则有3-2a >1,即a <1. 又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1,∴1≤a <2. ②若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <1,∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}. 21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln x x2,∵x >1,∴g ′(x )<0.∴g (x )=1+ln xx在区间(1,+∞)内单调递减.∴g (x )<g (1)=1, 即1+ln x x<1在区间(1,+∞)内恒成立,∴a ≥1.22.解 (1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大, y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×-2--2-2|22+-12=45=455, 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,|AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4×-4=410.∴△ABP 面积的最大值为410×4552=8 2.。
(完整)高中数学选修1-1测试题与答案,推荐文档
D. 1
(
)
D. y 2
D. y 9 x 4
5
A.
B. 5
15
C.
D.10
2
2
13.若抛物线 y2 8x 上一点 P 到其焦点的距离为 9 ,则点 P 的坐标为( )。
A. (7, 14) B. (14, 14) C. (7, 2 14) D. (7, 2 14) 14.函数 y = x3 + x 的递增区间是( )
(1) 求 a 、 b 的值;(2)求 f (x) 的单调区间.
18(本小题满分 10 分) 求下列各曲线的标准方程
2
(1)实轴长为 12,离心率为 ,焦点在 x 轴上的椭圆;
3
(2)抛物线的焦点是双曲线16x 2 9 y 2 144 的左顶点.
19.设 F1, F2 是双曲线
x2 9
y2 16
P(3, 7 ) 在双曲线 C 上.
(1)求双曲线 C 的方程; (2)记 O 为坐标原点,过点 Q (0,2)的直线 l 与双曲线 C 相交于不同的两点 E、F,若△
OEF 的面积为 2 2, 求直线 l 的方程.
参考答案
一.选择题(本大题共 12 小题,每小题 3 分,共 36 分)
1-6 BBCDBD 7-12 ACABCB
1 的两个焦点,点 P 在双曲线上,且 F1PF2
600 ,
求△ F1PF2 的面积。
20.已知函数 y ax3 bx 2 ,当 x 1 时,有极大值 3 ; (1)求 a, b 的值;(2)求函数 y 的极小值。
21.已知函数 f (x) x3 ax2 bx c 在 x 2 与 x 1 时都取得极值 3
A. (0,)
人教版新课标高中数学选修1—1测试题(含答案)
数学选修1-1练习一、选择题:1.已知P :2+2=5,Q:3〉2,则下列判断错误的是( ) A 。
“P 或Q ”为真,“非Q ”为假; B.“P 且Q ”为假,“非P ”为真 ; C.“P 且Q"为假,“非P ”为假 ; D 。
“P 且Q ”为假,“P 或Q ”为真2.在下列命题中,真命题是( )A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题; C 。
若ac 〉bc ,则a 〉b; D.“相似三角形的对应角相等”的逆否命题 3。
已知P:|2x -3|〈1, Q :x (x -3)<0, 则P 是Q 的( )A 。
充分不必要条件; B.必要不充分条件 ; C.充要条件 ; D 。
既不充分也不必要条件4。
平面内有一长度为2的线段AB 和一动点P ,若满足|PA |+|PB|=8,则|PA |的取值范围是( ) A.[1,4]; B.[2,6]; C 。
[3,5 ]; D. [3,6]。
5. 函数f (x )=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为( )A 。
a=3,b=-3或a=―4,b=11 ;B 。
a=-4,b=1或a=-4,b=11 ; C.a=-1,b=5 ; D 。
以上都不对6.曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y=4x -1,则P 0点坐标为( ) A 。
(1,0); B 。
(2,8); C 。
(1,0)和(-1,-4); D.(2,8)和(-1,-4)7.函数f (x )=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A.a<3 ; B.a>3 ; C 。
a ≤3; D 。
a ≥38。
若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A 。
2〈k<5 ; B 。
k 〉5 ; C.k 〈2或k>5; D 。
高中数学选修1-1试卷(含答案)
绝密★启用前选修1-1试卷考试范围:必修一;考试时间:100分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1( )2.对于R 上可导的任意函数()x f ,若满足()()01/≥-x fx ,则必有( )A .()()()1220f f f <+B .()()()1220f f f >+C .()()()1220f f f ≥+D .()()()1220f f f ≤+3 ) A 且1m ≠ C .1m > D .0m >4( ).A .12x <<B .13x <<C .3x <D .2x <5.“a ≤3” 是“函数f (x )=x 2−4ax+1在区间[4,+∞)上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.抛物线24y x =的焦点是(A )(2,0)(B )(0,2)(C )(0,1) (D )(1,0) 7.函数f (x )=x +ln x 在(0,6)上是( ) A .单调增函数 B .单调减函数C .在(0,1e )上是减函数,在(1e ,6)上是增函数 D .在(0,1e )上是增函数,在(1e ,6)上是减函数8.已知12,F F 分别为双曲线C : 右焦点, P 为双曲线C 右支上一点,则12PF F ∆外接圆的面积为( )A B C D 9.“1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的( )条件 A .充分而不必要 B .必要而不充分 C .充要 D .既不充分也不必要10.已知函数()3f x x =在点P 处的导数值为3,则P 点的坐标为( ) A.()2,8-- B.()1,1-- C.()2,8--或()2,8 D.()1,1--或()1,111.函数32()32f x x x =-+在区间[-1,1]上的极大值是 ( )A 、-2B 、0C 、2D 、4 12.命题“∀x ∈(0,1),x 2−x <0”的否定是( )A .∃x 0∉(0,1),x 02−x 0≥0B .∃x 0∈(0,1),x 02−x 0≥0C .∃x 0∉(0,1),x 02−x 0<0D .∃x 0∈(0,1),x 02−x 0<0第II 卷(非选择题)二、填空题 13”的否定是 .14.椭圆x 25+y 24=1的右焦点为F ,则以F 为焦点的抛物线的标准方程是__________.15.与抛物线x y 82=有一个公共的焦点F ,且两曲线的一个交点为P ,若5||=PF ,则双曲线方程为 .16.