高三数学(文理通用)一轮复习教案第九章 平面解析几何含解析
【最高考系列】(教师用书)高考数学一轮总复习 第九章 平面解析几何课堂过关 理
第九章 平面解析几何第1课时 直线的倾斜角与斜率⎝ ⎛⎭⎪⎫对应学生用书(文)111~112页 (理)116~117页1. (原创)设m 为常数,则过点A(2,-1),B(2,m)的直线的倾斜角是________. 答案:90°解析:因为过点A(2,-1),B(2,m)的直线x =2垂直于x 轴,故其倾斜角为π2.2. (必修2P 80第1题改编)过点M(-2,m),N(m ,4)的直线的斜率等于1,则m 的值为________.答案:1解析:由1=4-mm +2,得m +2=4-m ,m =1.3. (原创)若过点P(1-a ,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a 的取值范围是________.答案:-2<a <1解析:tan α=2a -(1+a )3-(1-a )=a -12+a .由a -12+a <0,得-2<a <1.4. (必修2P 70练习4改编)已知A(-1,23),B(0,3a),C(a ,0)三点共线,则此三点所在直线的倾斜角α=________.答案:2π3解析:若a =0,则B ,C 重合,不合题意,从而由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1.从而B(0,3),此三点所在直线的斜率为k AB =3-230+1=-3,即tan α=-3,而α∈[0,π),所以α=2π3.5. 设直线l 的倾斜角为α,且π4≤α≤5π6,则直线l 的斜率k 的取值范围是______________.答案:⎝⎛⎦⎥⎤-∞,-33∪[1,+∞)解析:由k =tan α关系图(如下)知k∈⎝ ⎛⎦⎥⎤-∞,-33∪[1,+∞).1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时,所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0;直线的倾斜角α的取值范围为[0,π).2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°.题型1 直线的倾斜角和斜率之间的关系, 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x-y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为____________.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练如果下图中的三条直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则k 1、k 2、k 3从小到大的排列顺序为____________.答案:k 1<k 3<k 2解析:设三条直线的倾斜角分别为α1,α2,α3.由题图知,k 1<0,k 2>0,k 3>0,另外,tan α2=k 2>0,α2∈⎝ ⎛⎭⎪⎫0,π2,tan α3=k 3>0,α3∈⎝ ⎛⎭⎪⎫0,π2,而α3<α2,正切函数在⎝⎛⎭⎪⎫0,π2上单调递增,所以, k 3<k 2.综上,k 1<k 3<k 2.题型2 求直线的倾斜角和斜率, 2) 已知点M(-4,3),N(2,15),若直线l 的倾斜角是直线MN 的倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角是θ,则直线MN 的倾斜角为2θ,由已知得tan2θ=k MN =15-32+4=2,即2tan θ1-tan 2θ=2, 所以tan 2θ+tan θ-1=0,解得tan θ=-1+52或tan θ=-1-52,由tan2θ=2>0知,2θ必为锐角,从而θ为锐角,故tan θ=-1+52.备选变式(教师专享)已知点A(-3,1),点B 在y 轴上,直线AB 的倾斜角为2π3,求点B 的坐标.解:B 点的坐标设为(0,y),再利用k =tan θ以及两点求斜率公式tan120°=y -10+3,得y =-2,所以B 的坐标为(0,-2).题型3 求直线的倾斜角和斜率的取值范围, 3) (2014·苏州调研)经过P(0,-1)作直线l ,若直线l 与连结A(1,-2)、B(2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.答案:[-1,1] ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π解析:如图所示,结合图形:为使l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k<0时,倾斜角α为钝角,k =0时,α=0,k>0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴ -1≤k≤1.又当0≤k≤1时,0≤α≤π4;当-1≤k<0时,3π4≤α<π. 故倾斜角α的取值范围为α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.备选变式(教师专享)直线l 经过A(2,1)、B(1,m 2)(m∈R )两点,那么直线l 的倾斜角的取值范围是________.答案:α∈⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π解析:k =tan α=m 2-11-2=1-m 2≤1,所以α∈⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.1. (2014·山西联考)直线xsin α+y +2=0的倾斜角的取值范围是________.答案:⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π 解析:设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.2. 已知点A(1,3),B(-2,-1),若直线l :y =k(x -2)+1与线段AB 相交,则k 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-2,12 解析:由题意知直线l 恒过定点P(2,1),如图.若l 与线段AB 相交,则k PA ≤k ≤k PB .∵ k PA =-2,k PB =12,∴ -2≤k≤12.3. 已知实数x 、y 满足(x -2)2+(y -1)2=1,求z =y +1x的最大值与最小值.解:y +1x表示过点A(0,-1)和圆(x -2)2+(y -1)2=1上的动点(x ,y)的直线的斜率.如图,当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y =kx-1,即kx -y -1=0,则|2k -2|k 2+1=1,解得k =4±73.因此,z max =4+73,z min =4-73.4. 如图所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的斜率.解: 由题意可得k OA =tan45°=1,k OB =tan (180°-30°)=-33,所以射线OA 的方程为y =x(x≥0),射线OB 的方程为y =-33x (x≥0). 设A(m ,m),B(-3n ,n),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A(3,3).又P(1,0),所以k AB =k AP =33-1=3+32.1. 已知x 轴上的点P 与点Q(-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为________.答案:(-23,0)解析:设P(x ,0),由题意k PQ =tan30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 有以下几个命题:① 直线的倾斜角越大,则斜率越大; ② 垂直于x 轴的直线没有方程;③ 若直线的斜率为a ,则其倾斜角正切值一定为tana ;④ 只要直线不过坐标原点,则它一定可以用截距式方程式表示; ⑤ 斜率存在的直线,其倾斜角一定不等于90°. 其中正确的命题是________.(填序号) 答案:⑤解析:根据直线的倾斜角与斜率的关系,可知①不正确,⑤正确;x =a(a∈R )是垂直于x 轴的直线,所以②错误;直线倾斜角的正切值是斜率,所以③错误;不过原点但垂直于坐标轴的直线不可以用截距式方程式表示,所以④错误; 故答案为⑤.3. 已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率是________.答案: 3解析:由k PQ =-3得直线PQ 的倾斜角为120°,将直线PQ 绕点P 顺时针旋转60°所得直线的倾斜角为60°,∴ 所得直线的斜率k =tan60°= 3.4. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________.答案:(-∞,-2]∪[1,+∞)解析:直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB相交,即应满足-a≥3+12或-a≤2+1-3,得a≤-2或a≥1.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tan α(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).请使用课时训练(B )第1课时(见活页).第2课时 直线的方程⎝⎛⎭⎪⎫对应学生用书(文)113~115页 (理)118~120页1. 把直线方程Ax +By +C =0(ABC≠0)化成斜截式为________________,化成截距式为________________.答案:y =-A B x -C B x -C A +y-CB=1解析:因为ABC≠0,即A≠0,B ≠0,C ≠0,按斜截式、截距式的形式要求变形即可.斜截式为y =-A B x -C B ,截距式为x -C A +y-CB=1.2. (必修2P 77习题3改编)直线3x -4y +12=0与两坐标轴所围成的三角形的面积为________.答案:6解析:直线3x -4y +12=0在x 轴上的截距为-4,在x 轴上的截距为3,因此它与两坐标轴所围成的三角形的面积为12×|-4|×3=6.3. 下列四个命题:① 过点P(1,-2)的直线可设为y +2=k(x -1);② 若直线在两轴上的截距相等,则其方程可设为x a +ya =1(a≠0);③ 经过两点P(a ,2),Q(b ,1)的直线的斜率k =1a -b;④ 如果AC<0,BC>0,那么直线Ax +By +C =0不通过第二象限. 其中正确的是_____________.(填序号) 答案:④4. (必修2P 74练习3改编)过点M(3,-4)且在两坐标轴上的截距互为相反数的直线方程为________.答案:y =-43x 或x -y -7=0解析:① 当直线过原点时,直线方程为y =-43x ;② 当直线不过原点时,设直线方程为x a +y-a=1,即x -y =a.代入点(3,-4),∴ a =7,即直线方程为x -y -7=0. 5. (必修2P 73练习3改编)若一直线经过点P(1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是________.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P(1,2),故由两点式得直线方程为y +1x -0=2+11-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1. (2) 若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1. (3) 若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0. (4) 若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式. [备课札记]题型1 求直线方程, 1) (必修2P 115复习题5、6改编)已知直线l 过点P(5,2),分别求满足下列条件的直线方程.(1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上:l 的方程为2x -5y =0或x +2y -9=0. (2) 显然两直线与x 轴不垂直.∵ 直线l 经过点P(5,2),∴ 可设直线l 的方程为y -2=k(x -5)(k≠0),则直线在x 轴上的截距为5-2k ,在y 轴上的截距为2-5k ,由题意,得12⎪⎪⎪⎪⎪⎪5-2k ·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练(2014·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l 的方程为________.答案:x +y -1=0或3x +2y =0解析:分两种情况:(1)直线l 过原点时,l 的斜率为-32,∴ 直线方程为y =-32x ;(2) l 不过原点时,设方程为x a +ya=1,将x =-2,y =3代入得a =1,∴ 直线方程为x +y =1.综上:l 的方程为x +y -1=0或2y +3x =0.题型2 含参直线方程问题, 2) (2014·银川改编)设直线l 的方程为(a +1)x +y +2-a =0(a∈R ).(1) 若l 在两坐标轴上截距相等,求l 的方程; (2) 若l 不经过第二象限,求实数a 的取值范围; (3) 求证:无论a 为何实数值,直线l 恒过一定点M.(1) 解:当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴ a=2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0, ∴ a -2a +1=a -2,即a +1=1. ∴ a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0.(2) 解:将l 的方程化为y =-(a +1)x +a -2, ∴ ⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,∴ a≤-1. 综上可知a 的取值范围是(-∞,-1]. (3) 证明:∵ (x-1)a +(x +y +2)=0,∴ 由题意得⎩⎪⎨⎪⎧x -1=0,x +y +2=0,解得⎩⎪⎨⎪⎧x =1,y =-3.故直线l 恒过定点M(1,-3).备选变式(教师专享)直线l 过点M(2,1),且分别交x 轴、y 轴的正半轴于点A 、B.点O 是坐标原点. (1) 当△ABO 的面积最小时,求直线l 的方程; (2) 当||MA ||MB 最小时,求直线l 的方程.解:(1) 如图,设||OA =a ,||OB =b ,△ABO 的面积为S ,则S =12ab ,并且直线l 的截距式方程是x a +yb=1,由直线通过点(2,1),得2a +1b=1,所以a 2=11-1b=b b -1.因为A 点和B 点在x 轴、y 轴的正半轴上,所以上式右端的分母b -1>0.由此得S =a 2×b =b b -1×b =b 2-1+1b -1=b +1+1b -1=b -1+1b -1+2≥2+2=4.当且仅当b -1=1b -1,即b =2时,面积S 取最小值4,这时a =4,直线的方程为x 4+y2=1.即直线l 的方程为x +2y -4=0.(2) 如上图,设∠BAO=θ,则||MA =1sin θ,||MB =2cos θ, 所以||MA ||MB =1sin θ·2cos θ=4sin2θ, 当θ=45°时,||MA ||MB 有最小值4,此时直线斜率为-1,∴直线l 的方程为x +y -3=0.题型3 直线方程的综合应用, 3) 设直线l 的方程为(a +1)x +y -2-a =0(a∈R ).(1) 当a =1时,直线l 分别与x 轴、y 轴交于A 、B 两点.