11.2.1与三角形有关的角教案
11.2.1三角形的内角(第二课时)说课稿 2022—2023学年人教版数学八年级上册
11.2.1 三角形的内角(第二课时)说课稿一、课程背景《数学》是中学阶段的一门重要学科,对学生的思维能力、逻辑思维能力以及解决问题的能力有着重要的培养作用。
而在《数学》的课程中,三角形是一个非常重要的几何图形,对于学生来说,掌握三角形的性质和应用是十分关键的。
本节课的内容是三角形的内角,是数学八年级上册的重点和难点之一。
二、教学目标1.理解三角形内角的概念和性质;2.掌握如何计算三角形内角的方法;3.能够运用所学知识解决与三角形内角相关的问题。
三、教学重点1.三角形内角的概念和性质;2.计算三角形内角的方法。
四、教学难点1.掌握三角形内角的计算方法;2.运用所学知识解决问题。
五、教学过程1. 导入新知•引入三角形的概念和性质,回顾上节课所学内容,帮助学生复习巩固知识。
2. 学习新知•向学生介绍三角形的内角的概念,与学生共同探讨三角形内角的性质并进行总结。
三角形的内角性质: - 三角形的三个内角之和等于180度。
- 任意一个内角都小于180度。
•老师给出示例三角形,让学生通过测量证明三角形的三个内角之和为180度。
3. 计算三角形的内角•老师向学生讲解如何计算三角形中的内角大小,并通过示例进行解释和演示。
如何计算三角形的内角: - 如果已知三角形的两个内角的大小,则可以通过内角和为180度的性质计算出第三个内角的大小。
- 如果已知三角形的一个内角和两个边的长度,则可以利用三角形的角平分线性质计算出其他内角的大小。
•老师通过几个典型的计算例子,引导学生掌握计算三角形内角的方法。
4. 解决问题应用•老师给出一些与三角形内角相关的问题,让学生灵活运用所学知识解决问题。
问题示例: 1. 已知一个三角形的两个内角分别为50度和70度,求第三个内角的大小; 2. 一个三角形的一个内角为60度,如果另外两边的长度分别为5cm和8cm,求另外两个内角的大小。
5. 归纳总结•老师和学生一起对所学内容进行总结归纳,提醒学生掌握三角形内角的性质和计算方法。
(名师整理)数学八年级上册第11章《11.2.与三角形有关的角》优秀教案
与三角形有关的内角一、教材分析本节选自人教版课程标准实验教科书数学八年级上册第十一章第二节第一课时。
在学生已感性认识三角形内角和等于180°的基础上,由实验几何过渡到论证几何,探索证明三角形内角和定理;而该定理是后续研究多边形内角、直角三角形等的基础,因此它在整个三角形知识体系中起着承上启下的作用。
二、学情分析【知识上】已感性认识了三角形内角和等于180°;【方法上】初步学习了简单推理证明;【思维上】形象思维逐步过渡到抽象思维;【能力上】还不具备独立系统推理证明能力;【情感上】好奇心强,乐于探究;三、重难点分析▲重点:探索证明三角形内角和定理;▲难点:如何启发学生发现和理解通过添加辅助线证明定理;▲突破难点的关键点:引导学生从直观动作形象思维向表象思维过11 / 10渡,采用“实物拼图—留下痕迹—抽象图形”,引导分析图形变化的内在联系,发现所添加的辅助线,化解证明难点,使证明思路直观化。
四、教学目标1、知识与技能:构建探索三角形内角和定理的证明思路并对定理进行运用;2、过程与方法:通过引导学生参与拼图探索、抽象图形,培养学生直观感知能力;经历探究证明过程,渗透图形变化,提高学生演绎推理和逻辑思维能力。
3、情感态度与价值观:让学生在推理过程中感受数学的严谨性,形成“言必有据”的科学态度和良好的数学思维品质。
五,教具:多媒体,直尺六、教法与学法✧教法:引导发现式教学法、启发式教学法;✧学法:动手实验、推理论证、反思总结等学法。
22 / 1033 / 10七、教学过程设计环节一:回顾探索【新课引入】师:前面我们已经初步学习了简单的推理证明,知道了依据什么2 何分析并找到证明一个问题的思路”。
【回顾旧知】师:小学时,我们探索发现三角形的内角和为180°,是怎样发现的?预设:学生可能回答:①用量角器量出三个角再相加;②撕下三个角拼一拼。
问:这些方法是不是数学证明?能否完全让人信服?建 构 思 路 回 顾 探 索 意 犹 未 尽 学 以 致 用 课 堂 回 眸44 / 10预设:学生可能回答:测量存在误差;三角形有无数多个无法一一验证。
《11-2与三角形有关的角——三角形的内角和》教学设计
《11.2与三角形有关的角——三角形的内角和(1)》教学设计一、内容与内容解析1.内容三角形内角和.2.内容解析与边一样,角(包括内角和外角)是三角形的主要元素,在研究了边的性质后,自然要研究角(内角和外角)的性质,其中内角和是基础.三角形的角的性质是今后研究几何图形的基础.初中研究三角形内角和与小学不同之处是需要用推理的方法证明.因此本节课的重点是三角形内角和定理的证明.二、目标与目标解析1.目标(1)掌握三角形内角和定理.(2)探索发现三角形内角和定理的结论,体会证明的必要性.(3)理解三角形内角和定理的证明过程.2.目标解析达成目标(1)的标志是:能熟练应用三角形内角和定理进行推理和计算.达成目标(2)的标志是:能从结论的一般性与确定性角度体会证明的必要性.达成目标(3)的标志是:能理解三角形内角和定理证明过程的合理性,指导证明过程“步步有据”的要求.三、教学问题诊断分析学生已经知道了三角形内角和定理的内容,但难以体会到证明的必要性;同时,证明三角形内角和定理需要添加辅助线,通过把三角形内角关系转化为平行线的角的性质,是第一次接触,难以理解.通过基于一般三角形下结论是否成立的提问让学生体会证明的必要性,通过分析拼角实验过程发现证明思路,体会怎样作辅助线,帮助学生突破难点.难点:三角形内角定理证明必要性的体会,理解定理的证明过程.四、教学过程设计(一)体会证明的必要性前面,我们研究了三角形的边的性质,接下来我们研究三角形角的性质.问题1 在小学,我们研究过三角形的角,三角形的三个内角有什么关系?师生活动:教师引导学生画出三角形(如图1),回顾三角形内角之间的关系.追问:在小学中,我们是怎样发现这一性质的?师生活动:教师引导学生回顾测量法和拼角实验法.展示学生的拼角方案(如下图).设计意图:引导学生回顾“三角形内角和等于180º”的结论及研究经验. 追问1:大家测量和实验时研究了多少个三角形?追问2:三角形有多少个?用测量和实验的方法能研究完所有三角形吗?追问3:对若干个具体的三角形进行测量和研究得到的结论,能保证对所有的三角形都成立吗?怎样才能说明结论对所有的三角形都成立?师生活动:教师引导学生考察结论的一般性,从而体会证明的必要性. 设计意图:体会证明的必要性. (二)三角形内角和定理的证明 问题2 怎样证明呢? 追问1:先说说证明的步骤.师生活动:教师引导学生回顾证明的步骤:先画出图形,写出已知、求证,再写出证明过程.已知:如图5,∠A ,∠B ,∠C 是△ABC 的内角.求证:∠A +∠B +∠C =180º.