特称命题“有些三角形的三条中线相等”的否定为______________________________.三、解答题17.设函数f (x )=lnx +x 2+ax .(1)若x =12时,f (x )取得极值,求a 的值;(2)若f (x )在其定义域内为增函数,求a 的取值范围.○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………18.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的短轴端点与双曲线22=12y x -的焦点重合,过点(4,0)P 且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点. (Ⅰ)求椭圆C 的方程;19.(本小题12分) 一座抛物线形的拱桥的跨度为52米,拱顶离水平面5.6米,水面上有一竹排上放有宽10米、高6米的木箱,问其能否安全通过拱桥?20.已知函数f(x)=13ax 3+(a -2)x +c 的图象如图所示.(1)求函数y =f(x)的解析式;21.已知双曲线的中心在原点,焦点12,F F 在坐标轴上,离心率为2,且过点()4,10-,点()3,M m 在双曲线上.(1)求双曲线方程; (2)求证:12MF MF ⊥; (3)求△12F MF 的面积.6.552参考答案1.C 【解析】考点:双曲线渐近线的求法. 2.C 【解析】试题分析:由已知得'1,()0,()x f x f x >>∴在(1,)+∞单调递增,在(,1)-∞上单调递减,()f x 在1x =取得最小值, (0)(1),f(2)f(1)f(0)f(2)2f(1)f f >>∴+>,选C .考点:导数的性质及函数的单调性. 3.C表示椭圆的充要条件是0{210 21m m m m >->≠-,即且1m ≠,为椭圆方程的一个充分不必要条件是1m >,故选C. 4.A得13,x <<成立的充要条件是13,x <<所以不等式充分不必要条件是12x <<,故选A.【方法点睛】本题通过分式不等式的解集主要考查充分条件与必要条件,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 5.B 【解析】【分析】函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数.可得2a≤4,解得a即可判断出结论.【详解】函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数.∴2a≤4,解得a≤2.∴“a≤3”是“函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数”的必要不充分条件.故选:B.【点睛】本题考查了二次函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题. 6.D【解析】试题分析:根据抛物线的标准方程可知该抛物线是焦点在x轴上,开口向右的抛物线,所以焦点坐标是(1,0).考点:本小题主要考查抛物线的标准方程.点评:抛物线的标准方程由四种形式,要牢固掌握,灵活应用.7.A【解析】【分析】计算导函数,根据导数的正负,判定原函数单调性,即可。
高中数学选修1-1全册习题(答案详解)
目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组] 第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
高中数学选修1-1考试题及答案
1高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。
) 1.抛物线24y x =的焦点坐标是 A .(0,1) B .(1,0) C .1(0,)16 D .1(,0)162.设,a R ∈则1a <是11a>的 A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220a b +=,则,a b 都为零”的逆否命题是 A .若220a b +≠,则,a b 都不为零 B .若220a b +≠,则,a b 不都为零 C .若,a b 都不为零,则220a b +≠ D .若,a b 不都为零,则220a b +≠4.曲线32153y x x =-+在1x =处的切线的倾斜角为A .34πB .3πC .4πD .6π5.一动圆P 与圆22:(1)1A x y ++=外切,而与圆22:(1)64B x y -+=内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支 6.函数()ln f x x x =-的单调递增区间是A .(,1)-∞B .(0,1)C .(0,)+∞D .(1,)+∞7.已知1F 、2F 分别是椭圆22143x y +=的左、右焦点,点M 在椭圆上且2MF x ⊥轴,则1||MF 等于2A .12B .32C .52D .38.函数2()x f x x e -=在[1,3]上的最大值为A .1B .1e -C .24e -D .39e -9. 设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.45B 。
5 C. 25 D 。
510. 设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( )。
【名师一号】高中数学新课标人教a版选修1-1综合测试题(含答案解析)(含答案)
综合测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( )A .“p 或q ”是真命题B .“p 且q ”是真命题C .“綈p ”为真命题D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12x B .y =±2x C .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0,且sin θ≠1时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图象关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件 D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +ax ,∴由题可知,f ′ (1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13 C.12D.33解析设|PF2|=m,则|PF1|=2m,|F1F2|=3m.故离心率e=ca=2c2a=3mm+2m=33.答案 D9.给出下列三个命题:①若a≥b>-1,则a1+a ≥b1+b;②若正整数m和n满足m≤n,则m(n-m)≤n2;③设P(x1,y1)为圆O1:x2+y2=9上任一点,圆O2以Q(a,b)为圆心且半径为1.当(a-x1)2+(b-y1)2=2时,圆O1与圆O2相切.其中假命题的个数为()A.0个B.1个C.2个D.3个解析考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y=f(x)的导数图象,则正确的判断是()①f(x)在(-3,1)上是增函数;②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图象可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f(x)在(-∞,+∞)内单调递增,则f ′(x)≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23),∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图象一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________________. 