若动点P(m ,n)在线段AB 上,求mn 的最大值;(2) 若a>-1,直线l 与x 、y 轴分别交于M 、N 两点,求△OMN 面积取最大值时,直线l 的方程.解:(1) 当a =1时,直线l 的方程为2x +y -3=0,可化为2x 3+y3=1.由动点P(m ,n)在线段AB 上可知0≤m≤32,0≤n ≤3,且2m 3+n 3=1,∴ 1≥22m 3·n 3,∴ mn ≤98.当且仅当2m 3=n 3时等号成立,可解得m =34,n =32,故mn 的最大值为98. (2) 由直线方程可求得M ⎝ ⎛⎭⎪⎫2+a a +1,0、N(0,2+a),又a>-1,故S △OMN=12×2+a a +1×(2+a)=12×(a +1)2+2(a +1)+1a +1=12×[(a +1)+1a +1+2]≥12×⎝⎛⎭⎪⎫2(a +1)×1a +1+2=2,当且仅当a +1=1a +1,即a =0或a =-2(舍去)时等号成立.此时直线l 的方程为x +y -2=0. 备选变式(教师专享)直线l 经过点(3,2),且在两坐标轴上的截距相等,求直线l 的方程. 解:(解法1:借助点斜式求解)由于直线l 在两轴上有截距,因此直线不与x 、y 轴垂直,斜率存在,且k≠0.设直线方程为y -2=k(x -3),令x =0,则y =-3k +2;令y =0,则x =3-2k.由题设可得-3k +2=3-2k ,解得k =-1或k =23.故l 的方程为y -2=-(x -3)或y -2=23(x -3).即直线l 的方程为x +y -5=0或2x -3y =0. (解法2:利用截距式求解)由题设,设直线l 在x 、y 轴的截距均为a. 若a =0,则l 过点(0,0).又过点(3,2),∴ l 的方程为y =23x ,即l :2x -3y =0.若a≠0,则设l 为x a +ya =1.由l 过点(3,2),知3a +2a=1,故a =5.∴ l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0.1. (2014·海淀模拟改编)直线l 经过点A(1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.答案:k>12或k<-1解析:设直线的斜率为k ,则直线方程为y -2=k(x -1),直线在x 轴上的截距为1-2k,令-3<1-2k <3,解不等式可得k>12或k<-1.(也可以利用数形结合)2. (2014·长春调研改编)一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是________.(填序号)① m>1,且n<1;② mn<0;③ m>0,且n<0;④ m<0,且n<0. 答案:②解析:因为y =-m n x +1n 经过第一、三、四象限,故-m n >0,且1n<0,即m>0,且n<0,但此为充要条件,因此,其必要不充分条件为mn<0,故选填②.3. 直线l 经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,则直线l 的方程为________.答案:8x -5y +20=0或2x -5y -10=0解析:设所求直线l 的方程为x a +yb=1,∵ 直线l 过点P(-5,-4),∴ -5a +-4b =1,即4a +5b =-ab.又由已知有12|a|·|b|=5,即|ab|=10,解方程组⎩⎪⎨⎪⎧4a +5b =-ab ,|ab|=10,得⎩⎪⎨⎪⎧a =-52,b =4或⎩⎪⎨⎪⎧a =5,b =-2.故所求直线l 的方程为x -52+y 4=1或x 5+y-2=1.即8x -5y +20=0或2x -5y -10=0.4. (2014·银川联考)已知直线x +2y =2与x 轴、y 轴分别相交于A 、B 两点,若动点P(a ,b)在线段AB 上,则ab 的最大值为________.答案:12解析:由题意知A(2,0),B(0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2],又动点P(a ,b)在线段AB 上,所以a 2+b =1,a ∈[0,2],又a 2+b≥2ab 2,所以1≥2ab2,解得0≤ab≤12,当且仅当a 2=b =12,即P ⎝ ⎛⎭⎪⎫1,12时,ab 取得最大值12. 5. 已知△ABC 中,A(1,-4),B(6,6),C(-2,0).求:(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程,并化为截距式方程.解:(1) 平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标分别为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得一般式方程为6x -8y-13=0,截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即一般式方程为7x -y -11=0,截距式方程为x 117-y11=1.6. (原创)若直线l 的方程为(2m 2-m -1)x +(m 2-m)y +4m -1=0,求: (1) 参数m 的取值集合;(2) 若直线l 的斜率不存在,试确定直线l 在x 轴上的截距;(3) 若直线l 在y 轴上的截距等于直线4x -y -2=0的斜率,求直线l 的方程.解:(1) 由⎩⎪⎨⎪⎧2m 2-m -1=0,m 2-m =0,解得m =1,故参数m 的取值集合为{m|m≠1}.(2) 由⎩⎪⎨⎪⎧2m 2-m -1≠0,m 2-m =0,解得m =0,故直线方程为-x -1=0,即x =-1,故直线l 在x轴上的截距为-1.(3) 直线l 在y 轴上的截距存在时,截距为1-4mm 2-m,又直线4x -y -2=0的斜率为4,所以1-4m m 2-m =4,解得m =±12,所以直线l 的方程为4x +y -4=0或y =4.1. 直线x +a 2y -a =0(a>0,a 是常数),当此直线在x 、y 轴上的截距和最小时,a =________.答案:1解析:方程可化为x a +y 1a=1,因为a>0,所以截距之和t =a +1a ≥2,当且仅当a =1a ,即a =1时取等号.2. (原创)如果AC<0且BC>0,那么直线Ax +By +C =0不通过第________象限.答案:二解析:由已知条件知A ,B ,C 均不为0,直线Ax +By +C =0在x 轴上的截距-CA>0,直线一定过一、四象限,又直线在y 轴上的截距-CB<0,故直线一定过三、四象限,故直线不通过第二象限.3. 在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y)为整点.下列命题中正确的是________.(填序号).① 存在这样的直线,既不与坐标轴平行又不经过任何整点; ② 如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点; ③ 直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点;④ 直线y =kx +b 经过无穷多个整点的充要条件是:k 与b 都是有理数; ⑤ 存在恰经过一个整点的直线. 答案:①③⑤解析: ①正确.比如直线y =2x +3,不与坐标轴平行,且当x 取整数时,y 始终是一个无理数,即不经过任何整点.②错误.直线y =3x -3中k 与b 都是无理数,但直线经过整点(1,0).③正确.当直线经过两个整点时,它经过无数多个整点.④错误.当k=0,b =13时,直线y =13不通过任何整点.⑤正确.比如直线y =3x -3只经过一个整点(1,0).4. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________. 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0,整理得 (x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3. 5. 对直线l 上任一点(x ,y),点(4x +2y ,x +3y)仍在此直线上,求直线方程. 解:设直线方程Ax +By +C =0, ∴ A(4x +2y)+B(x +3y)+C =0, 整理得(4A +B)x +(2A +3B)y +C =0,∴ 上式也是l 的方程,当C≠0时,则有⎩⎪⎨⎪⎧A =4A +B ,B =2A +3B ,∴ A =B =0,此时直线不存在;当C =0时,两方程表示的直线均过原点,应有斜率相等,故-A B =-4A +B2A +3B,∴ A =B或B =-2A ,∴ 所求直线方程为x +y =0或x -2y =0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.请使用课时训练(A )第2课时(见活页).[备课札记]第3课时 直线与直线的位置关系⎝⎛⎭⎪⎫对应学生用书(文)116~118页 (理)121~123页1. (必修2P 93练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于________.答案:2-1解析:由题意知|a -2+3|2=1,∴ |a +1|=2,又a >0,∴ a =2-1.2. (必修2P 85习题7改编)已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a =________.答案:-1解析:由l 1∥l 2得a(a -2)-3=0且2a -6(a -2)≠0,解得a =-1.3. 经过点(-2,3),且与直线2x +y -5=0平行的直线方程为________. 答案:2x +y +1=0解析:由题意,所求直线的斜率与直线2x +y -5=0的斜率相同为-2,又过点(-2,3),所以直线方程为y -3=-2(x +2),即2x +y +1=0.4. (必修2P 85习题3改编)已知直线l 过两条直线3x +2y -1=0和2x -3y +8=0的交点,且与直线2x -3y +4=0垂直,则l 的方程是________.答案:3x +2y -1=0解析:由⎩⎪⎨⎪⎧3x +2y -1=0,2x -3y +8=0,得两直线的交点坐标为(-1,2),又由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.5. (必修2P 106习题18改编)已知直线l :y =3x +3,那么直线x -y -2=0关于直线l 对称的直线方程为____________.答案:7x +y +22=0解析:由⎩⎪⎨⎪⎧x -y -2=0,3x -y +3=0,得交点坐标P ⎝ ⎛⎭⎪⎫-52,-92.又直线x -y -2=0上的点Q(2,0)关于直线l 的对称点为Q ′⎝ ⎛⎭⎪⎫-175,95,故所求直线(即PQ′)的方程为y +92-95-92=x +52175-52,即7x +y +22=0.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数个解,则两直线方程表示的直线重合.3. 几种距离(1) 两点间的距离平面上的两点A(x 1,y 1),B(x 2,y 2)间的距离公式:d(A ,B)=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离点P(x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B2. (3) 两条平行线间的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.[备课札记]题型1 两直线的平行与垂直, 1) 两条直线l 1:(m +3)x +2y =5-3m ,l 2:4x +(5+m)y =16,分别求满足下列条件的m 的值.(1) l 1与l 2相交; (2) l 1与l 2平行; (3) l 1与l 2重合; (4) l 1与l 2垂直.解:可先从平行的条件a 1a 2=b 1b 2(化为a 1b 2=a 2b 1)着手.由m +34=25+m,得m 2+8m +7=0,解得m 1=-1,m 2=-7.由m +34=5-3m 16,得m =-1.(1) 当m≠-1且m≠-7时,a 1a 2≠b 1b 2,l 1与l 2相交.(2) 当m =-7时,a 1a 2=b 1b 2≠c 1c 2.l 1∥l 2.(3) 当m =-1时,a 1a 2=b 1b 2=c 1c 2,l 1与l 2重合.(4) 当a 1a 2+b 1b 2=0,即(m +3)·4+2·(5+m)=0,即m =-113时,l 1⊥l 2.变式训练已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1) 试判断l 1与l 2是否平行; (2) l 1⊥l 2时,求a 的值.解:(1) (解法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.(解法2)由A 1B 2-A 2B 1=0,得a(a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a(a 2-1)-1×6≠0,∴ l 1∥l 2⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6a =-1, 故当a =-1时,l 1∥l 2,否则l 1与l 2不平行. (2) (解法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a≠1且a≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1a =23.(解法2)由A 1A 2+B 1B 2=0得a +2(a -1)=0a =23.题型2 两直线的交点, 2) (2014·江苏联考)已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解:解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P(1,2).① 若点A 、B 在直线l 的同侧,则l∥AB.而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.② 若点A 、B 在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0. 备选变式(教师专享)已知直线l 经过点P(3,1),且被两平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段之长为5,求直线l 的方程.解:(解法1)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A′(3,-4)和B ′(3,-9),截得的线段AB 的长||AB =||-4+9=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k(x -3)+1.解方程组⎩⎪⎨⎪⎧y =k (x -3)+1x +y +1=0,得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎪⎨⎪⎧y =k (x -3)+1x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1. 由||AB =5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+(-4k -1k +1+9k -1k +1)2=52.解之,得k =0,即所求的直线方程为y =1. 综上可知,所求l 的方程为x =3或y =1. (解法2)由题意,直线l 1、l 2之间的距离为d =||1-62=522,且直线l 被平行直线l 1、l2所截得的线段AB 的长为5(如图).设直线l 与直线l 1的夹角为θ,则sin θ=52 25=22,故θ=45°.由直线l 1:x +y +1=0的倾斜角为135°,知直线l 的倾斜角为0°或90°.又直线l 过点P(3,1),故直线l 的方程为x =3或y =1.