并指出,要证明这一结论,需要以已经确认是正确的事实、定理为依据,一步一步有依ABC图1ABC图2A BC图3ABC图4ABC图5据地进行推导,最后推导出最终的结论.追问2:让我们分析一下拼角的操作过程,看看有什么启发.如图5我们把∠B ,∠C 撕下后拼到∠A 上得到一个平角,移动后它们的边AE ,AF 有什么特征?师生活动:教师引导学生发现它们在同一直线EF 上. 追问3:直线EF 与直线BC 有什么关系?由此有什么启发?师生活动:教师引导学生得出EF ∥BC ,这就启发我们通过过顶点A 作BC 的平行线来进行证明(如图6).图6追问4:怎样书写证明过程?师生活动:教师与学生一起书写证明过程如下: 证明:过点A 作EF ∥BC . ∵EF ∥BC ,∴∠1=∠B ,∠2=∠C ;(两直线平行,内错角相等) 又∵∠1+∠2+∠BAC =180º,(平角的定义) ∴∠BAC +∠B+∠C =180º.(等量代换)在此基础上,确认三角形内角和定理:三角形三个内角的和等于180º. 设计意图:分析证明思路,书写证明过程,明确定理结论. 追问5:如果按照图3,图4的拼角方案,怎样书写证明过程? 师生活动:教师引导学生书写相应的证明过程.设计意图:通过一题多解感悟证明过程,培养思维灵活性. 追问6:上述证明过程是怎样想的?师生活动:教师引导学生总结:用平行线性质移动角的位置,使它们拼成一个平角. 设计意图:引导学生感悟数学转化的思想. 师生活动:教师引导学生分析解题思路,学生独立书写解题过程,教师引导学生相互质疑,保证推理的严谨性.设计意图:应用三角形内角和定理进行角度计算,巩固定理.例2 如图8是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东50º的方向,B 岛在A 岛图7A B CE F的北偏东80º方向,C 岛在B 岛的北偏西40º方向.从B 岛看A ,C 两岛的视角∠ABC 是多少度?从C 岛看A ,B 两岛的视角∠ACB 是多少度?师生活动:教师引导学生分析解题思路,引导学生书写解题过程.设计意图:应用定理解决实际问题,巩固定理. 练习:1.写出下列三角形中∠ 的度数.2.如图,一种滑翔伞的形状是左右对称的四边形ABCD (沿着AC 对折后直线AC 两侧部分能完全重合),其中∠A =150º,∠B =∠D =40º,求∠C 的度数.师生活动:学生口答第1题,书写第2题. 设计意图:巩固定理,发展推理能力. (四)课堂小结教师引导学生思考下列问题,回顾并交流本课所学知识. (1)本课学习了哪一个定理?(2)小学中我们已经发现了三角形三内角的和为180º,为了什么要证明这一结论? (3)你是怎样证明这一结论的?设计意图:比较初中与小学学习三角形内角和的差别,体会证明的必要性,总结证明过程,体会证明的要求.(五)布置作业教科书习题11.2第1,3,7题.有兴趣的同学尝试写出与本课中不同的证明过程. 五、板书设计11.2.1三角形的内角1.三角形内角和:小学的做法:测量、拼角。
教学设计5:11.2.1三角形的内角
11.2.1三角形的内角教学目标:(1)知识目标:①探索三角形的内角和,并初步体会利用辅助线解决几何问题.②灵活运用三角形内角和结论。
(2)能力目标:①通过学生猜、测、拼、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。
②会用平行线的性质和平角定义证明三角形的内角和等于180度。
③学会解决与三角形内角和定理有关的实际问题。
④初步培养学生的说理能力。
(3)情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:探索三角形的内角和。
教学难点:三角形内角和定理的证明方法.教学课时:1课时教学过程:一新课引入在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起了……”“为什么?” 老二很纳闷。
同学们,你们知道其中的道理吗?二新课讲授如何验证三角形的内角和为180°呢?方法一:度量法量角器量出三个角并相加方法二:拼图法如图1,将纸片上的△ABC三个内角剪下,随意将它们拼合在一起,你有几种拼合方法,经过拼合你能发现什么?学生活动设计:学生动手操作已经准备好的三角形纸片,独立完成拼合,可能有如图2,3的拼合方式,拼合完成后进行交流,根据拼合的图形,容易发现三角形的三个内角的确是180°.经过观察与实验得到的结论,并不一定正确、可靠,还需要通过数学知识来说明.怎样用数学知识来说明呢?如图4,已知△ABC,试说明∠A+∠B+∠C=180°.学生活动设计分组合作,小组讨论,然后进行交流,在交流中逐步完善自己的结果.经过讨论(若没有结果教师进行引导)发现,上述拼合的过程其实就是把三角形的内角经过一定手段进行转移,同时考虑平行线有转移角的功能,于是可以想到利用平行线来证明三角形的内角和,根据拼合的图形,学生进行讨论,发现可以有下列解决方案:方案一:如图5图5作BC的延长线CD,过点C作射线CE∥AB.则∠ACE=∠A(两直线平行,内错角相等);∠ECD=∠B(两直线平行,同位角相等);∵∠ACB+∠ACE+∠ECD=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).即:∠A+∠B+∠C=180°.方案二:如图6,过点A作直线EF∥BC∴∠EAB=∠B(两直线平行,内错角相等);∠F AC=∠C(两直线平行,内错角相等).∵∠EAB+∠BAC+∠F AC=180°(平角定义),∴∠B+∠BAC+∠C=180°(等量代换).于是得到三角形内角和定理:三角形内角和等于180°.例1:如图7,C岛在A岛的北偏东50°的方向,B岛在A岛的北偏东80°的方向,C岛在B岛的北偏西40°方向.从C岛看A、B两岛的视角∠ACB是多少度?解:∵∠DAC=50°,∠DAB=80°∴∠CAB=∠DAB-∠DAC=30°∵AD//BE,∴∠DAB+∠ABE =180°∴∠ABE=180°-∠DAB=180°-80°=100°∵∠EBC=40°∴∠ABC= ∠ABE -∠EBC= 100°-40°=60 °在△ABC 中,∠ACB=180°-∠ABC-∠BAC=90°答:从C岛看A、B两岛的视角∠ACB是90°.随堂练习在△ABC中:①∠A=35°,∠C=90°,则∠B=?总结:三角形内角和定理:三角形三个内角的和等于180°即△ABC 中,∠A+∠B+∠C=180°∠A+∠B+∠C=180°的几种变形:(知二求一)∠A=180°–(∠B+∠C).∠B=180°–(∠A+∠C).∠C=180°–(∠A+∠B).∠A+∠B=180°–∠C.∠B+∠C=180°–∠A.∠A+∠C=180°–∠B.思考:如图11,BD 、CD 分别平分∠ABC 、∠ACB ,请你探索∠A 和∠D 的数量关系.解:在⊿ABC 中有,∠A +∠ABC +∠ACB =180°在⊿DBC 中有,∠D +∠1+∠2=180°因为BD 、CD 分别平分∠ABC 、∠ACB所以2∠1=∠ABC 、2∠2=∠ACB所以2(∠1+∠2)=∠ABC +∠ACB所以∠ABC +∠ACB =2(180°-∠D )所以∠A +2(180°-∠D )=180°即∠D =90°+21∠A . 三 课堂练习在△ABC 中:②∠A=50°,∠B=∠C,则∠B=?四小结和作业小结:通过本节课的学习,你在知识上有什么收获?你是通过什么方法学习了这些知识?(三角形的内角和等于180°及应用).作业:1 第13页练习.2 习题11.2第1、3、4、7.。