解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图象不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1 296a ,令S ′=2a -1 296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.已知f (x )=(2x -x 2)e x ,给出以下几个结论:①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )没有最小值,也没有最大值;④f (x )有最大值,没有最小值.其中判断正确的是________.解析 f (x )>0,又e x >0,∴2x -x 2>0.∴0<x <2,故①正确.由f (x )=(2x -x 2)e x ,得f ′(x )=(2-x 2)e x ,令f ′(x )=0,得x 1=-2,x 2= 2.∵当x <-2或x >2时,f ′(x )<0,f (x )单调递减; 当-2<x <2时,f ′(x )>0,f (x )单调递增. ∴f (-2)是极小值,f (2)为极大值,故②正确. 由②知,f (2)为最大值,没有最小值,故③错,④正确. 答案 ①②④三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)若p (x ):sin x +cos x >m ,q (x ):x 2+mx +1>0.若∀x ∈R ,p (x )为假命题,且q (x )为真命题,求实数m 的取值范围.解 ∵sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4∈,又∀x ∈R ,p (x )为假命题,∴m ≥ 2.∀x ∈R ,q (x )为真命题,即对任意实数x ,不等式x 2+mx +1>0恒成立,∴Δ=m 2-4<0,∴-2<m <2.故∀x ∈R ,p (x )为假命题,q (x )为真命题,实数m 的取值范围是2≤m <2.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0),∵a >0,由F ′(x )>0,得x ∈(a ,+∞), ∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离,且F 不在l 1上∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为(-2k ,-1). ∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1) =(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4=-4(1+k 2)+4k (2k +2k )+4k 2+4=4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号, ∴RP →·RQ→≥4×2+8=16, 即RP →·RQ→的最小值为16. 21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是(3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图象在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得 5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA ,MB 与x 轴能围成等腰三角形.。
高中数学选修1-1全册章节测试题集含答案
人教A版高中数学选修1-1全册章节测试题目录1.1命题及其关系(同步练习)1.2 充分条件与必要条件同步测试.1.3_1.4试题(新人教选修1-1).1.3简单的逻辑联结词(同步练习)1.4全称量词与存在量词同步测试(新人教选修1-1).2.1《椭圆的几何性质》测试题2.1椭圆同步测试2.2双曲线几何性质测试2.2双曲线及其标准方程练习2.3抛物线及其标准方程习题精选2.3抛物线及其标准方程同步试题3.1变化率与导数(同步练习)3.2.1导数习题3.2.2 导数的运算法则习题3.3.3 函数的最大值与最小值练习题3.3《导数在研究函数中的应用》习题3.4生活中的优化问题举例(同步练习)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。
新课标人教版高二数学选修1-1综合测试卷(word文档有答案)
新课标人教版高二数学选修1-1综合测试卷(word文档有答案)新课标人教版高二数学选修1-1综合测试卷一、选择题(本大题共12小题,每小题3分,共36分)1.“sinA=1/2”是“A=30°”的()。
A。
充分而不必要条件B。
必要而不充分条件C。
充分必要条件D。
既不充分也不必要条件2.“mn<0”是“方程mx^2+ny^2=1表示焦点在y轴上的双曲线”的()。
A。
充分而不必要条件B。
必要而不充分条件C。
充分必要条件D。
既不充分也不必要条件3.命题“对任意的x∈R,x-x+1≤32”的否定是()。
A。
不存在x∈R,x-x+1≤32B。
存在x∈R,x-x+1≤32C。
存在x∈R,x-x+1>32D。
对任意的x∈R,x-x+1>324.双曲线x^2/102-y^2/22=1的焦距为()。
A。
2√22B。
4√22C。
2√10D。
4√105.设f(x)=xlnx,若f'(x)=2,则x=()。
A。
eB。
e^2C。
ln2D。
26.若抛物线y=2px的焦点与椭圆x^2/36+y^2/4=1的右焦点重合,则p的值为()。
A。
-2B。
2C。
-4D。
47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()。
A。
√3/2B。
2/3C。
1/2D。
1/38.已知两点F1(-1,0)、F2(1,0),且F1F2是PF1与PF2的等差中项,则动点P的轨迹方程是()。
A。
x^2/9+y^2=1B。
x^2/4+y^2=1C。
x^2+y^2/9=1D。
x^2+y^2/4=19.设曲线y=ax^2在点(1,a)处的切线与直线2x-y-6=0平行,则a=()。
A。
1B。
1/2C。
-1/2D。
-110.抛物线y=-x^2的准线方程是()。
A。
x=11/8B。
y=2C。
y=-2D。
y=-11/811.双曲线x^2/49-y^2/39=1的渐近线方程是()。
A。
y=±x/7B。
y=±3x/7C。
最新人教版高中数学选修1-1各章末测试题(全册 共3章 附解析)