(解法3)设直线l 与l 1、l 2分别相交于A(x 1,y 1)、B(x 2,y 2),则x 1+y 1+1=0,x 2+y 2+6=0.两式相减,得(x 1-x 2)+(y 1-y 2)=5. ①又(x 1-x 2)2+(y 1-y 2)2=25, ②联立①②,可得⎩⎪⎨⎪⎧x 1-x 2=5,y 1-y 2=0 或⎩⎪⎨⎪⎧x 1-x 2=0,y 1-y 2=5,由上可知,直线l 的倾斜角分别为0°或90°. 故所求直线方程为x =3或y=1.题型3 点到直线及两平行直线之间的距离, 3) 已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1) 求a 的值;(2) 能否找到一点P ,使P 同时满足下列三个条件: ① 点P 在第一象限;② 点P 到l 1的距离是点P 到l 2的距离的12;③ 点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解:(1) 直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72. 又a >0,解得a =3.(2) 假设存在点P ,设点P(x 0,y 0),若P 点满足条件②,则P 点在与l 1,l 2平行的直线l′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=2|x 0+y 0-1|5×2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12;(舍去) 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件. 备选变式(教师专享)已知点P 1(2,3)、P 2(-4,5)和A(-1,2),求过点A 且与点P 1、P 2距离相等的直线方程.解:(解法1)设所求直线方程为y -2=k(x +1),即kx -y +k +2=0.由点P 1、P 2到直线的距离相等得||2k -3+k +2k 2+1=||-4k -5+k +2k 2+1. 化简得||3k -1=||-3k -3,则有3k -1=-3k -3或3k -1=3k +3,解得k =-13或方程无解.方程无解表明这样的k 不存在,但过点A ,所以直线方程为x =-1,它与P 1、P 2的距离都是3.∴所求直线方程为y -2=-13(x +1)或x =-1.(解法2)设所求直线为l ,由于l 过点A 且与P 1、P 2距离相等,所以l 有两种情况,如下图:①当P 1、P 2在l 的同侧时,有l∥P 1P 2,此时可求得l 的方程为y -2=5-3-4-2(x +1),即y -2=-13(x +1);②当P 1、P 2在l 的异侧时,l 必过P 1、P 2的中点(-1,4),此时l 的方程为x =-1.∴所求直线的方程为y -2=-13(x +1)或x =-1.题型4 对称问题, 4) 已知直线l :2x -3y +1=0,点A(-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A(-1,-2)对称的直线l′的方程. 解:(1) 设A′(x,y),再由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴ A ′⎝ ⎛⎭⎪⎫-3313,413. (2) 在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点必在m′上.设对称点为M′(a,b),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1.解得M′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N(4,3).∵ m ′经过点N(4,3),∴ 由两点式得直线方程为9x -46y +102=0.(3) 设P(x ,y)为l′上任意一点,则P(x ,y)关于点A(-1,-2)的对称点为P′(-2-x ,-4-y).∵ P ′在直线l 上,∴ 2(-2-x)-3(-4-y)+1=0,即2x -3y -9=0. 备选变式(教师专享)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于________.答案:43解析:以AB 、AC 所在直线分别为x 轴、y 轴建立平面直角坐标系,则A(0,0),B(4,0),C(0,4),得△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43,设AP =x ,从而P(x ,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC 、AC 的对称点P 1(4,4-x),P 2(-x ,0)与△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43共线,所以4343+x =43-(4-x )43-4,求得x =43.题型5 三角形中的直线问题, 5) 直线y =2x 是△ABC 中∠C 的平分线所在的直线,且A 、B 的坐标分别为A(-4,2)、B(3,1),求顶点C 的坐标并判断△ABC 的形状.解:由题意画出草图(如图所示).设点A(-4,2)关于直线l :y =2x 的对称点为A′(a,b),则A′必在直线BC 上.以下先求A′(a,b).由对称性可得⎩⎪⎨⎪⎧b -2a +4=-12,b +22=2·a -42,解得⎩⎪⎨⎪⎧a =4,b =-2,∴ A ′(4,-2).∴ 直线BC 的方程为y -1-2-1=x -34-3,即3x +y -10=0.由⎩⎪⎨⎪⎧y =2x ,3x +y -10=0,得C(2,4). ∴ k AC =13,k BC =-3,∴ AC⊥BC.∴ △ABC 是直角三角形. 备选变式(教师专享)已知△ABC 的顶点为A(3,-1),AB 边上的中线所在的直线方程为6x +10y -59=0,∠B 的平分线所在的直线方程为x -4y +10=0,求BC 边所在的直线方程.解:设B(4y 1-10,y 1),由AB 的中点在6x +10y -59=0上,可得6·4y 1-72+10·y 1-12-59=0,解得y 1 = 5,所以B 为(10,5).设A 点关于x -4y +10=0的对称点为A′(x′,y ′),则有⎩⎪⎨⎪⎧x′+32-4·y′-12+10=0,y ′+1x′-3·14=-1 A ′(1,7).故BC 边所在的直线方程为2x +9y -65=0.1. (2014·长沙模拟)已知过点A(-2,m)和点B(m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n =________.答案:-10解析:∵ l 1∥l 2,∴ k AB =4-m m +2=-2,解得m =-8.∵ l 2⊥l 3,∴ ⎝ ⎛⎭⎪⎫-1n ×(-2)=-1, 解得n =-2,∴ m +n =-10.2. 在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.答案:(2,4)解析:由题可知A(1,2),B(1,5),C(3,6),D(7,-1),四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4). 3. 与直线3x -4y +5=0关于x 轴对称的直线方程为________. 答案:3x +4y +5=0 解析:与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y)+5=0,即3x +4y +5=0.4. m 为何值时,直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0不能围成三角形?解:先考虑三条直线中有两条直线平行或重合的情况.① 若m≠0,则k 1=-4,k 2=-m ,k 3=23m ,当m =4时,k 1=k 2;当m =-16时,k 1=k 3;而k 2与k 3不可能相等.② 若m =0,则l 1:4x +y -4=0,l 2:y =0,l 3:x -2=0,此时三条直线能围成三角形.∴ 当m =4或m =-16时,三条直线不能围成三角形.再考虑三条直线共点的情况,此时m≠0且m≠4且m≠-16.将y =-mx 代入4x +y -4=0,得x =44-m,即l 1与l 2交于点P ⎝ ⎛⎭⎪⎫44-m,-4m 4-m ,将P 点坐标代入l 3的方程得84-m +12m 24-m -4=0,解得m =-1或m =23.∴ 当m =-1或m =23时,l 1,l 2,l 3交于一点,不能围成三角形.综上所述,当m 为-1或-16或23或4时,三条直线不能围成三角形.1. 若动点A 、B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为______.答案:3 2解析:依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离,设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2|m +7|=|m +5|m =-6,所以l 的方程为x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|6|2=3 2.2. (2014·济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =________.答案:-1或2解析:若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a≠0;当a≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2.3. (2014·金华调研)当0<k<12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.答案:二解析:解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k<12,所以k k -1<0,2k -1k -1>0,故交点在第二象限. 4. 已知△ABC 的两个顶点A(-1,5)和B(0,-1),又知∠C 的平分线所在的直线方程为2x -3y +6=0,求三角形各边所在直线的方程.解:设A 点关于直线2x -3y +6=0的对称点为A′(x 1,y 1),则⎩⎪⎨⎪⎧2·x 1-12-3·y 1+52+6=0,y 1-5x 1+1=-32,∴⎩⎪⎨⎪⎧2x 1-3y 1-5=0,3x 1+2y 1-7=0,解得⎩⎪⎨⎪⎧x 1=3113,y 1=-113,即A′⎝ ⎛⎭⎪⎫3113,-113,同理,点B 关于直线2x -3y +6=0的对称点为B ′⎝ ⎛⎭⎪⎫-3613,4113. ∵ 角平分线是角的两边的对称轴,∴ A ′点在直线BC 上.∴ 直线BC 的方程为y =-113-(-1) 3113-0x -1,整理得12x -31y -31=0.同理,直线AC 的方程为y -5=5-4113-1-⎝ ⎛⎭⎪⎫-3613(x +1),整理得24x -23y +139=0.直线AB 的方程为y =5-(-1)-1-0x -1,整理得6x +y +1=0.1. 在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2. 在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为Ax +By +C =0的形式,否则会出错.3. 对称问题主要包括中心对称和轴对称 (1) 中心对称① 点P(x ,y)关于O(a ,b)的对称点P′(x′,y ′)满足 ⎩⎪⎨⎪⎧x′=2a -x ,y ′=2b -y. ② 直线关于点的对称可转化为点关于点的对称问题来解决. (2) 轴对称① 点A(a ,b)关于直线Ax +By +C =0(B≠0)的对称点A ′(m ,n),则有n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B·b +n2+C =0.② 直线关于直线的对称可转化为点关于直线的对称问题来解决.。
高三数一轮复习课件:第九章 平面解析几何. .ppt..
kBP= 03--10=- 3, 所以 k∈(-∞,- 3]∪[1,+∞). 故填(-∞,- 3]∪[1,+∞).
2019年5月30日
你是我心中最美的云朵
18
类型二 求直线方程
根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为 1100; (2)直线过点(-3,4),且在两坐标轴上的截距相等; (3)直线过点(5,10),且到原点的距离为 5.
2019年5月30日
你是我心中最美的云朵
13
类型一 直线的倾斜角和斜率
(1)设直线 2x+my=1 的倾斜角为 α,若 m∈(-∞, -2 3)∪[2,+∞),则角 α 的取值范围是________.
解:据题意知 tanα=-m2 ,因为 m<-2 3或 m≥2.
所以 0<tanα< 33或-1≤tanα<0.
(3)过点 P1(x1,y1),P2(x2,y2)的直线方程 ①若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴,方程为____________; ②若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴,方程为____________; ③若 x1=x2=0,且 y1≠y2 时,直线即为 y 轴,方程为____________; ④若 x1≠x2,且 y1=y2=0,直线即为 x 轴,方程为____________.
x=
,
y=
.
2019年5月30日
你是我心中最美的云朵
4
2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴____________与 直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x 轴________或________ 时,我们规定它的倾斜角为 0°.因此,直线的倾斜角 α 的取值范围为 __________________. (2)斜率:一条直线的倾斜角 α 的____________叫做这条直线的斜率,常用小写字母 k 表示,即 k=______(α≠______).当直线平行于 x 轴或者与 x 轴重合时,k______0; 当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为 ______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示 直线的倾斜程度.
高考数学一轮复习 第九章 平面解析几何9