人教版数学八年级上册11.2 与三角形有关的角(3课时)教案与反思
11.2 与三角形有关的角知人者智,自知者明。
《老子》棋辰学校陈慧兰11.2.1 三角形的内角第1课时三角形的内角和定理一、基本目标【知识与技能】1.理解“三角形三个内角的和等于180°”.2.能运用三角形内角和定理进行计算.【过程与方法】通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过程的条理性,发展合情推理能力和语言表达能力.【情感态度与价值观】在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成和获得数学说理的习惯与能力.二、重难点目标【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推导、验证.环节1 自学提纲,生成问题【5 min阅读】阅读教材P11~P13的内容,完成下面练习.【3 min反馈】1.利用三角板的三个角之和为多少度来探索三角形的内角和.图1 图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形的内角和都为180°.(1)在所准备的三角形硬纸片上标出三个内角的编码.(2)动手把一个三角形的两个角剪下,拼在第三个角的顶点处,如图.用量角器量出∠BCD的度数,可得到∠A+∠B+∠ACB =180°.(3)把∠B和∠C剪下拼在一起,如图.用量角器量一量∠MAN 的度数,可得到∠BAC+∠B+∠C=180°.(4)三角形内角和定理:三角形三个内角的和等于180°.3.在△ABC中,∠A=60°,∠B=80°,则∠C=40°.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C 岛看A、B两岛的视角∠ACB是多少度(方法一)分析与解答过程见教材P12~P13.(方法二)【互动探索】(引发学生思考)过点C作AD的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】∠ABC的求法同“方法一”.如图,过点C作CF⊥AD,则CH⊥BE.∵∠ACF=180°-∠DAC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,∴∠ACB=180°-∠ACF-∠BCH=180°40°-50°=90°.故从B岛看A、C两岛的视角∠ABC是60°.从C岛看A、B 两岛的视角∠ACB是90°.【例2】如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.【互动探索】(引发学生思考)D⊥AB,∠D=50°→得∠B的度数,结合∠A=46°→得∠ACB的度数(三角形内角和定理).【解答】∵DF⊥AB∴∠DFB=90°.∵∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.又∵∠A=46°,∴∠ACB=180°-∠A-∠B=94°.【互动总结】(学生总结,老师点评)求三角形的内角,一般要用到三角形内角和定理.解决问题时,要根据图形特点,不同的三角形中灵活运三角形内角和定理求解.活动2 巩固练习(学生独学)1.在△ABC中,∠A=80°,∠B=∠C,则∠C=50°.2.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.3.已知△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°.∵CD平分∠ACB,∴∠BCD=12∠ACB=25°.又∵DE∥BC,∴∠CDE=∠BCD=25°.环节3 课堂小结,当堂达标(学生总结,老师点评)三角形的内角和定理:三角形三个内角的和等于180°.请完成本课时对应练习!第2课时直角三角形的两锐角互余一、基本目标【知识与技能】理解并掌握直角三角形的两锐角互余及其逆定理.【过程与方法】通过三角形的内角和定理推导出直角三角形的两锐角互余.【情感态度与价值观】在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成和获得数学说理的习惯与能力.二、重难点目标【教学重点】直角三角形的两锐角互余.【教学难点】判断三角形是直角三角形的方法.环节1 自学提纲,生成问题【5 min阅读】阅读教材P13~P14的内容,完成下面练习.【3 min反馈】1.如图,在直角三角形ABC中,∠C=90°,由三角形内角和定理,得∠A+∠B+∠C=180°,即∠A+∠B+90°=180°,所以∠A+∠B=90°.2.直角三角形的两个锐角互余.3.直角三角形可以用符号“Rt△”表示,直角三角形ABC 可以写成Rt△ABC.4.由三角形内角和定理可得:有两个角互余的三角形是直角三角形.5.若直角三角形的一个锐角为20°,则另一个锐角等于70°.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD 的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF =50°(直角三角形的两个锐角互余)→∠CED=50°(对顶角相等),结合∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】在△ABC中,如果∠A=12∠B=13∠C,那么△ABC是什么三角形?【互动探索】(引发学生思考)分析法:要判断三角形的形状,应从三角形的边或角入手→已知∠A、∠B、∠C的数量关系→△ABC各内角的度数→△ABC的形状.【解答】设∠A=x,则∠B=2x,∠C=3x.根据题意,得x+2x+3x=180°,解得x=30°.∴∠A=30°,∠B=60°,∴△ABC是直角三角形.【互动总结】(学生总结,老师点评)已知三角形内角的数量关系,可以利用“有两个角互余的三角形是直角三角形”判断三角形的形状.活动2 巩固练习(学生独学)1.在△ABC中,若∠A+∠B=∠C,则△ABC是( B )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A=52°.3.如图,Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.环节3 课堂小结,当堂达标(学生总结,老师点评)1.直角三角形的两个锐角互余.2.