最新人教版高中数学选修1-1各章末测试题(全册共3章附解析)第一章末评估验收(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若a>0,则a2>0”的逆命题是()A.若a>0,则a2≤0B.若a2>0,则a>0C.若a≤0,则a2>0 D.若a≤0,则a2≤0解析:交换原命题的条件和结论即可得其逆命题.答案:B2.在△ABC中,“A=π4”是“cos A=22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在△ABC中,0<A<π.所以A=π4⇔cos A=22,故选C.答案:C3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:当φ=π时,y =sin(2x +π)=-sin 2x ,此时曲线过坐标原点,但曲线y =sin(2x +φ)过坐标原点时,φ=k π(k ∈Z),所以 “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.答案:A4.若“x 2<1,则-1<x <1”的逆否命题是( )A .若x 2≥1,则x ≥1或x ≤-1B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥1解析:-1<x <1的否定是x ≥1或x ≤-1;x 2<1的否定是x 2≥1.则逆否命题为:若x ≥1或x ≤-1则x 2≥1.答案:D5.下列命题中,是真命题的是( )A .若向量a ,b 满足a·b =0,则a =0或b =0B .若0<a <b ,则1a <1bC .对任意x ∈R ,x 是无理数D .∃x ∈R ,使得sin x +cos x =43成立 解析:对于选项A 中,当a ⊥b 时,a·b =0也成立,此时不一定有a =0或b =0;选项B 显然是假命题;选项C 是假命题,例如4是有理数;对于选项D ,因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2,2 ],所以该命题正确.答案:D6.命题“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”及其逆命题、否命题、逆否命题中真命题共有( )A .0个B .1个C .2个D .3个解析:原命题为真,则逆否命题也为真;逆命题“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”是假命题,故否命题也为假命题,因此真命题有2个.答案:C7.命题p :∀x ∈R ,x 2+1>0,命题q :∃θ∈R ,sin 2θ+cos 2θ=1.5,则下列命题中真命题是( )A .p ∧qB .(綈p )∧qC .(綈p )∨qD .p ∨(綈q )解析:易知p 为真,q 为假,綈p 为假,綈q 为真.由真值表可知p ∧q 假,(綈p )∧q 假,(綈p )∨q 为假,(綈p )∨q 假,p ∨(綈q )真.答案:D8.下列说法错误的是( )A .“sin θ=12”是“θ=30°”的充分不必要条件 B .命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”C .△ABC 中,“sin A >sin B ”是“A >B ”的充要条件D .如果命题“綈p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题解析:因为sin θ=12⇒θ=k ·360°+30°或θ=k ·360°+150°(k ∈Z),反之当θ=30°时,sin θ=12,所以 “sin θ=12”是“θ=30°”的必要不充分条件.答案:A9.设f (x )=x 2-4x (x ∈R),则f (x )>0的一个必要不充分条件是。
人教版高中数学选修1-1第一章单元测试(一)-含答案
2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ,0y ,则0xy",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A .1B .2C .3D .42.命题“若A B ,则AB ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ,则b B ,那么命题p 是()A .若a A ,则b B B .若a A ,则b B C .若bB ,则aAD .若bB ,则aA5.命题“p且q ”与命题“p 或q ”都是假命题,则下列判断正确的是()A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②22a b ;③2aa b ,其中可以作为a b 的必要非充分条件的命题是()A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ”是“B ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若向量,3x xR a,则“4x”是“5a”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是()A .,x y 锐角,sin sin s )n (i x y x y B .,x y 锐角,sin cos c )s (o x y x y C .,x y 锐角,cos sin c )s (o x y x y D .,x y锐角,cos cos s )n (i xy xy10.以下判断正确的是()A .命题“负数的平方是正数”不是全称命题B .命题“x Z ,32xx ”的否定是“x Z ,32xx ”C .“=2”是“函数()sin y x为偶函数”的充要条件D .“0b”是“关于x 的二次函数2f xaxbx c 是偶函数”的充要条件此卷只装订不密封班级姓名准考证号考场号座位号11.已知命题p :函数log 05()3f x x .的定义域为(-∞,3);命题q :若k<0,则函数()k h x x 在(0,)上是减函数,对以上两个命题,下列结论中正确的是()A .命题“p 且q ”为真B .命题“p 或q ”为假C .命题“p 或q ”为假D .命题“p ”且“q ”为假12.已知向量),(x y a ,co ()s ,sin b,其中x y R ,,,若4ab ,则2a b成立的一个必要不充分条件是()A .λ>3或λ<-3B .λ>1或λ<-1C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令221:0p x ax x ,如果对xR ,p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21aa 的必要不充分条件________.16.给定下列结论:①已知命题p :?x ∈R ,tanx =1;命题q :?x ∈R ,210x x .则命题“p q ”是假命题;②已知直线1l :ax +3y -1=0,2l :x +by +1=0,则12l l 的充要条件是3a b;③若1sin 2,1sin3,则tan α=5tan β;④圆224210xyx y与直线12yx ,所得弦长为2.其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :?非零向量a 、b 、c ,若0a b c,则bc .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210axax 恒成立;Q :关于x的方程20xx a有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a的取值范围.19.(12分)求证:一元二次方程22100ax x a有一个正根和一个负根的充分不必要条件是a<-1.20.(12分)已知p:2290x x a,q:22430680x xx x,且p是q的充分条件,求实数a的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cosx+1,2cos2x +2)和Q(cosx,-1),?x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b.2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【解析】由题得原命题“若0x,0y,则0xy ”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy,则0x,0y ”,是假命题,所以否命题也是假命题,所以四个命题中,真命题的个数为2.