高考数学一轮复习 第九章 平面解析几何9.9 圆锥曲线中求值与证明问题题型一 求值问题例1 (12分)(2021·新高考全国Ⅰ)在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C .(1)求C 的方程; [切入点:双曲线定义](2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和. [关键点:利用等式列式]教师备选已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,F 是椭圆C 的一个焦点,点M (0,2)且|MF |=10.(1)求椭圆C 的方程;(2)若过点M 的直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为N ,且满足|AM |=|BN |,求l 的方程.解 (1)由题意,可得⎩⎪⎨⎪⎧ a =2b ,c 2+4=10,b 2+c 2=a 2,解得a =22,b =2,故椭圆C 的方程为x 28+y 22=1. (2)根据题意可得,点A 必在点B 的上方,才有|AM |=|BN |.当l 的斜率不存在时,|AM |=2-2,|BN |=2,|AM |≠|BN |,不合题意,故l 的斜率必定存在.设l 的方程为y =kx +2,由⎩⎪⎨⎪⎧ x 28+y 22=1,y =kx +2,得(1+4k 2)x 2+16kx +8=0,Δ=(16k )2-32(1+4k 2)=128k 2-32>0,即k 2>14. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-16k 1+4k 2,x 1x 2=81+4k 2. 设N (x 0,y 0),则x 0=x 1+x 22=-8k 1+4k 2. 由|AM |=|BN |可得,|AB |=|MN |,所以1+k 2|x 1-x 2|=1+k 2|x 0-0|,则x 1+x 22-4x 1x 2=|x 0|, 即424k 2-11+4k 2=⎪⎪⎪⎪8k 1+4k 2, 整理得k 2=12>14, 故k =±22,l 的方程为y =±22x +2. 思维升华 求值问题即是根据条件列出对应的方程,通过解方程求解.跟踪训练1 已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,P 为椭圆上任意一点,且△PF 1F 2面积的最大值为 3.(1)求椭圆M 的标准方程;(2)设A (4,0),直线y =kx +1与椭圆M 交于C ,D 两点,若直线AC ,AD 均与圆x 2+y 2=r 2(r >0)相切,求k 的值.解 (1)当点P 位于椭圆的上顶点或下顶点时面积最大,即(12PF F S △)max =12·|F 1F 2|·b =3, 解得b =3,又a 2=b 2+c 2,∴c =1,a =2,∴椭圆M 的标准方程为x 24+y 23=1. (2)设C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ x 24+y 23=1,y =kx +1,得(3+4k 2)x 2+8kx -8=0,Δ>0,∴x 1+x 2=-8k 3+4k 2,x 1x 2=-83+4k 2, ∵直线AC ,AD 都与圆相切,∴k AC +k AD =0,即y 1x 1-4+y 2x 2-4=0, ∴y 1x 2-4y 1+y 2x 1-4y 2x 1-4x 2-4=0, ∴2kx 1x 2+(1-4k )(x 1+x 2)-8=0,即-83+4k 2×2k -(1-4k )8k 3+4k 2-8=0, 即-24k =24,∴k =-1.题型二 证明问题例2 (2021·新高考全国Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3. (1)解 由题意得, 椭圆半焦距c =2且e =c a =63, 所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1. (2)证明 由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意;当直线MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),必要性:若M ,N ,F 三点共线,可设直线MN :y =k (x -2),即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|2k |k 2+1=1,解得k =±1, 联立⎩⎪⎨⎪⎧ y =±x -2,x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1·x 2=34, 所以|MN |=1+1·x 1+x 22-4x 1·x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b (kb <0),即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|b |k 2+1=1,所以b 2=k 2+1, 联立⎩⎪⎨⎪⎧ y =kx +b ,x 23+y 2=1, 可得(1+3k 2)x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1·x 2=3b 2-31+3k 2, 所以|MN |=1+k 2·x 1+x 22-4x 1·x 2=1+k 2⎝⎛⎭⎫-6kb 1+3k 22-4·3b 2-31+3k 2 =1+k 2·24k 21+3k 2=3, 化简得3(k 2-1)2=0,所以k =±1,所以⎩⎨⎧ k =1,b =-2或⎩⎨⎧ k =-1,b =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立,所以M ,N ,F 三点共线的充要条件是|MN |= 3.高考改编在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),离心率为12. (1)求椭圆C 的标准方程;(2)若过点F 的直线l 交C 于A ,B 两点,线段AB 的中点为M ,分别过A ,B 作C 的切线l 1,l 2,且l 1与l 2交于点P ,证明:O ,P ,M 三点共线.(1)解 由⎩⎪⎨⎪⎧ c =1,c a =12,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =3,∴椭圆C 的标准方程为x 24+y 23=1. (2)证明 由题意知直线l 的斜率不为0,设直线l 的方程为x =my +1,A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),P (x 3,y 3),由⎩⎪⎨⎪⎧x =my +1,3x 2+4y 2=12, 整理得3(m 2y 2+2my +1)+4y 2=12,即(3m 2+4)y 2+6my -9=0.∴y 0=y 1+y 22=-3m 3m 2+4, x 0=43m 2+4, ∴k OM =-34m . 直线l 1的方程为x 1x 4+y 1y 3=1,① 直线l 2的方程为x 2x 4+y 2y 3=1,② ②-①⇒y 3(y 2-y 1)=x 4(x 1-x 2) ⇒y x =34·x 1-x 2y 2-y 1=-34m , ∴y 3x 3=-34m =k OP , ∴k OM =k OP ,即O ,P ,M 三点共线.教师备选(2022·湖南师大附中模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆的短轴顶点到焦点的距离为 6.(1)求该椭圆C 的方程;(2)若直线l 与椭圆C 交于A ,B 两点,且|OA →+OB →|=|OA →-OB →|,求证:直线l 与某个定圆E相切,并求出定圆E 的方程.解 (1)∵椭圆的短轴顶点到焦点的距离为6, ∴b 2+c 2=a =6,∵椭圆的离心率e =c a =22, ∴c =3,∴b 2=a 2-c 2=3,∴椭圆C 的标准方程为x 26+y 23=1. (2)∵|OA →+OB →|=|OA →-OB →|,∴OA →⊥OB →,则OA →·OB →=0,①当直线l 的斜率不存在时,设l :x =t ,代入椭圆方程得,y =±6-t 22, 不妨令A ⎝ ⎛⎭⎪⎫t ,6-t 22,B ⎝⎛⎭⎪⎫t ,-6-t 22, 由OA →·OB →=0得,t 2-3+t 22=0,解得t =±2, 此时l :x =±2,与圆x 2+y 2=2相切;②当直线l 的斜率存在时,设l :y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2=6,y =kx +m 得, (1+2k 2)x 2+4kmx +2m 2-6=0,则Δ=16k 2m 2-4(1+2k 2)(2m 2-6)>0,化简得m 2<6k 2+3,①由根与系数的关系得,x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2, 则y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-6k 21+2k 2, 由OA →·OB →=0,即x 1x 2+y 1y 2=0可得,2m 2-61+2k 2+m 2-6k 21+2k 2=0, 整理得,m 2=2k 2+2,满足①式, ∴|m |k 2+1=2,即原点到直线l 的距离为2, ∴直线l 与圆x 2+y 2=2相切.综上所述,直线l 与圆E :x 2+y 2=2相切.思维升华 圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明. 跟踪训练2 双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以F 点为圆心,a 为半径的圆与C 的渐近线相切.(1)求C 的离心率;(2)已知点A ⎝⎛⎭⎫22a ,0,过F 点的直线与C 的右支交于M ,N 两点,证明:F 点到AM ,AN 的距离相等. (1)解 双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为bx ±ay =0,令点F (c,0),则c 2=a 2+b 2,因为以F 点为圆心,a 为半径的圆与C 的渐近线相切, 则bc a 2+b 2=a , 整理得b =a ,c =2a ,所以双曲线C 的离心率为e =c a= 2. (2)证明 由(1)知,双曲线C 的方程为2x 2-2y 2=c 2,点A ⎝⎛⎭⎫12c ,0,显然直线MN 不垂直于y轴,设直线MN :x =my +c ,因为直线MN 与双曲线右支交于两点,则直线MN 与双曲线的两条渐近线x ±y =0在y 轴右侧都相交,于是得-1<m <1,由⎩⎪⎨⎪⎧x =my +c ,2x 2-2y 2=c 2消去x 得2(m 2-1)y 2+4cmy +c 2=0, 设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=-2cm m 2-1,y 1y 2=c 22m 2-1, 直线AM 的斜率k AM =y 1x 1-12c =y 1my 1+c -12c =2y 12my 1+c , 同理,直线AN 的斜率k AN =2y 22my 2+c , 于是得k AM +k AN =2y 12my 1+c +2y 22my 2+c=8my 1y 2+2c y 1+y 22my 1+c 2my 2+c=8m ·c 22m 2-1+2c ⎝⎛⎭⎫-2cm m 2-12my 1+c 2my 2+c=0, 因此,直线AM 与AN 的倾斜角互补,则直线AM 与AN 关于x 轴对称,而点F 在x 轴上, 所以点F 到直线AM 与AN 的距离相等.课时精练1.已知抛物线C :y 2=2px (p >0)的准线与x 轴的交点为A (-1,0).(1)求C 的方程;(2)若过点M (2,0)的直线l 与抛物线C 交于P ,Q 两点.求证:1|PM |2+1|QM |2为定值. (1)解 由题意,可得-p 2=-1,即p =2, ∴抛物线C 的方程为y 2=4x .(2)证明 设直线l 的方程为x =my +2,P (x 1,y 1),Q (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +2,y 2=4x , 消去x 得y 2-4my -8=0,则Δ=16(m 2+2)>0,∴y 1+y 2=4m ,y 1y 2=-8,又|PM |=1+m 2|y 1|,|QM |=1+m 2|y 2|.∴1|PM |2+1|QM |2=11+m 2y 21+11+m 2y 22=y 21+y 221+m 2y 21y 22=16m 2+16641+m 2=1+m 241+m2=14. ∴1|PM |2+1|QM |2为定值.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1.所以椭圆的方程为x 25+y 24=1. (2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0).设直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k 2, 代入y =kx +2得y P =8-10k 24+5k 2, 所以直线OP 的斜率y P x P =4-5k 2-10k. 在y =kx +2中,令y =0,得x M =-2k. 由题意得N (0,-1),所以直线MN 的斜率为-k 2. 由OP ⊥MN ,得4-5k 2-10k ·⎝⎛⎭⎫-k 2=-1,化简得k 2=245,从而k =±2305. 所以直线PB 的斜率为2305或-2305.3.(2022·莆田质检)曲线C 上任意一点P 到点F (2,0)的距离与它到直线x =4的距离之比等于22,过点M (4,0)且与x 轴不重合的直线l 与C 交于不同的两点A ,B . (1)求C 的方程;(2)求证:△ABF 内切圆的圆心在定直线上. (1)解 设P (x ,y ),由题意,x -22+y 2|x -4|=22⇒(x -2)2+y 2 =12(x -4)2, 化简得x 28+y 24=1, 即C 的方程为x 28+y 24=1. (2)证明 设直线l :x =my +4,A (x 1,y 1),B (x 2,y 2),将l 代入C 得(m 2+2)y 2+8my +8=0,∴⎩⎨⎧ Δ=64m 2-32m 2+2>0⇒m 2>2,y 1+y 2=-8m m 2+2,y 1·y 2=8m 2+2.设直线AF 与BF 的斜率分别为k 1,k 2,则k 1+k 2=y 1x 1-2+y 2x 2-2=y 1my 1+2+y 2my 2+2 =2my 1y 2+2y 1+y 2my 1+2my 2+2 =2m ·8m 2+2+2⎝⎛⎭⎫-8m m 2+2my 1+2my 2+2=0. ∴k 1=-k 2,则∠BFM =π-∠AFM ,∴直线x =2平分∠AFB ,而三角形内心在∠AFB 的角平分线上, ∴△ABF 内切圆的圆心在定直线x =2上.4.(2022·深圳光明区模拟)已知双曲线C :x 2a2-y 2=1(a >0)的左、右焦点分别为F 1,F 2,E (0,1),过焦点F 2,且斜率为16的直线与C 的两条渐近线分别交于A ,B 两点,且满足AF 1→=2BO →. (1)求C 的方程;(2)过点D ⎝⎛⎭⎫-32,0且斜率不为0的直线l 交C 于M ,N 两点,且|EM |=|EN |,求直线l 的方程. 解 (1)双曲线C 的渐近线方程为y =±1ax , 过F 2(c,0),且斜率为16的直线方程为 y =16(x -c ), 由⎩⎨⎧ y =1a x ,y =16x -c得A ⎝⎛⎭⎫ac a -6,c a -6, 由⎩⎨⎧ y =-1a x ,y =16x -c得B ⎝ ⎛⎭⎪⎫ac a +6,-c a +6, 由于AF 1—→=2BO →,即⎝⎛⎭⎫-c -ac a -6,-c a -6=⎝ ⎛⎭⎪⎫-2ac a +6,2c a +6, 所以-c a -6=2c a +6,解得a =2. 所以双曲线C 的方程为x 24-y 2=1. (2)设l :y =k ⎝⎛⎭⎫x +32(k ≠0), 由⎩⎨⎧ y =k ⎝⎛⎭⎫x +32,x 24-y 2=1,消去y 并化简得(1-4k 2)x 2-12k 2x -9k 2-4=0,Δ=144k 4+4(1-4k 2)(9k 2+4)=16-28k 2>0,k 2<47且k ≠0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12k 21-4k 2, y 1+y 2=k (x 1+x 2+3)=k ⎝⎛⎭⎫12k 21-4k 2+3 =3k 1-4k 2, 所以M ,N 的中点G 的坐标为⎝ ⎛⎭⎪⎪⎫6k 21-4k 2,32k 1-4k 2, 由于|EM |=|EN |,所以EG ⊥MN ,k EG ·k MN =-1,32k 1-4k 2-16k 21-4k 2-0·k =-1, 化简得8k 2+15k -2=0,(k +2)(8k -1)=0,解得k =-2或k =18, 由于k 2<47且k ≠0, 所以k =18, 所以直线l 的方程为y =18⎝⎛⎭⎫x +32.。
新人教A版版高考数学一轮复习第九章平面解析几何双曲线教案理解析版