有两个角互余的三角形是直角三角形.请完成本课时对应练习!11.2.2 三角形的外角(第3课时)一、基本目标【知识与技能】1.三角形的外角的定义和性质.2.能利用三角形的外角性质解决问题.【过程与方法】通过合作研究三角形的内、外角之间的关系,提高学生的合作意识和沟通、表达能力.【情感态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学方法,培养主动探索、勇于发现、敢于实践及合作交流的习惯.二、重难点目标【教学重点】与三角形的外角有关的性质.【教学难点】三角形外角性质的推导.环节1 自学提纲,生成问题【5 min阅读】阅读教材P14~P15的内容,完成下面练习.【3 min反馈】1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.2.试结合图形写出证明过程:证明:过点C作CM∥AB,延长BC到点D,则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等),所以∠1+∠2=∠A+∠B,即∠ACD=∠A+∠B.3.三角形的一个外角等于与它不相邻的两个内角的和.4.△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD=120°.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角,它们的和是多少?(方法一)见教材P15解答过程.(方法二)【互动探索】(引发学生思考)考虑利用平角的性质与三角形的内角和定理求解.【解答】∵∠BAE=180°-∠1,∠CBF=180°-∠2,∠ACD=180°-∠3,∴∠BAE+∠CBF+∠ACD=180°-∠1+180°-∠2+180°-∠3=540°-(∠1+∠2+∠3)=540°-180°=360°.【互动总结】(学生总结,老师点评)(1)由此题可以得出:任意三角形的外角和都等于360°.(2)拓展:任意多边形的外角和都等于360°(同学们可自行进行证明).活动2 巩固练习(学生独学)1.如果将一副三角板按如图方式叠放,那么∠1等于( B )A.120°B.105°C.60°D.45°2.求下列各图中∠1的度数.解:左图:∠1=90°;中图:∠1=80°;右图:∠1=95°.3.求下列各图中∠1和∠2的度数.解:左图:∠1=60°,∠2=30°;右图:∠1=50°,∠2=140°.活动3 拓展延伸(学生对学)【例2】如图所示,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP=30°,求∠A的度数.【互动探索】∠A与已知角不在同一个三角形内→考虑作辅助线→利用三角形外角的性质求解.【解答】延长BP交AC于点E,则∠BPC、∠PEC分别为△PCE、△ABE的外角.∴∠BPC=∠PEC+∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°,∴∠A=∠PEC-∠ABE=120°-20°=100°.【互动总结】(学生总结,老师点评)解决此类题的一般方法是作辅助线,利用三角形外角的性质将已知与未知的角联系起来计算角的度数.此题也可以延长CP与AB相交,还可以连结AP 并延长与BC相交,同学们可以自己尝试另外两种解法.环节3 课堂小结,当堂达标(学生总结,老师点评)三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.请完成本课时对应练习!【素材积累】不要叹人生苦短,若把人一生的足迹连接起来,也是一条长长的路;若把人一生的光阴装订起来,也是一本厚厚的书。
11.2.1,三角形的内角(2)教案
11.2.1,三角形的内角(2)教案篇一:11.2.1三角形的内角(教案)八年级数学教学设计篇二:11.2.1三角形的内角(教案)11.2.1三角形的内角学习目标:1、经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理2、能应用三角形内角和定理解决一些简单的实际问题新课导学:【问题1】在△aBc中,∠a+∠B+∠c等于多少度?你是如何得到这一结论呢?【问题2】如何用剪拼的方法验证三角形内角和为180o?(提示:在所准备的三角形硬纸片上标出三个内角的编码,动手把三角形的两个角剪下进行拼接,得到180o。
)动画演示如下图所示:图1图2图3【问题3】如图1,直线mn有什么特点?它存在吗?【问题4】由刚才图1的剪拼办法,可以想出怎样的证明方法来说明上面的结论的正确性呢?d?已知?aBc,求证:?a??B??c?180【问题5】结合图2、图3,你能得到怎样的证明方法?还有其他的证明方法吗?写出你能想到的所有证法的证明过程。
应用新知,解决问题:例题:如图,c岛在a岛的北偏东50(:11.2.1,三角形的内角(2)教案)方向,B岛在a岛的北偏东80方向,c岛在B岛的北偏西40方向,从c岛看a、B两岛的视角?acB是多少度????篇三:11.2.1三角形的内角---教案11.2.1三角形的内角和篇四:11.2.1三角形的内角教案11.2.1三角形的内角教学目标1经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理2能应用三角形内角和定理解决一些简单的实际问题重点:三角形内角和定理难点:三角形内角和定理的推理的过程课前准备每个学生准备好二个由硬纸片剪出的三角形教学过程一、做一做1在所准备的三角形硬纸片上标出三个内角的编码2让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处(图1),用量角器量出?Bcd的度数,可得到?a??B??acB?180?图13剪下?a,按图2拼在一起,从而还可得到?a??B??acB?180?图24把?B和?c剪下按图3拼在一起,用量角器量一量?man的度数,会得到什么结果。
人教版数学八年级上册11.2.1三角形的内角第一节教学设计
4.小组合作任务:
以小组为单位,设计一道关于三角形内角和定理的应用题,要求题目具有一定的挑战性和趣味性。在下节课前,各小组分享题目并互相解答。
作业要求:
1.学生独立完成作业,确保作业质量。
2.书写规范,保持作业整洁。
3.遇到问题及时与同学或老师交流,共同解决。
2.教学实施:
学生观察三角形物体,尝试回答问题。教师点评学生的回答,引导学生关注三角形的内角特征,为新课的学习奠定基础。
(ห้องสมุดไป่ตู้)讲授新知
1.教学活动设计:
通过讲解和演示,向学生介绍三角形的内角和定理及其证明方法。在此过程中,注重培养学生的几何直观和逻辑思维能力。
2.教学实施:
(1)教师讲解三角形的内角和定理,让学生理解三角形的内角和为180°。
2.教学实施:
(1)教师提出讨论问题,如:“如何证明三角形的内角和为180°?”“在日常生活中,有哪些应用三角形内角和定理的例子?”