故答案为B .2.【答案】B 【解析】可设1,2A,1,2,3B,满足AB ,但A B ,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真.3.【答案】C【解析】直线l 与平面α内两相交直线垂直?直线l 与平面α垂直,故选C .4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ”.故选A .5.【答案】D【解析】p 且q 是假命题?p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题?p 和q 都是假命题,则非p 和非q 都是真命题.故选D .6.【答案】D【解析】由向量的运算即可判断.7.【答案】B【解析】由于“A?B ,A /B ”等价于“A B ,A /B ”,故“A ”是“B ”的必要不充分条件.故选B .8.【答案】A【解析】由“4x ”,得)3(4,a ,故5a;反之,由5a ,得4x .所以“4x ”是“5a”的充分而不必要条件.故选A .9.【答案】D 【解析】由于cos cos c (os sin sin )x y x y x y ,而当,x y锐角时,0cos 1y ,sin 1x,所以cos cos cos sin sin cos s (in )xy x y x yxy ,故选项D 正确.10.【答案】D【解析】A 为全称命题;B 中否定应为x Z ,320xx ;C 中应为充分不必要条件.D 选项正确.11.【答案】 D【解析】由题意知p 真,q 假.再进行判断.12.【答案】 B 【解析】由已知1b ,∴44a b,224xy.又∵22cos sinsin4sin 4x y xy a b ,由于2a b成立,则24,解得λ>2或λ<-2,这是2a b 成立的充要条件,因此2a b成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”.14.【答案】1a【解析】由已知xR ,2210axx 恒成立.显然0a不合题意,所以0440aa?1a .15.【答案】1a (不惟一)【解析】2()(0)21a a 的解集记为B ={1|a a且a ≠2},所找的记为集合1Aa a ,则BA ,B /A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q 假,①正确;对于②1l 与2l 垂直的充要条件应为a +3b =0;对于③利用两角和与差的正弦公式展开整理即得;对于④可求得弦长为455,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p :?非零向量a 、b 、c ,若0abc,使bc .p 为真命题.否命题:?非零向量a 、b 、c ,若0a b c,则b c .否命题为真命题.18.【答案】1,0,44.【解析】命题P :对任意实数x 都有210axax恒成立,则“a =0”,或“a>0且240aa ”.解得0≤a<4.命题Q :关于x 的方程20xx a 有实数根,则140a,得14a.因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题,故PQ 为真命题,或P Q 为真命题,则0414aa a或或0414a a,解得a<0或144a.所以实数a 的取值范围是1,0,44.19.【答案】见解析.【解析】一元二次方程22100axx a有一个正根和一个负根的充要条件是:4401a a ,并且10a,从而a<0.有一个正根和一个负根的充分不必要条件应该是{a|a<0}的真子集,a<-1符合题意.所以结论得证.20.【答案】a ≤9.【解析】由2243068x x xx,得1324x x,即2<x<3.∴q :2<x<3.设290|2Ax xx a ,B ={x|2<x<3},∵p q ,∴q?p .∴B?A .∴2<x<3包含于集合A ,即2<x<3满足不等式2290xxa.∴2<x<3满足不等式292ax x .∵当2<x<3时,222981819818192229,21616488xx xx x,即2819928x x,∴a ≤9.21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直,得cosx(2cosx +1)-(2cos2x +2)≠0,变形得:22cos cos 0xx ,所以cosx ≠0或1cos 2x.而当0,x时,cos 2,1cos32,故存在2x或3x,使向量OP OQ 成立,因而p 是假命题.22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴32332232111a bab a b a a a a aa323222133120aaaaaaa aa.充分性:∵33220abab ab,即22220a b a ab baab b,∴2210aab ba b ,又ab≠0,即a≠0且b≠0,∴22223024b ba ab b a,只有1a b.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b.。
高中数学选修1-1综合测试(含详细答案)
选修1—1综合测试时间:90分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.命题“对任意的x∈R,x3-x2+1≤0”的否定是()A.不存在x∈R,x3-x2+1≤0B.存在x∈R,x3-x2+1≤0C.对任意的x∈R,x3-x2+1>0D.存在x∈R,x3-x2+1>0解析:含有量词的命题的否定,一是要改变相应的量词,二是要否定结论.答案:D2.命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题有()A.0个B.2个C.3个D.4个解析:逆命题与否命题正确,原命题与其逆否命题错误.答案:B3.设椭圆的标准方程为x2k-3+y25-k=1,其焦点在x轴上,则k的取值范围是()A.4<k<5 B.3<k<5 C.k>3 D.3<k<4解析:由题意知,k -3>5-k >0,解得4<k <5. 答案:A4.已知f (x )=3x 5-5x 3,则f (x )的单调递减区间为( ) A .(-1,0) B .(0,1) C .(-1,0)∪(0,1)D .(-1,1)解析:∵f ′(x )=15x 4-15x 2,令f ′(x )=15x 4-15x 2≤0,可得-1≤x ≤1. ∴f (x )的单调递减区间为(-1,1). 答案:D5.已知条件p :|x -1|<2,条件q :x 2-5x -6<0,则p 是q 的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分又不必要条件 解析:命题p :-1<x <3,记A ={x |-1<x <3}, 命题q :-1<x <6,记B ={x |-1<x <6}, ∵A B ,∴p 是q 的充分不必要条件. 答案:B6.已知命题p :“x ∈R 时,都有x 2-x +14<0”;命题q :“存在x ∈R ,使sin x +cos x =2成立”.则下列判断正确的是( )A .p ∨q 为假命题B .p ∧q 为真命题C .綈p ∧q 为真命题D .綈p ∨綈q 是假命题解析:易知p 假,q 真,从而可判断得C 正确. 答案:C7.以双曲线x 24-y 25=1的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是( )A .y 2=12xB .y 2=-12xC .y 2=6xD .y 2=-6x解析:由x 24-y 25=1,得a 2=4,b 2=5,∴c 2=a 2+b 2=9. ∴右焦点的坐标为(3,0),故抛物线的焦点坐标为(3,0),顶点坐标为(0,0).故p2=3.