基础知识整合1.双曲线的概念平面内与两个定点F1,F2(|F1F2|=2c>0)的距离的差的绝对值为常数(小于|F1F2|且不等于零)的点的轨迹叫做错误!双曲线.这两个定点叫做双曲线的错误!焦点,两焦点间的距离叫做双曲线的错误!焦距.集合P={M|||MF1|—|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)当错误!a<c时,M点的轨迹是双曲线;(2)当错误!a=c时,M点的轨迹是两条错误!射线;(3)当错误!a>c时,M点不存在.2.双曲线的标准方程和几何性质续表a,b,c的关系,错误!c2=a2+b2(c>a>0,c>b>0)双曲线中的几个常用结论(1)焦点到渐近线的距离为B.(2)实轴长和虚轴长相等的双曲线叫做等轴双曲线.(3)双曲线为等轴双曲线⇔双曲线的离心率e=错误!⇔双曲线的两条渐近线互相垂直(位置关系).(4)过双曲线的一个焦点且与实轴垂直的弦的长为错误!.(5)双曲线的离心率公式可表示为e=错误!.1.(2018·浙江高考)双曲线错误!—y2=1的焦点坐标是()A.(—错误!,0),(错误!,0)B.(—2,0),(2,0)C.(0,—错误!),(0,错误!)D.(0,—2),(0,2)答案B解析因为双曲线方程为错误!—y2=1,所以焦点坐标可设为(±c,0),因为c2=a2+b2=3+1=4,c=2,所以焦点坐标为(±2,0),选B.2.(2019·宁夏模拟)设P是双曲线错误!—错误!=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|等于()A.1B.17C.1或17 D.以上均不对答案B解析根据双曲线的定义得||PF1|—|PF2||=8⇒|PF2|=1或17.又|PF2|≥c—a=2,故|PF2|=17,故选B.3.(2019·湖北模拟)若双曲线错误!—错误!=1(a>0,b>0)的一条渐近线经过点(3,—4),则此双曲线的离心率为()A.错误!B.错误!C.错误!D.错误!答案D解析由已知可得双曲线的渐近线方程为y=±错误!x,点(3,—4)在渐近线上,∴错误!=错误!,又a2+b2=c2,∴c2=a2+错误!a2=错误!a2,∴e=错误!=错误!.故选D.4.已知双曲线C:错误!—错误!=1(a>0,b>0)的焦距为10,点P(2,1)在C的渐近线上,则C 的方程为()A.错误!—错误!=1B.错误!—错误!=1C.错误!—错误!=1D.错误!—错误!=1答案A解析∵点P(2,1)在曲线C的渐近线y=错误!x上,∴1=错误!,∴a=2B.又∵错误!=错误!=5,即4b2+b2=25,∴b2=5,a2=20,故选A.5.(2018·北京高考)若双曲线错误!—错误!=1(a>0)的离心率为错误!,则a=________.答案4解析在双曲线中,c=错误!=错误!,且e=错误!=错误!,∴错误!=错误!,错误!=错误!,a2=16,∵a>0,∴a=4.6.已知双曲线错误!—错误!=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(错误!,0),则a=________;b=________.答案12解析由题可知双曲线焦点在x轴上,故渐近线方程为y=±错误!x,又一条渐近线为2x+y=0,即y=—2x,∴错误!=2,即b=2a.又∵该双曲线的一个焦点为(错误!,0),∴c=错误!.由a2+b2=c2可得a2+(2a)2=5,解得a=1,b=2.核心考向突破考向一双曲线的定义例1(1)(2019·山西模拟)已知双曲线C:错误!—错误!=1(a>0)的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左、右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|=()A.4B.6C.8 D.10答案C解析由题意得错误!=错误!,解得a=3.因为|PF1|=2,所以点P在双曲线的左支上.所以|PF2|—|PF 1|=2a,解得|PF2|=8.故选C.(2)(2019·河南濮阳模拟)已知双曲线x2—y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|—|P1P2|的最小值是()A.4B.6C.8 D.16答案C解析设双曲线的右焦点为F2,∵|F1P1|=2a+|F2P1|,|F1P2|=2a+|F2P2|,∴|F1P1|+|F 1P2|—|P1P2|=2a+|F2P1|+2a+|F2P2|—|P1P2|=8+(|F2P1|+|F2P2|—|P1P2|)≥8(当且仅当P1,P2,F2三点共线时,取等号),∴|F1P1|+|F1P2|—|P1P2|的最小值是8.故选C.触类旁通双曲线定义的应用主要有两个方面:一是判定平面内动点的轨迹是不是双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|—|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.即时训练1.虚轴长为2,离心率e=3的双曲线的两焦点为F1,F2,过F1作直线交双曲线的一支于A,B两点,且|AB|=8,则△ABF2的周长为()A.3B.16+错误!C.12+错误!D.24答案B解析由于2b=2,e=错误!=3,∴b=1,c=3a,∴9a2=a2+1,∴a=错误!.由双曲线的定义知,|AF2|—|AF1|=2a=错误!,1|BF2|—|BF1|=错误!,21+2得|AF2|+|BF2|—(|AF1|+|BF1|)=错误!,又|AF1|+|BF1|=|AB|=8,∴|AF2|+|BF2|=8+错误!,则△ABF2的周长为16+错误!,故选B.2.已知F是双曲线错误!—错误!=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.答案9解析设双曲线的右焦点为F1,则由双曲线的定义,可知|PF|=4+|PF1|,所以当|PF1|+|PA|最小时满足|PF|+|PA|最小.由双曲线的图象,可知当点A,P,F1共线时,满足|PF1|+|PA|最小,|AF1|即|PF 1|+|PA|的最小值.又|AF1|=5,故所求的最小值为9.考向二双曲线的标准方程例2(1)(2017·全国卷Ⅲ)已知双曲线C:错误!—错误!=1(a>0,b>0)的一条渐近线方程为y=错误!x,且与椭圆错误!+错误!=1有公共焦点,则C的方程为()A.错误!—错误!=1B.错误!—错误!=1C.错误!—错误!=1D.错误!—错误!=1答案B解析由y=错误!x可得错误!=错误!.1由椭圆错误!+错误!=1的焦点为(3,0),(—3,0),可得a2+b2=9.2由12可得a2=4,b2=5.所以C的方程为错误!—错误!=1.故选B.(2)已知双曲线错误!—错误!=1(a>0,b>0)的左焦点为F,离心率为错误!.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.错误!—错误!=1B.错误!—错误!=1C.错误!—错误!=1D.错误!—错误!=1答案B解析由题意可得错误!=错误!,即c=错误!A.又左焦点F(—c,0),P(0,4),则直线PF的方程为错误!=错误!,化简即得y=错误!x+4.结合已知条件和图象易知直线PF与y=错误!x平行,则错误!=错误!,即4a=bC.故错误!解得错误!故双曲线方程为错误!—错误!=1.故选B.触类旁通即时训练3.(2019·西安模拟)已知双曲线错误!—错误!=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.错误!—错误!=1B.错误!—错误!=1C.错误!—错误!=1D.错误!—错误!=1答案A解析依题意,双曲线的渐近线为y=2x,故错误!=21;在直线y=2x+10中,令y=0,故x=—5,所以a2+b2=252.联立12,解得a2=5,b2=20.4.(2018·天津高考)已知双曲线错误!—错误!=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.错误!—错误!=1B.错误!—错误!=1C.错误!—错误!=1D.错误!—错误!=1答案C解析设双曲线的右焦点坐标为F(c,0)(c>0),则xA=xB=c,由错误!—错误!=1可得,y=±错误!,不妨设A错误!,B错误!,双曲线的一条渐近线方程为bx—ay=0,据此可得,d1=错误!=错误!,d2=错误!=错误!,则d1+d2=错误!=2b=6,则b=3,b2=9,双曲线的离心率e=错误!=错误!=错误!=2,据此可得,a2=3,则双曲线的方程为错误!—错误!=1.考向三双曲线的几何性质角度错误!双曲线离心率问题例3(1)(2018·江苏高考)在平面直角坐标系xOy中,若双曲线错误!—错误!=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为错误!c,则其离心率的值是___.答案2解析因为双曲线的焦点F(c,0)到渐近线y=±错误!x,即bx±ay=0的距离为错误!=错误!=b,所以b=错误!c,因此a2=c2—b2=c2—错误!c2=错误!c2,a=错误!c,e=2.(2)(2016·山东高考)已知双曲线E:错误!—错误!=1(a>0,b>0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是________.答案2解析由已知得|AB|=|CD|=错误!,|BC|=|AD|=|F1F2|=2c.因为2|AB|=3|BC|,所以错误!=6c,又b2=c2—a2,所以2e2—3e—2=0,解得e=2,或e=—错误!(舍去).触类旁通求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a,b,c的方程或不等式,利用b2=c2—a2和e=错误!转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.即时训练5.双曲线错误!—错误!=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2⊥x轴,则双曲线的离心率为()A.错误!B.错误!C.错误!D.错误!答案B解析如图所示,在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c,∴MF1=错误!=错误!c,MF2=2c·tan30°=错误!c,∴2a=MF1—MF2=错误!c—错误!c=错误!c⇒e=错误!=错误!.6.已知点F1,F2分别是双曲线错误!—错误!=1(a>0,b>0)的左、右焦点,过点F1且垂直于x 轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是()A.(1,错误!)B.(错误!,2错误!)C.(1+错误!,+∞)D.(1,1+错误!)答案D解析依题意,0<∠AF2F1<错误!,故0<tan∠AF2F1<1,则错误!=错误!<1,即e—错误!<2,e 2—2e—1<0,(e—1)2<2,所以1<e<1+错误!,故选D.角度错误!双曲线的渐近线问题例4(1)(2018·全国卷Ⅱ)双曲线错误!—错误!=1(a>0,b>0)的离心率为错误!,则其渐近线方程为()A.y=±错误!x B.y=±错误!xC.y=±错误!x D.y=±错误!x答案A解析∵e=错误!=错误!,∴错误!=错误!=e2—1=3—1=2,∴错误!=错误!.因为该双曲线的渐近线方程为y=±错误!x,所以该双曲线的渐近线方程为y=±错误!x,故选A.(2)(2019·深圳调研)在平面直角坐标系xOy中,双曲线的中心在原点,焦点在y轴上,一条渐近线方程为x—2y=0,则它的离心率为()A.错误!B.错误!C.错误!D.2答案A解析依题意设双曲线的方程是错误!—错误!=1(其中a>0,b>0),则其渐近线方程是y=±错误!x,由题知错误!=错误!,即b=2a,因此其离心率e=错误!=错误!=错误!.触类旁通即时训练7.(2018·全国卷Ⅲ)已知双曲线C:错误!—错误!=1(a>0,b>0)的离心率为错误!,则点(4,0)到C的渐近线的距离为()A.错误!B.2C.错误!D.2错误!答案D解析因为e=错误!=错误!=错误!,所以错误!=1,所以双曲线的渐近线方程为x±y=0,所以点(4,0)到渐近线的距离d=错误!=2错误!.故选D.8.(2019·河北武邑中学模拟)过双曲线错误!—错误!=1(a>0,b>0)的右焦点与x轴垂直的直线与渐近线交于A,B两点,若△OAB的面积为错误!,则双曲线的离心率为()A.错误!B.错误!C.错误!D.错误!答案D解析设A(x0,y0),由题意,得x0=c,代入渐近线方程y=错误!x中,得y0=错误!,即A错误!,同理可得B错误!,则错误!×错误!×c=错误!.整理,得错误!=错误!,即双曲线的离心率为错误!.故选D.考向四直线与双曲线的位置关系例5已知双曲线Γ:错误!—错误!=1(a>0,b>0)经过点P(2,1),且其中一焦点F到一条渐近线的距离为1.(1)求双曲线Γ的方程;(2)过点P作两条相互垂直的直线PA,PB分别交双曲线Γ于A,B两点,求点P到直线AB距离的最大值.解(1)∵双曲线错误!—错误!=1过点(2,1),∴错误!—错误!=1.不妨设F为右焦点,则F(c,0)到渐近线bx—ay=0的距离d=错误!=b,∴b=1,a2=2,∴所求双曲线的方程为错误!—y2=1.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+m.将y=kx+m代入x2—2y2=2中,整理得(2k2—1)x2+4kmx+2m2+2=0.∴x1+x2=错误!,1x1x2=错误!.2∵错误!·错误!=0,∴(x1—2,y1—1)·(x2—2,y2—1)=0,∴(x1—2)(x2—2)+(kx1+m—1)(kx2+m—1)=0,∴(k2+1)x1x2+(km—k—2)(x1+x2)+m2—2m+5=0.3将12代入3,得m2+8km+12k2+2m—3=0,∴(m+2k—1)(m+6k+3)=0.而P∉AB,∴m=—6k—3,从而直线AB的方程为y=kx—6k—3.将y=kx—6k—3代入x2—2y2—2=0中,判别式Δ=8(34k2+36k+10)>0恒成立,∴y=kx—6k—3即为所求直线.∴P到AB的距离d=错误!=错误!.∵错误!2=错误!=1+错误!≤2.∴d≤4错误!,即点P到直线AB距离的最大值为4错误!.求解双曲线综合问题的主要方法双曲线的综合问题主要为直线与双曲线的位置关系.解决这类问题的常用方法是:1设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x或y的一元二次方程,利用根与系数的关系及整体代入的思想解题.错误!即时训练9.设双曲线C:错误!—y2=1(a>0)与直线l:x+y=1相交于两个不同点A,B.(1)求双曲线C的离心率e的取值范围;(2)设直线l与y轴的交点为P,取错误!=错误!错误!,求a的值.解(1)将y=—x+1代入双曲线错误!—y2=1(a>0)中,得(1—a2)x2+2a2x—2a2=0.所以错误!解得0<a<错误!且a≠1.又双曲线的离心率e=错误!=错误!,所以e>错误!且e≠错误!,即e∈错误!∪(错误!,+∞).(2)设A(x1,y1),B(x2,y2),P(0,1),因为错误!=错误!错误!,所以(x1,y1—1)=错误!(x2,y2—1),由此得x1=错误!x2.由于x1,x2是方程(1—a2)x2+2a2x—2a2=0的两根,且1—a2≠0,所以x1+x2=错误! x2=—错误!,x1x2=错误!x错误!=—错误!,消去x2得—错误!=错误!,由a>0,解得a=错误!.。
高考数学一轮复习第九章平面解析几何第7讲抛物线教案理(含解析)新人教A版