(2)学生分组讨论,共同探究问题,教师巡回指导,解答学生的疑问。
(3)各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.教学活动设计:
设计具有层次性的练习题,让学生运用三角形的内角和定理解决问题,巩固所学知识。
7.关注个体差异,因材施教:
在教学过程中,教师关注学生的个体差异,针对不同水平的学生制定个性化的教学计划。对于基础薄弱的学生,重点辅导基础知识,提高他们的学习兴趣;对于优秀生,提供拓展性学习资源,培养他们的创新能力和几何思维。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
利用多媒体展示生活中的三角形物体,如三角板、自行车三角架等,引导学生观察并思考:“这些三角形物体的内角和是多少度?为什么?”通过问题驱动,激发学生的好奇心和求知欲,为新课的学习做好铺垫。
人教版八年级数学上册教学设计11.2 与三角形有关的角
人教版八年级数学上册教学设计11.2 与三角形有关的角一. 教材分析人教版八年级数学上册“与三角形有关的角”这一节主要让学生了解三角形内角和定理,学会使用三角形的内角和定理解决实际问题。
通过这一节的学习,让学生进一步理解三角形的性质,为后续学习三角形的其他性质和判定打下基础。
二. 学情分析学生在七年级时已经学习了角的性质,对角的概念有了初步的了解。
但他们对三角形的内角和定理的理解还不够深入,需要通过实例来进一步理解和掌握。
此外,学生的空间想象力还不够丰富,需要通过实物演示和动手操作来帮助他们理解和掌握三角形的内角和定理。
三. 教学目标1.知识与技能:使学生了解三角形内角和定理,能运用三角形的内角和定理解决实际问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:三角形内角和定理的理解和运用。
2.难点:对三角形内角和定理的证明和灵活运用。
五. 教学方法采用问题驱动法、实物演示法、合作交流法等,引导学生观察、操作、推理,从而理解和掌握三角形的内角和定理。
六. 教学准备1.准备三角形模型、直尺、量角器等教具。
2.制作课件,展示三角形内角和定理的证明过程。
七. 教学过程导入(5分钟)教师通过提问:“我们以前学过角的性质,那么你们知道三角形的角有什么特点吗?”引导学生回顾角的知识,为新课的学习做好铺垫。
呈现(10分钟)教师展示三角形模型,让学生观察并提问:“请大家观察这个三角形,你们能发现什么规律吗?”引导学生发现三角形的内角和等于180度。
操练(10分钟)教师给出几个三角形,让学生用量角器测量其内角和,验证三角形的内角和定理。
同时,教师巡回指导,帮助学生解决问题。
巩固(10分钟)教师通过出示一些实际问题,让学生运用三角形的内角和定理解决问题,巩固所学知识。
拓展(10分钟)教师提问:“你们还能找到其他形状的图形的内角和定理吗?”引导学生思考四边形、五边形等图形的内角和定理,培养学生的空间想象力。
人教版八年级数学上册11.2.1三角形的内角第1课时教案
11.2 与三角形有关的角
11.2.1 三角形的内角(第1课时)
备课人:备课日期:年月日
2.提出问题:根据上述操作结论你能肯定这个命题是真命题吗?
学生交流后教师指出:由于测量存在误差,而且不同形状的三角形有无数个,不可能一一测量,因此上述方法只能“验证”三角形的内角和等于180°,而不能充分说明是真命题。
对于真命题,必须通过“数学证明”,才能让人信服。
那么,怎样证明“三角形的内角和等于180°”是真命题呢?
二、教学新知
【活动】探究“三角形的内角和等于180°”
1.学生在纸上画一个三角形,用剪拼的方法验证“三角形的内角和等于180°”,并说说验证过程:把剪下的三个角拼合到一起,得到一个平角,所以三角形的内角和等于180°.
2.教师展示图片;
启发:上面拼合中,有不同的方法,你用到上面哪个图的方法?你通过这个操作,发现了证明思路吗?
2.学生仔细看图,交流讨论自己各自的发现。
学生甲:我用图1把∠B,∠C分别拼在∠A的左右,三个角合起来是一个平角,所以∠B,∠C有一条边在同一直线l上。
因为∠B,∠C在剪拼前后的大小不变,即内错角相等,因此我发现过点A作直线l∥BC,用平行线的性质和平角的定义可以证明“三角形的内角和等
图2
图1。
人教版数学八年级上册11.2与三角形有关的角教学设计
7.关注个体差异,因材施教:针对不同学生的学习能力、兴趣和需求,设计分层教学,使每个学生都能在课堂上得到充分关注和指导。
8.创设互动氛围,激发学习热情:教师应以亲切、热情的态度与学生互动,鼓励学生提问、发表观点,营造积极向上的课堂氛围。
1.教师引导学生回顾本节课所学内容,总结三角形的内角和、外角定理、对顶角相等定理、邻补角补数定理等知识点。
2.学生分享学习收获,反思学习过程中的困难与解决方法。
3.教师对本节课的学习进行评价,强调重点知识,提醒学生加强对三角形的角的性质的掌握。
4.布置课后作业,巩固所学知识,为下一节课的学习做好准备。
4.通过绘制和测量三角形的角度,培养学生实际操作能力和空间想象能力。
(二)过程与方法
1.引导学生通过观察、思考、实践等过程,探索和发现三角形的角的性质和定理。
2.采用问题驱动法,设置具有启发性和挑战性的问题,激发学生的学习兴趣和求知欲。
3.组织学生进行小组讨论、合作学习,培养学生的团队协作能力和交流沟通能力。
(四)课堂练习,500字
1.教师设计具有代表性的练习题,涵盖三角形内角和、外角定理、对顶角相等定理、邻补角补数定理等知识点。
2.学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
3.学生互相批改,讨论解题过程中的优点和不足,提高解题能力。
4.教师挑选典型题目进行讲解,分析解题思路,强化知识点。
(五)总结归纳,500字
4.结合实际生活中的三角形实例,让学生认识到数学知识在实际生活中的重要作用,提高学生的数学素养。
5.培养学生的团队合作精神,使学生学会尊重他人、倾听他人意见,形成良好的人际关系。
11.2.1 第2课时 直角三角形的两个锐角互余 人教版数学八年级上册课堂教案