∴抛物线方程为y 2=12x . 答案:A8.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值范围是( )A .k <13B .0<k ≤13 C .0≤k <13D .k ≤13解析:f ′(x )=3kx 2+6(k -1)x .由题意,知⎩⎪⎨⎪⎧ k ≥0,f ′(4)≤0或⎩⎪⎨⎪⎧k <0,f ′(0)≤0,解得k ≤13.答案:D9.设x ,y ∈R 满足x ≤2,y ≤3,且x +y =3,则z =4x 3+y 3的最大值为( )A .24B .27C .33D .45解析:由⎩⎪⎨⎪⎧x ≤2,y ≤3,y =3-x ,得0≤x ≤2.∵z =4x 3+y 3=4x 3+(3-x )3=3x 3+9x 2-27x +27,∴z ′=9x 2+18x -27.令z ′=9x 2+18x -27=0,可得x =1或x =-3. ∵z 在(0,1)上单调递减,在(1,2)上单调递增, ∴z 在x =1时取极小值,z (1)=12. ∵z (0)=27,z (2)=33, 故当x =2时,z max =33. 答案:C10.已知P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且PF 1→·PF 2→=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .8解析:由PF 1→·PF 2→=0,得PF 1→⊥PF 2→,设|PF 1→|=m ,|PF 2→|=n ,不妨设m >n ,则m 2+n 2=4c 2,m -n =2a ,12mn =9,c a =54,解得⎩⎪⎨⎪⎧a =4,c =5, 故b =3.因此a +b =7,选C. 答案:C11.落在平静水面上的石头,使水面产生同心圆形波纹,在持续一段时间内,若最外一圈波的半径r (单位:米)与时间t (单位:秒)的函数关系是r =8t ,则在2秒末扰动水面面积的变化率为( )A .512π米2/秒B .256π米2/秒C .144π米2/秒D .72π米2/秒解析:根据题意,可知最外一圈波的面积与时间的关系为S =64πt 2,故在t =2时的导数值,即S ′|t =2=128πt |t =2=256π.答案:B12.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞)解析:由题意知在双曲线上存在一点P ,使得|PF 1|=2|PF 2|,如右图所示. 又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点P 使得|PF 2|=2a ,即|AF 2|≤2a . ∴|OF 2|-|OA |=c -a ≤2a .∴c ≤3a . 又∵c >a ,∴a <c ≤3a . ∴1<ca ≤3,即1<e ≤3. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.命题p :∃m ∈R ,方程x 2+mx +1=0有实数根,则“非p ”形式的命题是________,此命题是________命题(填“真”或“假”).解析:命题p 为特称命题,所以綈p 是全称命题,∴綈p 是∀m ∈R ,方程x 2+mx +1=0没有实数根.∵m ≥2或m ≤-2时,Δ≥0,即该方程有实数根,所以p 真,綈p 假.答案:∀m ∈R ,方程x 2+mx +1=0没有实数根 假14.双曲线x 2a 2-y 2b 2=1的离心率e ∈(1,2),则其中一条渐近线的斜率取值范围是________.解析:e =a 2+b 2a ∈(1,2),解得0<ba <3,又双曲线的渐近线方程为y =±ba x ,故其中一条渐近线的斜率取值范围是(0,3)或(-3,0)). 答案:(0,3)或(-3,0)15.若f (x )=ax 3-x 2-x +1在(1,2)上是减函数,则实数a 的取值范围是________.解析:∵f (x )在(1,2)上是减函数, ∴f ′(x )=3ax 2-2x -1≤0,x ∈(1,2), ∴a ≤2x +13x 2在x ∈(1,2)时恒成立, 令u =2x +13x 2=23x +13x 2 =13[(1x +1)2-1],1x ∈(12,1). ∴512<u <1.∴a ≤512,即所求a 的取值范围是(-∞,512]. 答案:(-∞,512]16.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两点,若线段AB 的中点的横坐标是2,则|AB |=________.解析:⎩⎪⎨⎪⎧y 2=8x ,y =kx -2,k 2x 2-(4k +8)x +4=0,x 1+x 2=4k +8k 2=4,得k =-1或2,当k =-1时,x 2-4x +4=0有两个相等的实数根,不合题意. 当k =2时,|AB |=1+k 2|x 1-x 2|=5(x 1+x 2)2-4x 1x 2=516-4=215. 答案:215三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知p :方程x 23-t +y 2t +1=1所表示的曲线为焦点在x轴上的椭圆;q :实数t 满足不等式t 2-(a -1)t -a <0.(1)若p 为真,求实数t 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围. 解:(1)∵方程x 23-t +y 2t +1=1所表示的曲线为焦点在x 轴上的椭圆,∴3-t >t +1>0.解得-1<t <1.(2)∵p 是q 的充分不必要条件,∴{t |-1<t <1}是不等式t 2-(a -1)t -a <0解集的真子集.解方程t 2-(a -1)t -a =0得t =-1或t =a .①当a >-1时,不等式的解集为{t |-1<t <a },此时,a >1.②当a =-1时,不等式的解集为∅,不满足题意.③当a <-1时,不等式的解集为{t |a <t <-1},不满足题意.综上,a >1.18.(12分)如图,三棱柱ABC —A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.解:(1)取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA→的方向为x 轴的正方向,|OA →|为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0),A 1C →=(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎨⎧n ·BC →=0n ·BB 1→=0,即⎩⎪⎨⎪⎧x +3z =0-x +3y =0,可取n =(3,1,-1).故cos n ,A 1C → =n ·A 1C →|n ||A 1C →|=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.19.(12分)某单位用2 160万元购买了一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解:设楼房每平方米的平均综合费用为f (x )元, 则f (x )=(560+48x )+2 160×10 0002 000x =560+48x +10 800x(x ≥10,x ∈N *). ∴f ′(x )=48-10 800x 2. 令f ′(x )=0,得x =15.当x >15时,f ′(x )>0;当10<x <15时,f ′(x )<0. ∴当x =15时,f (x )取最小值,f (15)=2 000.答:为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.20.