高考数学一轮复习第九章平面解析几何第7讲抛物线教案理(含解析)新人教A版第7讲抛物线基础知识整合1.抛物线的定义平面内与一个定点F和一条定直线l(l不过F)的距离□01相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的□02准线.其数学表达式:□03|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则: (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦长等于2p .1.抛物线y =2x 2的准线方程为( ) A .y =-18B .y =-14C .y =-12D .y =-1答案 A解析 由y =2x 2,得x 2=12y ,故抛物线y =2x 2的准线方程为y =-18,故选A.2.(2019·黑龙江联考)若抛物线x 2=4y 上的点P (m ,n )到其焦点的距离为5,则n =( )A.194 B.92C .3D .4 答案 D解析 抛物线x 2=4y 的准线方程为y =-1.根据抛物线的定义可知5=n +1,解得n =4.故选D.3.已知抛物线C :y =x 28的焦点为F ,A (x 0,y 0)是C 上一点,且|AF |=2y 0,则x 0=( )A .2B .±2 C.4 D .±4 答案 D解析 由y =x 28,得x 2=8y ,∴抛物线C 的准线方程为y =-2,焦点为F (0,2).由抛物线的性质及题意,得|AF |=2y 0=y 0+2.解得y 0=2,∴x 0=±4.故选D.4.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4x B .y 2=6x C .y 2=8x D .y 2=10x答案 C解析 ∵抛物线y 2=2px ,∴准线方程为x =-p2.∵点P (2,y 0)到其准线的距离为4.∴⎪⎪⎪⎪⎪⎪-p2-2=4.∴p =4,∴抛物线的标准方程为y 2=8x .5.(2019·广东中山统测)过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=( )A .6B .8C .9D .10 答案 B解析 由题意知,抛物线y 2=4x 的准线方程是x =-1.∵过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,∴|AB |=x 1+x 2+2.又∵x 1+x 2=6,∴|AB |=x 1+x 2+2=8.故选B.6.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4 答案 C解析 利用|PF |=x P +2=42,可得x P =32, ∴y P =±2 6.∴S △POF =12|OF |·|y P |=2 3.故选C.核心考向突破考向一 抛物线的定义角度1 到焦点与到定点距离之和最小问题例1 (2019·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,2)答案 D解析 过M 点作准线的垂线,垂足为N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).角度2 到点与准线的距离之和最小问题例2 (2019·邢台模拟)已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.答案 5解析 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1,则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.角度3 到定直线的距离最小问题例3 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115D .3 答案 B解析 由题意可知l 2:x =-1 是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.触类旁通与抛物线有关的最值问题的两个转化策略(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.2将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.)即时训练 1.(2019·潍坊质检)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2) 答案 B解析 如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义,知|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,即当且仅当A ,P ,N 三点共线时取等号.∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A ,C ,D ,故选B.2.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( )A. 3B. 5 C .2 D.5-1 答案 D解析 由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+-12=5,所以d +|PF |-1的最小值为5-1.考向二 抛物线的方程例4 (1)(2019·运城模拟)已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为( )A .x 2=32yB .x 2=6y C .x 2=-3y D .x 2=3y答案 D解析 设点M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 2=ay ,y =2x -2消去y ,得x 2-2ax +2a =0,所以x 1+x 22=2a 2=3,即a =3,因此所求的抛物线方程是x 2=3y . (2)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 6解析 抛物线的准线方程为y =-p2,设A ,B 的横坐标分别为x A ,x B ,则|x A |2=|x B |2=3+p 24,所以|AB |=|2x A |.又焦点到准线的距离为p ,由等边三角形的特点,得p =32|AB |,即p 2=34×4×⎝ ⎛⎭⎪⎫3+p 24,所以p =6. 触类旁通求抛物线的标准方程应注意的几点(1)当坐标系已建立时,应根据条件确定抛物线的标准方程属于四种类型中的哪一种. 2要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系. 3要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 即时训练 3.(2019·上海模拟)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16x D .y 2=152x答案 B解析 设M (x ,y ),∵|OF |=p 2,|MF |=4|OF |,∴|MF |=2p ,由抛物线的定义知x +p2=2p ,∴x =32p ,∴y =±3p ,又△MFO 的面积为43,∴12×p2×3p =43,解得p =4(p =-4舍去).∴抛物线的方程为y 2=8x .4.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.答案 x 2=3y解析 设直线l 的方程为y =3x +b ,联立⎩⎨⎧y =3x +b ,x 2=2py ,消去y ,得x 2=2p (3x +b ).即x 2-23px -2pb =0,∴x 1+x 2=23p =3.∴p =32,∴抛物线的方程为x 2=3y .考向三 抛物线的性质例5 (1)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为( )A .x =1B .x =2C .x =-1D .x =-2 答案 C解析 抛物线y 2=2px (p >0)的焦点为⎝ ⎛⎭⎪⎫p2,0,所以过焦点且斜率为-1的直线方程为y=-⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,整理得x 2-3px +p 24=0,由AB 中点的横坐标为3,得3p =6,解得p =2,故抛物线y 2=4x 的准线方程为x =-1.(2)(2018·北京高考)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为________.答案 (1,0)解析 如图,由题意可得,点P (1,2)在抛物线上,将P (1,2)代入y 2=4ax ,解得a =1,∴y 2=4x ,由抛物线方程可得,2p =4,p =2,p2=1,∴焦点坐标为(1,0).触类旁通1涉及抛物线上的点到焦点的距离或到准线的距离时,常可相互转化. 2应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.即时训练 5.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8 答案 B解析 不妨设C :y 2=2px (p >0),A (x 1,22),则x 1=2222p=4p,由题意可知|OA |=|OD |,得⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.故选B.6.在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是________.答案 x =-52解析 OA 的中点的坐标为(2,1),斜率k OA =12,OA 的垂直平分线的方程为y -1=-2(x-2),即y =-2x +5.又∵抛物线y 2=2px (p >0)的焦点在x 轴上,即y =0.由⎩⎪⎨⎪⎧y =0,y =-2x +5,得抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫52,0,∴52=p 2,∴抛物线的准线方程为x =-52. 考向四 直线与抛物线的位置关系例6 (2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;。
高考数学一轮复习 第九章 平面解析几何9
高考数学一轮复习 第九章 平面解析几何9.13 圆锥曲线压轴小题突破题型一 圆锥曲线与向量、圆等知识的交汇问题例1 (1)(2022·蓉城名校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1(-c ,0),F 2(c ,0),点P 是椭圆C 上一点,满足|PF 1—→+PF 2—→|=|PF 1—→-PF 2—→|,若以点P 为圆心,r 为半径的圆与圆F 1:(x +c )2+y 2=4a 2,圆F 2:(x -c )2+y 2=a 2都内切,其中0<r <a ,则椭圆C 的离心率为( ) A.12 B.34 C.104D.154答案 C解析 由|PF 1—→+PF 2—→|=|PF 1—→-PF 2—→|两边平方, 可得PF 1—→·PF 2—→=0,则PF 1—→⊥PF 2—→,由已知得⎩⎪⎨⎪⎧|PF 1|=2a -r ,|PF 2|=a -r ,即|PF 1|-|PF 2|=a ,由|PF 1|+|PF 2|=2a ,得⎩⎨⎧|PF 1|=3a2,|PF 2|=a2,在△PF 1F 2中,由|PF 1|2+|PF 2|2=|F 1F 2|2 得9a 24+a 24=4c 2,即e 2=c 2a 2=58,所以e =104. (2)已知O 为坐标原点,双曲线C :x 2-y 23=1的右焦点为F ,直线l 过点F 且与C 的右支交于M ,N 两点,若OM →+ON →=2OA →,OA →·OF →=8,则直线l 的斜率k 为( ) A .±2 B .±6 C .±2 2 D .±3答案 B解析 设M (x 1,y 1),N (x 2,y 2),A (x 0,y 0), 由题意可知F (2,0),A 是线段MN 的中点, OA →·OF →=2x 0=8, ∴x 0=4,∵M ,N 分别是双曲线右支上的点,∴⎩⎨⎧x 21-y 213=1,x 22-y223=1,两式相减并整理得 (x 1+x 2)(x 1-x 2)-y 1+y 2y 1-y 23=0,∴2x 0-2y 0·k3=0,即4-y 0·k 3=0,又k =k AF =y 0x 0-2=y 02,∴y 0=±26,∴k =±6. 经检验,符合题意.思维升华 高考对圆锥曲线的考查,经常出现一些与其他知识交汇的题目,如与平面向量交汇、与三角函数交汇、与不等式交汇、与导数交汇等等,这些问题的实质是圆锥曲线问题. 跟踪训练1 (1)(2022·深圳模拟)F 1,F 2分别为双曲线C :x 2-y 22=1的左、右焦点,过F 1的直线l 与C 的左、右两支曲线分别交于A ,B 两点,若l ⊥F 2B ,则F 2A —→·F 2B —→等于( )A .4-2 3B .4+ 3C .6-2 5D .6+2 5答案 C解析 在双曲线C 中,a =1,b =2,c =3, 则F 1(-3,0),F 2(3,0),因为直线l 过点F 1,由图知,直线l 的斜率存在且不为零,因为l ⊥F 2B ,则△F 1BF 2为直角三角形, 可得|BF 1|2+|BF 2|2 =|F 1F 2|2=12,由双曲线的定义可得|BF 1|-|BF 2|=2, 所以4=(|BF 1|-|BF 2|)2 =|BF 1|2+|BF 2|2-2|BF 1|·|BF 2| =12-2|BF 1|·|BF 2|, 可得|BF 1|·|BF 2|=4,联立⎩⎪⎨⎪⎧|BF 1|-|BF 2|=2,|BF 1|·|BF 2|=4,解得|BF 2|=5-1,因此F 2A —→·F 2B —→=(F 2B —→+BA →)·F 2B —→ =F 2B —→2+BA →·F 2B —→ =(5-1)2=6-2 5.(2)设抛物线y 2=2px (p >0)的焦点为F ,倾斜角为θ⎝⎛⎭⎫0<θ<π2的直线l 经过抛物线的焦点F ,且与抛物线相交于M ,N 两点.若FM →·FN →=-2FN →2,则sin 2θ等于( ) A.223B.13C.24D.429答案 D解析 如图所示,过点M ,N 分别作准线的垂线,垂足分别为D ,C ,直线l 与准线交于点E ,由题意可得 |FM →|=2|FN →|,设|FN |=x ,则|FM |=2x ,由抛物线的定义可知,|CN |=x ,|MD |=2x , |CN ||MD |=|EN ||EM |=12, 所以|EN |=3x ,在△ENC 中,cos ∠ENC =|CN ||EN |=13=cos θ,所以sin θ=223,则sin 2θ=2sin θcos θ=429.题型二 圆锥曲线与三角形“四心”问题例2 (1)在平面直角坐标系xOy 中,F 1(-c,0),F 2(c,0)分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,位于第一象限上的点P (x 0,y 0)是双曲线C 上的一点,△PF 1F 2的外心M 的坐标为⎝⎛⎭⎫0,33c ,△PF 1F 2的面积为23a 2,则双曲线C 的渐近线方程为( ) A .y =±x B .y =±22xC .y =±12xD .y =±2x答案 D解析 由△PF 1F 2的外心M ⎝⎛⎭⎫0,33c , 知tan ∠MF 1F 2=tan ∠MF 2F 1=|OM ||OF 1|=33,∴在△MF 1F 2中,∠MF 1F 2=∠MF 2F 1=π6,即∠F 1MF 2=2π3,故∠F 1PF 2=π3,在△F 1PF 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2, 而|PF 1|-|PF 2|=2a ,∴|PF 1|2+|PF 2|2=4a 2+2|PF 1||PF 2|, 即4c 2=4a 2+2|PF 1||PF 2|(1-cos ∠F 1PF 2), ∴|PF 1||PF 2|=2c 2-a 21-cos ∠F 1PF 2=2b 21-cos ∠F 1PF 2,而12PF F S △=12|PF 1||PF 2|sin ∠F 1PF 2=b 2sin ∠F 1PF 21-cos ∠F 1PF 2 =3b 2,∴由题意知b 2=2a 2,故双曲线的渐近线方程为y =±2x .(2)已知抛物线C :y 2=2px (p >0)的焦点为F (2,0),过点F 的直线交C 于A ,B 两点,△OAB的重心为点G ,则点G 到直线3x -3y +1=0的距离的最小值为( ) A .2 B. 2 C.22D .2 2答案 C解析 由题意,抛物线方程为y 2=8x , 设直线AB 为x =my +2,A (x 1,y 1),B (x 2,y 2),∴联立直线与抛物线方程得y 2-8my -16=0且Δ=64(m 2+1)>0, 则y 1+y 2=8m ,∴x 1+x 2=m (y 1+y 2)+4=8m 2+4, 又△OAB 的重心为点G , 即G ⎝⎛⎭⎫x 1+x 23,y 1+y 23,∴G⎝⎛⎭⎫8m 2+43,8m 3,则G 到直线3x -3y +1=0的距离d =|8m 2-8m +5|32=⎪⎪⎪⎪8⎝⎛⎭⎫m -122+332,∴当m =12时,d min =|3|32=22.