第十一章三角形11.1 与三角形有关的角11.2.1三角形的内角第1课时直角三角形的两个锐角互余一、教学目标1.了解直角三角形两个锐角的关系.2.掌握直角三角形的判定.3.会运用直角三角形的性质和判定进行相关计算.二、教学重难点重点:掌握直角三角形的性质及判定.难点:利用直角三角形的性质与判定解决有关问题.三、教学过程【新课导入】[复习导入]1.三角形的内角和是多少度?2.按角的大小分类,三角形可以分为哪三类?3.直角三角形中,有一个角一定是°.[学生回答]学生根据老师提出的问题,复习与本节课相关的知识(180°;锐角三角形、直角三角形和钝角三角形;90)【新知探究】知识点1 直角三角形的性质[课件展示]问题1:如下图所示的是我们常用的一副三角板,你知道它们两锐角的度数之和吗?通过量角器测量一下吧![动手操作]学生利用量角器测量,教师根据学生量得的数据,总结得到结论30°+60°=90°,45°+45°=90°.[提出问题]对于任意的三角形,这个结论成立吗?[课件展示]如图,在△ABC中,已知∠C=90°,(1)你能求出∠A ,∠B的度数吗?(2)你能求出∠A +∠B的度数吗?你是怎么得到的?学生独立思考,教师点名回答,总结:∠A +∠B=90°.[提出问题]由此,你可以得到直角三角形有什么性质呢?[归纳总结]直角三角形的性质:直角三角形的两个锐角互余.[提出问题]在几何问题中,怎样来书写这个性质呢?(在△ABC 中,∵∠C =90°,∴∠A +∠B =90°.)为了书写方便,直角三角形可以用符号“Rt△”表示,直角三角形ABC 可以写成Rt△ABC .此时,提醒学生注意:Rt△后必须紧跟表示直角三角形的三个顶点的大写字母,不能单独使用.[课件展示]教师利用多媒体展示以下例题:例1 如图,∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么?【变式】如图,∠B=∠C=90°,AD交BC于点O,∠A与∠D有什么关系?[提出问题]与例1有哪些共同点与不同点?让学生对比两题的图形[归纳总结][课件展示]跟踪训练1.(2021苏州模拟)在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是( B )A.40°B.50°C.60°D.70°[课件展示]跟踪训练2.在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为( A )A.30°B.45°C.60°D.30°或60°[课件展示]跟踪训练3.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB交BD于点D,已知∠1=32°,求∠D的度数.解:∵∠BAC=90°,∠1=32°,∴∠ABC=90°-32°=58°.∵BD平分∠ABC,∴∠ABD= ∠ABC=29°.∵CD∥AB,∴∠D=∠ABD=29°.提醒学生注意:在直角三角形中,若已知一个锐角或者两个锐角之间的关系,可以直接运用两个锐角互余求解,不需要再利用三角形的内角和定理求解.知识点2 直角三角形的判定[提出问题]有两个角互余的三角形是直角三角形吗?如何验证?提示学生运用三角形内角和去验证.(在△ABC中,由三角形内角和可知∠A +∠B +∠C=180°,又∠A +∠B=90°,所以∠C=90°. 于是△ABC是直角三角形.)[归纳总结]直角三角形的判定:有两个角互余的三角形是直角三角形.[提出问题]在几何问题中,怎样来书写这个判定方法呢?对比刚才的“直角三角形的性质”写一写吧!(在△ABC 中,∵∠A +∠B =90°,∴△ABC 是直角三角形.)[归纳总结]直角三角形的性质与判定之间的关系:[课件展示]教师利用多媒体展示以下例题:[归纳总结]【课堂小结】【课堂训练】1.如图,在△ABC中,∠ACB=90°,且CD∥AB.∠B=60°,则∠1等于( A )A.30°B.40° C.50°D.60°2.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为( A )A.40°B.50°C.60°D.70°3.下列说法中错误的是( D )A.在△ABC中,若∠A:∠B:∠C=2:2:4,则△ABC为直角三角形B.在△ABC中,若∠A=∠B-∠C,则△ABC为直角三角形C.在△ABC中,若∠A= ∠B= ∠C,则△ABC为直角三角形D.在△ABC中,∠A=∠B=2∠C,则△ABC为直角三角形4.如图,将一张长方形纸片剪去一部分后得到一个三角形,则图中∠1+∠2=_____90°___.5.在△ABC中,若∠A=51°,∠B=39°,则这个三角形是____直角________三角形.6.(2020•白银模拟)在直角三角形中,锐角α是另一个内角的一半,则锐角α的度数为45°或30° .7.如图,CE⊥AD,垂足为E,∠A=∠C,△ABD是直角三角形吗?为什么?8.如图,∠AOB=50°,点P是边OB上一个动点(不与点O重合),当∠A的度数为多少时,△AOP为直角三角形.【教学反思】上课开始,通过复习引入,为本节课做好铺垫.本节课是在学生学习了与三角形内角和基础上,让学生动手操作,量量角器上的两个锐角的度数,初步了解“直角三角形的两锐角之和为90°”,但测量有误差,激发学生探索欲望,学生需要再证明这一结论成立.通过例1与其变式,例2与其变式的学习,归纳出两类基本图形,也为以后的课程(全等三角形,相似三角形)做好了准备.。
11.2.1直角三角形两个锐角互余 教学设计 2022-2023学年人教版数学八年级上册
11.2.1 直角三角形:两个锐角互余教学设计一、教学目标•理解直角三角形的定义和性质;•掌握一个锐角和直角互余的概念;•能够应用互余角的概念解决与直角三角形有关的问题。
二、教学重点和难点1. 教学重点•直角三角形的定义和性质;•锐角和直角互余的概念;•应用互余角解决与直角三角形有关的问题。
2. 教学难点•运用互余角概念解决实际问题。
三、教学过程1. 导入与展示•引导学生回顾直角三角形的定义,并提醒他们直角三角形内的两个锐角之和是多少。
•提问:是否存在一种情况,两个锐角的和不是90度,但它们又有特殊的关系?•引入本节课的内容:直角三角形中,两个锐角互余的情形。
2. 概念讲解与例题演示•讲解互余角的概念:当两个角的和等于90度时,它们互为互余角。
•以示意图辅助讲解:直角三角形ABC,角A为直角,角B是一个锐角,则角C必为互余角。
•指导学生通过观察图形,得出直角三角形中两个锐角互余的结论。
•给出一些例题,引导学生理解互余角的概念,并使用该概念解决相关问题。
3. 练习与巩固•学生个人完成教材中相关习题,并互相核对答案。
•以小组形式进行讨论和解答。
•选取几道典型习题,进行板书讲解和解题技巧分享。
4. 拓展与应用•结合实际生活中的问题,让学生应用互余角的概念解决相关问题,如建筑、装修等。
•引导学生思考和讨论,在解决实际问题中灵活运用互余角的概念。
5. 总结与反思•回顾本节课的重点内容,学生以适当的方式总结和归纳所学的知识点。
•引导学生思考互余角的概念在实际问题中的应用,以及学习过程中的反思和感受。
四、板书设计直角三角形的定义和性质:- 直角三角形:一个角为90度的三角形。
- 锐角:小于90度的角。
互余角的概念:- 互余角:两个角的和等于90度。
直角三角形的互余角:- 直角三角形中,两个锐角互余。
五、教学资源准备•教材:人教版数学八年级上册•教学辅助工具:白板、黑板、多媒体设备等六、课后作业1.完成教材中相关的练习题;2.在生活中寻找直角三角形,并用互余角的概念解释其两个锐角的关系。
人教版初中八年级上册数学第十一章《与三角形有关的角》精品教案
判定:有两个角互余的三角形是直角三角形. 几何语言:在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形. 注意:在直角三角形中,若已知一个锐角或者两个锐角之间的关系,可以直 接运用两个锐角互余求解,不需要再利用三角形的内角和定理求解.
新知探究 跟踪训练
1、如图,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?
∠ABC=∠ABE-∠EBC=100°-40°=60°.