(12分)设F 1,F 2分别是椭圆:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1倾斜角为45°的直线l 与该椭圆相交于P ,Q 两点,且|PQ |=43a .(1)求该椭圆的离心率.(2)设点M (0,-1)满足|MP |=|MQ |,求该椭圆的方程. 解:(1)直线PQ 斜率为1, 设直线l 的方程为y =x +c , 其中c =a 2-b 2.设P (x 1,y 1),Q (x 2,y 2),则P ,Q 两点坐标满足方程组⎩⎨⎧y =x +c ,x 2a 2+y 2b 2=1,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.所以|PQ |=2|x 2-x 1| =2[(x 1+x 2)2-4x 1x 2]=43a . 得43a =4ab 2a 2+b2,故a 2=2b 2,所以椭圆的离心率e =c a =a 2-b 2a =22. (2)设PQ 的中点为N (x 0,y 0), 由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c 3.由|MP |=|MQ |得k MN =-1.即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆的方程为x 218+y 29=1.21.(12分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.解:(1)f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对x ∈R ,有f ′(x )>0,故当a <0时,f (x )的单调递增区间为(-∞,+∞).当a >0时,由f ′(x )>0,解得x <-a 或x >a ;由f ′(x )<0,解得-a <x <a .故当a >0时,f (x )的单调递增区间为(-∞,-a ),(a ,+∞);f (x )的单调递减区间为(-a ,a ).(2)因为f (x )在x =-1处取得极大值,所以f ′(-1)=3×(-1)2-3a =0.所以a =1.所以f (x )=x 3-3x -1,f ′(x )=3x 2-3.由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,又f (-3)=-19<-3,f (3)=17>1,结合f (x )的单调性可知,m 的取值范围是(-3,1).22.(12分)(2014·大纲全国卷)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p . 所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p .由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),|AB |=m 2+1|y 1-y 2|=4(m 2+1).又l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故MN 的中点为E ⎝ ⎛⎭⎪⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22 =4(m 2+1)2(2m 2+1)m 4, 化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.。
人教版新课标高中数学选修1—1测试题(含答案)汇编
数学选修1—1练习一、选择题:1.已知P :2+2=5,Q:3>2,则下列判断错误的是( ) A.“P 或Q ”为真,“非Q ”为假; B.“P 且Q ”为假,“非P ”为真 ; C.“P 且Q ”为假,“非P ”为假 ; D.“P 且Q ”为假,“P 或Q ”为真2.在下列命题中,真命题是( )A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题 3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件4.平面内有一长度为2的线段AB 和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是( )A.[1,4];B.[2,6];C.[3,5 ];D. [3,6].5. 函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为( )A.a=3,b=-3或a=―4,b=11 ;B.a=-4,b=1或a=-4,b=11 ;C.a=-1,b=5 ;D.以上都不对6.曲线f(x)=x 3+x -2在P 0点处的切线平行于直线y=4x -1,则P 0点坐标为( ) A.(1,0); B.(2,8); C.(1,0)和(-1,-4); D.(2,8)和(-1,-4)7.函数f(x)=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A.a<3 ; B.a>3 ; C.a ≤3; D.a ≥38.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A.2<k<5 ; B.k>5 ; C.k<2或k>5; D.以上答案均不对 9.函数y=xcosx -sinx 在下面哪个区间内是增函数( ) A.()23,2ππ; B.)2,(ππ; C.)25,23(ππ; D.)3,2(ππ 10.已知双曲线13622=-y x 的焦点为F 1、F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( ) A.563; B.665 ; C.56 ; D.65 11.已知两圆C 1:(x+4)2+y 2=2, C 2:(x -4)2+y 2=2,动圆M 与两圆C 1、C 2都相切,则动圆圆心M 的轨迹方程是( )A.x=0;B.114222=-y x (x ≥2); C.114222=-y x ; D.114222=-y x 或x=0 二、填空题:12.双曲线的渐近线方程为y=x 43±,则双曲线的离心率为________ 13.函数f(x)=(ln2)log 2x -5x log 5e(其中e 为自然对数的底数)的导函数为_______14.与双曲线14522-=-y x 有相同焦点,且离心率为0.6的椭圆方程为________ 15.正弦函数y=sinx 在x=6π处的切线方程为____________ 16.过抛物线y 2=4x 的焦点,作倾斜角为4π的直线交抛物线于P 、Q 两点,O 为坐标原点,则∆POQ 的面积为_________ 三、解答题:17.命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围.18.求过定点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修1—1练习一、选择题:1.已知P :2+2=5,Q:3>2,则下列判断错误的是( ) A.“P 或Q ”为真,“非Q ”为假; B.“P 且Q ”为假,“非P ”为真 ; C.“P 且Q ”为假,“非P ”为假 ; D.“P 且Q ”为假,“P 或Q ”为真2.在下列命题中,真命题是( )A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题 3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件4.平面内有一长度为2的线段AB 和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是( )A.[1,4];B.[2,6];C.[3,5 ];D. [3,6].5. 