思维升华 圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题.但“四心”问题进入圆锥曲线后,让我们更是耳目一新.在高考数学复习中,通过研究三角形的“四心”与圆锥曲线的结合问题,快速提高数学解题能力.跟踪训练2 (1)已知F 1(-1,0),F 2(1,0),M 是第一象限内的点,且满足|MF 1|+|MF 2|=4,若I 是△MF 1F 2的内心,G 是△MF 1F 2的重心,记△IF 1F 2与△GF 1M 的面积分别为S 1,S 2,则( ) A .S 1>S 2 B .S 1=S 2C .S 1<S 2D .S 1与S 2大小不确定答案 B解析 因为|MF 1|+|MF 2|=4>|F 1F 2|=2,所以M 的轨迹是椭圆x 24+y 23=1在第一象限内的部分,如图所示.因为I 是△MF 1F 2的内心,设内切圆的半径为r , 所以|MF 1|+|MF 2|+|F 1F 2|·r2=|F 1F 2|·y M2, 所以r =y M3,所以S 1=|F 1F 2|·r 2=y M3,又因为G 是△MF 1F 2的重心, 所以OG ∶GM =1∶2, 所以12121323MOF F MF S S S=△△ =13·|F 1F 2|·y M 2=y M3, 所以S 1=S 2.(2)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 32解析 设OA 所在的直线方程为y =ba x ,则OB 所在的直线方程为y =-bax ,解方程组⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得⎩⎨⎧x =2pb a,y =2pb2a 2,所以点A 的坐标为⎝⎛⎭⎫2pb a ,2pb 2a 2 , 抛物线的焦点F 的坐标为⎝⎛⎭⎫0,p2. 因为F 是△OAB 的垂心,所以k OB ·k AF =-1 , 所以-b a ·⎝ ⎛⎭⎪⎫2pb 2a 2-p22pb a=-1⇒b 2a 2=54.所以e 2=c 2a 2=1+b 2a 2=94,解得e =32.题型三 圆锥曲线在生活中的应用例3 (1)(2022·铜仁质检)根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知F 1,F 2分别是双曲线C :x 2-y 22=1的左、右焦点,若从点F 2发出的光线经双曲线右支上的点A (x 0,2)反射后,反射光线为射线AM ,则∠F 2AM 的角平分线所在的直线的斜率为( ) A .- 3 B .-33C.33D. 3答案 B解析 由已知可得A (x 0,2)在第一象限, 将点A 的坐标代入双曲线方程可得x 20-42=1, 解得x 0=3,所以A (3,2), 又由双曲线的方程可得a =1,b =2,所以c =3,则F 2(3,0),所以|AF 2|=2,且点A ,F 2都在直线x =3上, 又|OF 1|=|OF 2|=3,所以tan ∠F 1AF 2=|F 1F 2||AF 2|=232=3,所以∠F 1AF 2=60°,设∠F 2AM 的角平分线为AN , 则∠F 2AN =(180°-60°)×12=60°,所以∠F 2AM 的角平分成所在的直线AN 的倾斜角为150°, 所以直线的斜率为tan 150°=-33. (2)第24届冬奥会,是中国历史上第一次举办的冬季奥运会,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图1,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图2),且两切线斜率之积等于-916,则椭圆的离心率为( )图1 图2 A.34 B.74 C.916 D.32 答案 B解析 若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2ma2+y 2mb2=1(m >1),∴A (-ma ,0),B (0,mb ), 设切线AC 为y =k 1(x +ma ),切线BD 为y =k 2x +mb , ∴⎩⎪⎨⎪⎧y =k 1x +ma ,x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0, 由Δ=0知(2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0,整理得k 21=b 2a 2·1m 2-1,同理⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1),∴(k 1k 2)2=b 4a 4=⎝⎛⎭⎫-9162,即b 2a 2=916, 故e =ca=a 2-b 2a 2=74. 思维升华 圆锥曲线的光学性质、新定义问题、圆锥曲线的应用等内容在高考占一席之地.研究圆锥曲线的光学性质、新定义问题、圆锥曲线的应用等相关问题,体现出数学的应用性. 跟踪训练3 (1)如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C 切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |等于( )A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶ 3答案 C解析 由椭圆的光学性质得直线l ′平分∠F 1PF 2,因为1212||||PMF PMF S F M M S F△△=12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|, 由|PF 1|=1,|PF 1|+|PF 2|=4得|PF 2|=3, 故|F 1M |∶|F 2M |=1∶3.(2)一个工业凹槽的轴截面是双曲线的一部分,它的方程是y 2-x 2=1,y ∈[1,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A .1B .2C .3D .2.5 答案 A解析 清洁钢球能擦净凹槽的最底部时,轴截面如图所示,圆心在双曲线的对称轴上,且圆与双曲线的顶点相切,设半径为r ,圆心为(0,r +1), 圆的方程为x 2+(y -r -1)2=r 2, 代入双曲线方程y 2-x 2=1,得y 2-(r +1)y +r =0,∴y =1或y =r , 要使清洁钢球到达底部,即r ≤1.课时精练1.(2022·遵义模拟)双曲线x 29-y 227=1上一点P 到右焦点F 2的距离为6,F 1为左焦点,则∠F 1PF 2的角平分线与x 轴交点坐标为( ) A .(-1,0) B .(0,0) C .(1,0) D .(2,0)答案 D解析 设交点为D (x ,0),用面积法12121||21||2PDF PDF F D hF h S D S ⋅=⋅△△,化简可得角平分线定理|DF 1||PF 1|=|DF 2||PF 2|,由双曲线定义知|PF 1|=2a +|PF 2|=6+6=12,所以交点到左焦点距离是其到右焦点距离的2倍,因为左焦点(-6,0),右焦点(6,0),所以x +6=2(6-x ),解得x =2.2.天文学家开普勒的行星运动定律可表述为:绕同一中心天体的所有行星的椭圆轨道的长半轴a 的三次方跟它的公转周期T 的二次方的比值都相等,即a 3T 2=k ,k =GM4π2,其中M 为中心天体质量,G 为引力常量,已知地球绕以太阳为中心天体的椭圆轨道的长半轴长约为1.5亿千米,地球的公转周期为1年,距离太阳最远的冥王星绕以太阳为中心天体的椭圆轨道的长半轴长约为60亿千米,取10≈3.1,则冥王星的公转周期约为( ) A .157年 B .220年 C .248年 D .256年答案 C解析 设地球椭圆轨道的长半轴为a 1,公转周期为T 1.冥王星椭圆轨道的长半轴为a 2,公转周期为T 2.则⎩⎨⎧a 31T 21=GM 4π2,a 32T 22=GM 4π2,两式相除并化简得T 22=a 32a 31×T 21=⎝⎛⎭⎫601.53×1=6 400×10, 所以T 2=8010≈80×3.1=248(年).3.(2022·东三省四市联考)已知直线x +y =a 与圆x 2+y 2=4交于A ,B 两点,O 为坐标原点,|OA →+OB →|=3·|OA →-OB →|,则实数a 的值为( ) A .±2 B .±2 C .±3 D .±6答案 D解析 由|OA →+OB →|=3|OA →-OB →|得, (OA →+OB →)2=3(OA →-OB →)2, 又O 为圆x 2+y 2=4的圆心, 则|OA →|=|OB →|=2, 所以OA →·OB →=2,所以|OA →||OB →|cos ∠AOB =2, 即cos ∠AOB =12,所以∠AOB =π3,所以△AOB 为等边三角形,则O 到直线x +y =a 的距离为d =3, 即d =|-a |12+12=3,解得a =±6. 4.(2022·郑州模拟)已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,P ,Q 是椭圆上关于x 轴对称的两点,直线AP ,BQ 的斜率分别为k 1,k 2(k 1k 2≠0).若椭圆的离心率为22,则|k 1|+|k 2|的最小值为( )A .1 B. 2 C.32D. 3 答案 B解析 设点P (x 0,y 0),则由椭圆的对称性知Q (x 0,-y 0), 不妨令y 0>0,A (-a ,0),B (a ,0), 则k 1=y 0x 0+a ,k 2=-y 0x 0-a ,显然有-a <x 0<a , 则|k 1|+|k 2|=y 0a +x 0+y 0a -x 0=2ay 0a 2-x 20, 因为椭圆的离心率为22, 即e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=12,即a =2b , x 202b 2+y 20b 2=1⇒x 20=2b 2-2y 20, 则|k 1|+|k 2|=2ay 02b 2-2b 2-2y 20=ay 0, 因为0<y 0≤b ,所以|k 1|+|k 2|=a y 0≥ab =2,当且仅当y 0=b 时取“=”, 即|k 1|+|k 2|的最小值为 2.5.已知在平面直角坐标系xOy 中,点F 1,F 2分别为双曲线C :x 2a 2-y 2=1(a >0)的左、右焦点,点M 在双曲线C 的左支上,MF 2与双曲线C 的一条渐近线交于点D ,且D 为MF 2的中点,点I 为△OMF 2的外心,若O ,I ,D 三点共线,则双曲线C 的离心率为( ) A. 2 B .3 C. 5 D .5 答案 C解析 不妨设点M 在第二象限,设M (m ,n ),F 2(c ,0),由D 为MF 2的中点,O ,I ,D 三点共线知直线OD 垂直平分MF 2,则OD :y =1a x ,故有n m -c =-a ,且12·n =1a ·m +c 2,解得m =a 2-1c ,n =2ac,将M⎝⎛⎭⎫a 2-1c ,2a c ,即M ⎝⎛⎭⎫2a 2-c 2c ,2a c , 代入双曲线的方程可得2a 2-c 22a 2c 2-4a 2c2=1,化简可得c 2=5a 2,即e =5,点M 在第三象限时,同理可得e = 5.6.(2022·白山联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段MF 1交双曲线于点P ,且MF 2∥OP ,则该双曲线的离心率为( ) A. 2 B. 3 C.52D. 6 答案 A解析 不妨设渐近线的方程为y =-ba x ,因为MF 2∥OP ,O 为F 1F 2的中点, 所以P 为MF 1的中点,将直线OM ,MF 1的方程联立⎩⎨⎧y =-b ax ,y =abx +c ,可得M ⎝⎛⎭⎫-a 2c ,ab c , 又F 1(-c ,0),所以P ⎝⎛⎭⎪⎫-c +⎝⎛⎭⎫-a 2c 2,ab 2c即P ⎝⎛⎭⎫-a 2+c 22c ,ab 2c ,又P 点在双曲线上, 所以a 2+c 224a 2c 2-a 24c 2=1,解得ca=2, 所以该双曲线的离心率为 2.7.已知抛物线C :y 2=8x 的焦点为F ,P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)为抛物线C 上的三个动点,其中x 1<x 2<x 3且y 2<0,若F 为△P 1P 2P 3的重心,记△P 1P 2P 3三边P 1P 2,P 1P 3,P 2P 3的中点到抛物线C 的准线的距离分别为d 1,d 2,d 3,且满足d 1+d 3=2d 2,则P 1P 3所在直线的斜率为( )A .1 B.32 C .2 D .3答案 C解析 由题意知d 1=x 1+x 22+2;d 2=x 1+x 32+2;d 3=x 3+x 22+2,代入d 1+d 3=2d 2中, 得到x 1+2x 2+x 3=2(x 1+x 3), 即2x 2=x 1+x 3.又F 为△P 1P 2P 3的重心,则有x 1+x 2+x 33=2,y 1+y 2+y 33=0,即2x 2=6-x 2,得x 2=2,y 2=-4, 因此有y 1+y 3=4, 所以P 1P 3所在直线的斜率为k =y 1-y 3x 1-x 3=8y 1+y 3=2. 8.(2022·沧州模拟)设F 1,F 2同时为椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的左、右焦点,设椭圆C 1与双曲线C 2在第一象限内交于点M ,椭圆C 1与双曲线C 2的离心率分别为e 1,e 2,O 为坐标原点,若( ) A .|F 1F 2|=2|MO |,则1e 21+1e 22= 2B .|F 1F 2|=2|MO |,则1e 21+1e 22=2C .|F 1F 2|=4|MF 2|,则e 1e 2的取值范围是⎝⎛⎭⎫23,32 D .|F 1F 2|=4|MF 2|,则e 1e 2的取值范围是⎝⎛⎭⎫23,1 答案 B解析 如图,设|MF 1|=m ,|MF 2|=n ,焦距为2c ,由椭圆定义可得m +n =2a ,由双曲线定义可得 m -n =2a 1,解得m =a +a 1,n =a -a 1,当|F 1F 2|=2|MO |时,则∠F 1MF 2=90°,所以m 2+n 2=4c 2,即a 2+a 21=2c 2,由离心率的公式可得1e 21+1e 22=2,故B 正确;当|F 1F 2|=4|MF 2|时,可得n =12c ,即a -a 1=12c ,可得1e 1-1e 2=12,由0<e 1<1,可得1e 1>1,可得1e 2>12,即1<e 2<2,则e 1e 2=2e 222+e 2,可设2+e 2=t (3<t <4), 则2e 222+e 2=2t -22t=2⎝⎛⎭⎫t +4t -4, 由f (t )=t +4t -4在(3,4)上单调递增,可得f (t )∈⎝⎛⎭⎫13,1,则e 1e 2∈⎝⎛⎭⎫23,2,故C ,D 不正确.9.(2022·郑州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点、右焦点分别为A ,F ,过点A 的直线l 与C 的一条渐近线交于点Q ,直线QF 与C 的一个交点为B ,AQ →·AB →=AQ →·FB →,且BQ →=4FQ →,则双曲线的离心率e 为________. 答案3+104解析 在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)中,A (a ,0),渐近线为y =±ba x ,设右焦点为F (c ,0),由AQ →·AB →=AQ →·FB →⇔AQ →·(AB →+BF →)=0, 即AQ →·AF →=0,即AQ →⊥AF →,直线l :x =a , 由双曲线对称性知,不妨令Q (a ,b ),设B (x 0,y 0),则BQ →=(a -x 0,b -y 0),FQ →=(a -c ,b ), 因为BQ →=4FQ →,则(a -x 0,b -y 0)=4(a -c ,b ), 解得x 0=4c -3a ,y 0=-3b ,即B (4c -3a ,-3b ),又点B 在双曲线C 上, 则有4c -3a 2a 2--3b 2b 2=1,即(4e -3)2=10,解得e =3±104,因为e >1,则e =3+104.10.