在△ABC中,∠ACB=180°-∠ABC-∠CAB
北
=180°-60°-30°
D
=90°.
答:从B岛看A,C两岛的视角∠ABC是60度,从C岛看A, A B两岛的视角∠ACB是90度.
北 CE
B
新知探究 跟踪训练
1、如图,从A处观测C处的仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°,
新知探究
知识点1 三角形内角和定理
如图,已知△ABC,求证∠A+∠B+∠C=180°. 证明:过点A作直线l,使得l//BC.
A
23
l
1
∵l//BC,
∴∠2=∠B,∠3=∠C(两直线平行,内错角相等). B
C
∵∠1、∠2、∠3构成平角,
∴∠1+∠2+∠3=180°(平角的定义). 则∠BAC+∠B+∠C=180°(等量代换).
BD
C
∴△ABC是直角三角形.
本题源自《教材帮》
随堂练习 3
如图,AB//CD,∠BAE=∠DCE=45°,填空:
∵AB//CD, ∴∠1+45°+∠2+45°=(180°). ∴∠1+∠2=( 90° ). ∴∠E=( 90° ). ∴△AEC是( 直角三角形 ).
11.2三角形与三角形有关的角(教案)
-三角形中位线定理及外角性质:理解并应用中位线定理和外角性质解决问题。
-举例:利用中位线定理求三角形中线的长度,利用外角性质解决角度问题。
2.教学难点
-理解和运用内角和定理进行角度计算:学生在运用内角和定理时,可能难以灵活运用的学习,我们了解了三角形的基本概念、内角和定理、全等与相似的判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对三角形相关性质的理解。我希望大家能够掌握这些知识点,并在日常生活和解决问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在讲授过程中,我尽量用简练的语言解释复杂的几何问题,并通过举例来帮助学生理解。我发现,将理论知识与实际生活相结合,能够激发学生的学习兴趣,使他们更容易接受和掌握新知识。但同时,我也注意到,有些学生对实际问题的应用还不太熟练,需要更多的练习和引导。
实践活动和小组讨论环节,学生们表现得相当积极。他们通过分组讨论和实验操作,不仅加深了对三角形知识的理解,还学会了合作和分享。不过,我也观察到,在讨论过程中,有些小组的思路不够开阔,对问题的分析不够深入,这提示我在未来的教学中要更多地鼓励学生思考和探索。
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
另外,我也在思考如何更好地利用课堂时间。在今天的课堂上,我尽量留给学生足够的思考时间和提问机会,但感觉时间还是不够用。可能我需要调整教学节奏,确保在讲解重点难点时,能够更加细致和慢速,让学生有充分的时间消化吸收。
人教版八年级上册数学 11.2.1 三角形的内角优质教案
看。
用折纸的方法探究三角形内角和的证明思路:同学们
动手把一个三角形的两个角剪下拼在第三个角的顶点
处,你有哪些方法?你发现了什么?
从拼图活动中发
展学思维的灵活
性,创造性
实践说理 深入新知
问题:
由刚才拼合而成的图形,你能想出说明“三角形内
角和等于 180 度"这个结论的正确方法吗?
证明:试以你所发现的方法谈谈是如何说明三角形的
高,求∠DBC 的度数。
提高学生的说理
能力。
小结与作业
采用让学生归纳、补充,然后教师补充的方式进行。 发挥学生主体意
1.本节课我们学了什么知识?
识,培养学生语
2.你有什么收获?
言概括能力。
1、 必做题: 2、 选做题:
作业分层,供 不同层次的学生 使用
观 三角形的内角和定理及其运用
教学难点
三角形内角和定理的推理过程
教学准备
三尺、小剪刀、量角器。
教学过程(师生活动)
设计理念
我们都知道,任意一个三角形的内角和都等于 180°, 情境教学对激发
动手操作 怎么说明这个结论的正确性呢?
学生的学习兴趣
初步感知 在纸上画一个三角形将将它的内角剪下,试着拼拼 有很大的作用。
内角和等于 180°的?
如图⑴ 已知:△ABC, 求证:∠A+∠B+∠C=180°.
证明:延长 BC 到 D,过点 C 作 CE∥AB .
∵CE∥AB
(已知)
在说理过程 中, 更加深刻地理解 多种拼图方法, 创设不同说理方 法的表达情境。
∴∠2=∠B (两直线平行,同位角相等)
∠1=∠A (两直线平行,内错角相等) 又∵∠1+∠2+∠3=180° (平角定义) ∴∠A+∠B+∠ACB=180°(等量代换)
11.2与三角形有关的角 教案-人教版八年级数学上册
11.2 与三角形有关的角教案-人教版八年级数学上册一、教学目标1.理解三角形的内角和为180度的性质。
2.掌握三角形内角与其它角的关系:互补角、平行线与三角形的内角、三角形内角与它们对应的其他角的关系。
3.能够运用所学知识解决与三角形内角有关的综合性问题。
二、教学重点1.三角形的内角和为180度的性质。
2.三角形内角与互补角、平行线、它们对应的其他角的关系。
三、教学难点1.运用所学知识解决与三角形内角有关的综合性问题。
四、教学过程第一步、导入新知1.提出问题:三角形的内角和为多少度?2.学生回答问题并引导他们发现三角形的内角和等于180度。
第二步、新知讲解1.根据学生发现的规律,说明三角形的内角和等于180度。
2.引入互补角的概念,解释互补角的定义和性质。
3.结合互补角的概念,引入平行线与三角形的内角的关系,并给出相关的定理和推论。
4.引入三角形内角和它们对应的其他角的关系,解释对应角的概念,并给出相关的定理和推论。
第三步、例题演练1.结合所学知识,给出一些例题进行讲解和演练。
2.提示学生从图形中找出三角形内角、互补角、平行线等,并运用相关知识进行推理和计算。
第四步、小结归纳1.总结三角形的内角和为180度的性质。
2.归纳互补角、平行线与三角形内角、三角形内角与其他角的关系。
第五步、拓展练习1.提供一些综合性的问题进行拓展练习。
2.鼓励学生独立思考,运用所学知识解决问题,并给予必要的指导和帮助。
第六步、课堂反馈1.提问学生针对所学内容进行回答。
2.针对学生的答案进行讨论和解答,澄清他们的疑惑和误区。
五、课堂作业1.完成课堂上的例题和拓展练习。
2.预习下一节课的内容。
六、教学反思本节课主要讲解了三角形的内角和为180度的性质,以及三角形内角与互补角、平行线、它们对应的其他角的关系。
通过提问、讲解、例题演练等多种教学方法,帮助学生理解和掌握相关知识。
在拓展练习环节,学生能够灵活运用所学知识解决问题,表现出较好的发散思维能力。
人教版八年级上册11.2.1三角形的内角(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形内角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-内角度数的关系:钝角三角形、锐角三角形和直角三角形的内角度数关系容易混淆,需要教师通过具体例子、分类讨论等方式进行详细讲解。