函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为( )A.a=3,b=-3或a=―4,b=11 ;B.a=-4,b=1或a=-4,b=11 ;C.a=-1,b=5 ;D.以上都不对6.曲线f(x)=x 3+x -2在P 0点处的切线平行于直线y=4x -1,则P 0点坐标为( ) A.(1,0); B.(2,8); C.(1,0)和(-1,-4); D.(2,8)和(-1,-4)7.函数f(x)=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A.a<3 ; B.a>3 ; C.a ≤3; D.a ≥38.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A.2<k<5 ; B.k>5 ; C.k<2或k>5; D.以上答案均不对 9.函数y=xcosx -sinx 在下面哪个区间内是增函数( ) A.()23,2ππ; B.)2,(ππ; C.)25,23(ππ; D.)3,2(ππ 10.已知双曲线13622=-y x 的焦点为F 1、F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( ) A.563; B.665 ; C.56 ; D.65 11.已知两圆C 1:(x+4)2+y 2=2, C 2:(x -4)2+y 2=2,动圆M 与两圆C 1、C 2都相切,则动圆圆心M 的轨迹方程是( )A.x=0;B.114222=-y x (x ≥2); C.114222=-y x ; D.114222=-y x 或x=0 二、填空题:12.双曲线的渐近线方程为y=x 43±,则双曲线的离心率为________ 13.函数f(x)=(ln2)log 2x -5x log 5e(其中e 为自然对数的底数)的导函数为_______14.与双曲线14522-=-y x 有相同焦点,且离心率为0.6的椭圆方程为________ 15.正弦函数y=sinx 在x=6π处的切线方程为____________ 16.过抛物线y 2=4x 的焦点,作倾斜角为4π的直线交抛物线于P 、Q 两点,O 为坐标原点,则∆POQ 的面积为_________ 三、解答题:17.命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围.18.求过定点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程。
19. 已知函数f(x)=2ax 3+bx 2-6x 在x=±1处取得极值(1) 讨论f(1)和f(-1)是函数f(x)的极大值还是极小值; (2) 试求函数f(x)在x=-2处的切线方程; (3) 试求函数f(x)在区间[-3,2] 上的最值。
20.已知定点A (1,0),定直线l :x=5,动点M (x,y ) (1)若M 到点A 的距离与M 到直线l 的距离之比为55,试求M 的轨迹曲线C 1的方程;(2)若曲线C 2是以C 1的焦点为顶点,且以C 1的顶点为焦点,试求曲线C 2的方程;(3)是否存在过点F(5,0)的直线m ,使其与曲线C 2交得弦|PQ|长度为8呢?若存在,则求出直线m 的方程;若不存在,试说明理由。
21. 在平面直角坐标系xOy 中,抛物线y=x2上异于坐标原 点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示). (Ⅰ)求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.22.一条斜率为1的直线l 22221(0,0)x y a b a b-=>>交于,P Q 两点,直线l 与y 轴交于R 点,且3,4,OP OQ PQ RQ •=-=uuu r uuu r uuu r uuu r求直线与双曲线的方程23.已知f (x )=2ax -x b +ln x 在x =-1,x =21处取得极值.(1)求a 、b 的值; (2)若对x ∈[41,4]时,f (x )>c 恒成立,求c 的取值范围.一、CDACD CCCBC D二、12.35,45 ; 13.x1-5x; 14.1251622=+y x ; 15.0361236=-+-πy x ; 16. 22.三、 17.命题甲:m>2,命题乙:1<m<3. 故 1<m ≤2,或m ≥3 18.x=0,y=1,y=21x+1 19.(1).f(x)=2x 3-6x; 故f(1)=-4是极小值,f(-1)=4是极大值 (2).切线方程是18x -y+32=0(3) .最大值为f(-1)=f(2)=4, 最小值为f(-3)=-3620.提示:C 1方程为14522=+y x ;C 2方程为1422=-y x 或x+m 的方程为x=5或y=26±(x -5)21.解:(I )设△AOB 的重心为G(x,y),A(x1,y1),B(x2,y2),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x (1)∵OA ⊥OB ∴1-=⋅OB OAk k , 即12121-=+y y x x , (2)又点A ,B 在抛物线上,有222211,x y x y ==,代入(2)化简得121-=x x∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y 所以重心为G 的轨迹方程为3232+=x y (II)22212122222122212222212121))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==∆由(I )得12212)1(2212221221662616261=⨯=+-=+⋅≥++=∆x x x x S AOB当且仅当6261x x =即121-=-=x x 时,等号成立。
所以△AOB 的面积存在最小值,存在时求最小值1;22.解:由222232e c a b a ==∴=∴双曲线方程为22222x y a -=设直线1122:,(0,),(,),(,)l y x m R m P x y Q x y =+则1222222222122220........(1)222x x m y x m x mx m a x y a x x m a +==+⎧⎧⇒---=∴⎨⎨-==--⎩⎩又因为3,4,OQ PQ RQ •=-=uu r uuu r uuu r uuu r OP则有:21212121232()30.........(3)x x y y x x m x x m +=-∴++++=212122122143.......(2)4()34x x x x x y y y m y y m-==-⎧⎧⇒⎨⎨-=-+=⎩⎩ 由(1),(2)得2221,3,xm x m m a =-==代入(3)得221,1m a ==221,1,2m a b ∴=±==所以,所求的直线与双曲线方程分别是221,12y y x x =±-= 23. 解:(1)∵f (x )=2ax -x b+ln x , ∴f ′(x )=2a +2x b +x1. ∵f (x )在x =-1与x =21处取得极值,∴f ′(-1)=0,f ′(21)=0, 即⎩⎨⎧=++=-+.0242,012b a b a 解得⎩⎨⎧-==.1,1b a ∴所求a 、b 的值分别为1、-1.(2)由(1)得f ′(x )=2-21x +x 1=21x (2x 2+x -1)=21x (2x -1)(x +1). ∴当x ∈[41,21]时,f ′(x )<0;当x ∈[21,4]时,f ′(x )>0.∴f (21)是f (x )在[41,4]上的极小值.又∵只有一个极小值,∴f (x )min =f (21)=3-ln2. ∵f (x )>c 恒成立,∴c <f (x )min =3-ln2. ∴c 的取值范围为c <3-ln2.。