-实际问题的解决:将三角形内角和定理应用于解决生活中的问题时,学生可能面临问题分析、数据提取和计算方法选择等难题。
举例:
难点一:证明三角形内角和定理时,学生可能难以理解以下概念:
-数学思维的培养:在教学过程中,注重培养学生的几何直观、逻辑推理能力和数学建模意识。
举例:在讲解三角形内角和定理时,可以通过以下案例进行强调:
案例一:给定一个三角形,已知两个角的度数,求第三个角的度数。
案例二:证明一个四边形是凸四边形还是凹四边形。
2.教学难点
-证明三角形内角和定理:对于初学者来说,理解并掌握几何证明过程具有一定难度,需要教师通过直观演示、逐步引导等方法帮助学生突破。
4.在小组合作探究中,培养团队合作精神和交流表达能力,提高数学交流与反思的能力。
三、教学难点与重点
1.教学重点
-三角形内角和定理:强调三角形内角和等于180°的概念,通过几何图形和数学证明,让学生深刻理解这一核心内容。
-内角性质的应用:以实际案例为载体,引导学生学会运用三角形内角和定理解决具体问题,如判断三角形类型、计算未知角度等。
人教版八年级上册11.2.1三角形的内角(教案)
11.2.1三角形的外角教案
11.2.1三角形的外角教案篇一:11.2.2三角形的外角---教案11.2.2三角形的外角篇二:11.2.2三角形的外角(教案)八年级数学教学设计篇三:11.2.2三角形的外角教案11.2.2三角形的外角平邑兴蒙学校崔连金【教学任务分析】【教学环节安排】教后反思:1、课件的使用,激发了学生学好数学的决心。
教学过程中对于外角和两个内角的关系时,稍微用的时间比较长,有些学生觉着是这么回事,但是不理解,从做题中还是使用三角形内角和可以看出来,因此教师可以把一个题用两种方法都做出来,通过比较提高学生的认识,强调做数学题要用简便方法.2、任何一个三角形都有6个外角,其中两两互为对顶角.而三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.这一点应重点强调,上课时忽落了这一点,辅导时要加以强调.3、内外结合,天下无敌(利用内角和定理和外角关系,能解决三角形角度问题).篇四:《11.2.2三角形的外角》教学设计《11.2.2三角形的外角》教学设计一、教学目标:1、知识与技能:了解三角形的外角概念和三角形外角的性质,初步学会数学说理。
2、过程与方法:能剪剪拼拼,动手操作,探索发现有关结论。
3、情感与态度目标:通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯。
二、教学重点与难点:重点:三角形的外角及其性质难点:运用三角形外角性质进行有关计算时能准确地表达推理的过程和方法。
三、教材分析:教材由学生已经熟悉的三角形的内角和定理引入,然后探索三角形外角的性质。
采用“问题—探究—发现”的研究模式,并采用了拼图和数学说理两种方法,一方面,让学生通过剪剪拼拼,动手操作,探索发现有关结论,另一方面又加以简单的数学说理,使学生初步体会,要得到一个数学结论,可以采用观察实验的方法,还可以采用数学推导说理的方法,观察实验只能给我们带来一个直观形象的数学结论,而推导说理才能使我们确信这一数学结论是否正确,当然对于这一点的认识还有待于以后学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.1与三角形有关的角
教学目标
1.知识目标:①理解“三角形的内角和等于180°”.
②运用三角形内角和结论解决问题.
2.能力目标:①通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过
程的条理性,发展合情推理能力和语言表达能力.
②理解三角形内角和的计算、验证,其本质就是想法把三个内角集中在一起转化为一个平角,其方法可以用拼合的方法,也可以用引平行线的方法
3.情感目标:在观察、操作、推理、归纳等探索过程中,发展同学们的合情推理能力,逐步
养成和获得数学说理的习惯与能力.
教学重点:三角形内角和定理的推导及应用.
教学难点:三角形内角和定理的推导、验证过程.
课前准备:每个学生准备好二个由硬纸片剪出的三角形
教学过程:
一:引入新课
在小学我们已经知道三角形的内角和为180°,但究竟为什么是180°,我们没有去研究,本节课我们来回答这个问题
二:自学提纲
1. 证一证 三角形内角和定理: 已知: 求证: 证明:过点 作
2、试一试
① 在△ABC 中,∠A=80°,∠B=∠C , 则∠C= __。
②已知三角形三个内角的度数之比为1:3:5,则这三个内角的度数分别为 。
③一个三角形中最多有 个锐角,最少有 个锐角,最多有 个钝角
三:合作探究:(先独立解决,再小组合作,教师点评。
)
例1: 如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C 岛看A 、B 两岛的视角∠ACB 是多少度?
C B A
(鼓励学生用多种方法解答。
)
例2、一块模板如图所示,按规定AF 、DE 的延长线相交成850角,因交点不在板上,不便
测量,工人师傅连结AD ,测得∠FAD=340,∠ADE=630,这时就知道AF 、DE 的延长线相交所
成的角是不是符合规定?为什么?
例3、如图,在△ABC 中,∠ABC=700,∠C=650,BD ⊥AC 于D ,
求∠ABD,∠CBD 的度数。
四:变式训练
1.如图,从A 处观测C 处时仰角∠CAD=30°,从B 处观测C 处时仰角∠CBD=45°,从C 处观测A 、B 两处时视角∠ACB 是多少度?
五:课堂小结
1、为了证明的需要,在原来的图形上添画的线叫做辅助线。
做辅助线是几何证明过程中常用到的方法。
辅助线通常画成虚线
2、三角形内角和定理实践探究及其运用。
六:堂清检测
1. 书76页练习第1题
2. 在△ABC 中,若∠A=80°,∠C=20°,则∠B=____,
3、已知△ABC 的三个内角的度数之比∠A ∶∠B ∶∠C=2∶3∶4,则∠B=____,∠C=____。
4.△ABC 中,∠B=∠A+10°,∠C=∠B+10°,求△ABC 各内角的度数。
5、如图,在△ABC 中∠C=60°,∠B=50°,AD 是∠BAC 的平分线,
则∠BAD= ∠DAC=____,∠ADB=_____。
6、在△ABC 中,∠B ,∠C 的平分线交于点O ,若∠BOC=132°,则∠A=______.
7、如图,在△ABC 中,∠B=∠C ,FD ⊥AB ,DE ⊥BC ,∠AED=158°,
则∠EDF=______
D A F E
A
B C
D C D B
C
D B C B。