早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同,建立如图所示的平面直角坐标系xOy ,根据图上尺寸,溢流孔ABC 所在抛物线的方程为______,溢流孔与桥拱交点A 的横坐标为________.答案 (x -14)2=-365y 14013解析 设桥拱所在抛物线方程为x 2=-2py , 由图可知,曲线经过(20,-5),代入方程得202=-2p ×(-5),解得p =40, 所以桥拱所在抛物线方程为x 2=-80y . 四个溢流孔轮廓线相同,所以从右往左看, 设第一个抛物线C 1:(x -14)2=-2p ′y , 由图知抛物线C 1经过点A (20,-5), 则(20-14)2=-2p ′×(-5), 解得p ′=185,所以C 1:(x -14)2=-365y .点A 即桥拱所在抛物线x 2=-80y 与 C 1:(x -14)2=-365y 的交点坐标,设A (x ,y ),7<x <14,由⎩⎪⎨⎪⎧x 2=-80y ,x -142=-365y ,7<x <14,解得x =14013.所以点A 的横坐标为14013.11.(2022·江苏七市调研)“康威圆定理”是英国数学家约翰·康威引以为豪的研究成果之一.定理的内容是这样的:如图,△ABC 的三条边长分别为BC =a ,AC =b ,AB =c .延长线段CA 至点A 1,使得AA 1=a ,以此类推得到点A 2,B 1,B 2,C 1和C 2,那么这六个点共圆,这个圆称为康威圆.已知a =4,b =3,c =5,则由△ABC 生成的康威圆的半径为________.答案37解析 设M 是圆心,因为|A 1C 2|=|A 2B 1|=|B 2C 1|,因此点M 到直线AB ,BC ,CA 的距离相等,从而M 是Rt △ABC 的内心,作MN ⊥AC 于N ,连接MC 2,则|MN |=|CN |=3+4-52=1, |NC 2|=1+5=6,所以|MC 2|=12+62=37.12.(2022·苏州模拟)如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽4 2 cm ,杯深8 cm ,称为抛物线酒杯.①在杯口放一个表面积为36π cm 2的玻璃球,则球面上的点到杯底的最小距离为________ cm ;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为________(单位:cm).答案 6 ⎝⎛⎦⎤0,12 解析 因为杯口放一个表面积为36π cm 2的玻璃球,所以球的半径为3 cm ,又因为杯口宽4 2 cm , 所以如图1所示,|AB |=42,|C 1A |=|C 1B |=3,C 1D ⊥AB ,所以|AD |=|BD |=22,所以|C 1D |=|C 1B |2-|DB |2=9-8=1,所以|DE |=2,又因为杯深8 cm ,即|OD |=8,故最小距离为|OD |-|DE |=6,如图1所示,建立直角坐标系,易知B (22,8),设抛物线的方程为y =mx 2,所以将B (22,8)代入,得m =1,故抛物线方程为y =x 2,图1 图2 当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为x 2+(y -r )2=r 2, 依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即x 2+x 2-r 2≥r ,则有x 2(x 2+1-2r )≥0恒成立,解得1-2r ≥0,可得0<r ≤12. 所以玻璃球的半径的取值范围为⎝⎛⎦⎤0,12.。
高考数学大一轮复习第九章平面解析几何9.7抛物线教案文含解析新人教A版
高考数学大一轮复习第九章平面解析几何9.7抛物线教案文含解析新人教A版§9.7抛物线最新考纲考情考向分析1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.抛物线的方程、几何性质及与抛物线相关的综合问题是命题的热点.题型既有小巧灵活的选择、填空题,又有综合性较强的解答题.1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点坐标O(0,0)对称轴x轴y轴焦点坐标F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2概念方法微思考1.若抛物线定义中定点F 在定直线l 上时,动点的轨迹是什么图形? 提示 过点F 且与l 垂直的直线.2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?提示 直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ ) 题组二 教材改编2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( ) A.9B.8C.7D.6 答案 B解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是( ) A.2B.135C.145D.3答案 A解析 由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离.∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即|3+7|32+42=2.故选A.4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为____________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=mx (m ≠0)或x 2=my (m ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .题组三 易错自纠5.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.12答案 B解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B.6.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A.y 2=±22x B.y 2=±2x C.y 2=±4x D.y 2=±42x答案 D解析 由已知可知双曲线的焦点为(-2,0),(2,0). 设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x .故选D.7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________. 答案 [-1,1]解析Q(-2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.题型一抛物线的定义和标准方程命题点1 定义及应用例1设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________. 答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.引申探究1.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解由题意可知点B(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离,F(1,0),∴|PB|+|PF|≥|BF|=42+22=25,即|PB|+|PF|的最小值为2 5.2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值.解由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1=|PF|-1,所以d1+d2=d2+|PF|-1.易知d2+|PF|的最小值为点F到直线l的距离,故d 2+|PF |的最小值为|1+5|12+(-1)2=32,所以d 1+d 2的最小值为32-1.命题点2 求标准方程例2 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的标准方程为( ) A.y 2=4x 或y 2=8x B.y 2=2x 或y 2=8x C.y 2=4x 或y 2=16x D.y 2=2x 或y 2=16x答案 C解析 由题意知,F ⎝ ⎛⎭⎪⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝ ⎛⎭⎪⎫52,y M 2,所以圆的方程为⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝ ⎛⎭⎪⎫5-p 2,解得p =2或p =8,所以抛物线C 的标准方程为y 2=4x 或y 2=16x , 故选C.思维升华 (1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.跟踪训练1(1)如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |等于( )A.n +10B.n +20C.2n +10D.2n +20答案 A解析 抛物线的焦点为(1,0),准线方程为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,故|P 1F |+|P 2F |+…+|P n F |=n +10.(2)如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的标准方程为( )A.y 2=32xB.y 2=9x C.y 2=92xD.y 2=3x答案 D解析 分别过点A ,B 作AA 1⊥l ,BB 1⊥l ,且垂足分别为A 1,B 1,由已知条件|BC |=2|BF |,得|BC |=2|BB 1|,所以∠BCB 1=30°. 又|AA 1|=|AF |=3, 所以|AC |=2|AA 1|=6,所以|CF |=|AC |-|AF |=6-3=3, 所以F 为线段AC 的中点.故点F 到准线的距离为p =12|AA 1|=32,故抛物线的标准方程为y 2=3x . 题型二 抛物线的几何性质例3(1)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,若|AF |=3,则△AOB 的面积为( ) A.22B.2C.322D.2 2 答案 C解析 设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2<0),如图所示,|AF |=x 1+1=3, 所以x 1=2,y 1=2 2. 设AB 的方程为x -1=ty ,由⎩⎪⎨⎪⎧y 2=4x ,x -1=ty ,消去x ,得y 2-4ty -4=0.所以y 1y 2=-4.所以y 2=-2,x 2=12,所以S △AOB =12×1×|y 1-y 2|=322.(2)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|PA |=12|AB |,则点A 到抛物线C 的焦点的距离为( ) A.53B.75C.97D.2 答案 A解析 设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为点D ,E .∵|PA |=12|AB |, ∴⎩⎪⎨⎪⎧3(x 1+2)=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.思维升华在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练2(1)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ) A.18B.24C.36D.48 答案 C解析 以抛物线的顶点为原点,水平方向为x 轴,竖直方向为y 轴,建立平面直角坐标系,设抛物线方程为y 2=2px (p >0),则焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,将x =p2代入y 2=2px 可得y 2=p 2,|AB |=12,即2p =12,所以p =6.因为点P 在准线上,所以点P 到AB 的距离为p =6,所以△PAB 的面积为12×6×12=36.题型三 直线与抛物线例4设抛物线的顶点在坐标原点,焦点F 在y 轴正半轴上,过点F 的直线交抛物线于A ,B 两点,线段AB 的长是8,AB 的中点到x 轴的距离是3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点.连接QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.解 (1)设抛物线的方程是x 2=2py (p >0),A (x 1,y 1),B (x 2,y 2),由抛物线定义可知y 1+y 2+p =8,又AB 的中点到x 轴的距离为3, ∴y 1+y 2=6,∴p =2, ∴抛物线的标准方程是x 2=4y .(2)由题意知,直线m 的斜率存在,设直线m :y =kx +6(k ≠0),P (x 3,y 3),Q (x 4,y 4),由⎩⎪⎨⎪⎧y =kx +6,x 2=4y 消去y 得x 2-4kx -24=0,∴⎩⎪⎨⎪⎧x 3+x 4=4k ,x 3·x 4=-24.(*)易知抛物线在点P ⎝ ⎛⎭⎪⎫x 3,x 234处的切线方程为 y -x 234=x 32(x -x 3),令y =-1,得x =x 23-42x 3,∴R ⎝ ⎛⎭⎪⎫x 23-42x 3,-1,又Q ,F ,R 三点共线,∴k QF =k FR ,又F (0,1), ∴x 244-1x 4=-1-1x 23-42x 3,即(x 23-4)(x 24-4)+16x 3x 4=0,整理得(x 3x 4)2-4[(x 3+x 4)2-2x 3x 4]+16+16x 3x 4=0,将(*)式代入上式得k 2=14,∴k =±12,∴直线m 的方程为y =±12x +6.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解. (4)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 ①x 1x 2=p 24,y 1y 2=-p 2.②弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角). ③以弦AB 为直径的圆与准线相切.④通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.跟踪训练3(2018·抚顺调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值; (2)若△ABN 面积的最小值为4,求抛物线C 的方程. 解 (1)可设AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入抛物线C ,得x 2-2pkx -2p =0,Δ=4p 2k 2+8p >0,显然方程有两不等实根,则x 1+x 2=2pk ,x 1x 2=-2p .① 由x 2=2py 得y ′=x p, 则A ,B 处的切线斜率乘积为x 1x 2p 2=-2p=-1, 则有p =2.(2)设切线AN 为y =x 1px +b ,又切点A 在抛物线y =x 22p 上,∴y 1=x 212p ,∴b =x 212p -x 21p =-x 212p ,∴y AN =x 1p x -x 212p .同理y BN =x 2p x -x 222p.又∵N 在y AN 和y BN 上,∴⎩⎪⎨⎪⎧y =x 1p x -x 212p,y =x 2p x -x222p ,解得N ⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .∴N (pk ,-1). |AB |=1+k 2|x 2-x 1| =1+k24p 2k 2+8p ,点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k2, S △ABN =12·|AB |·d=p (pk 2+2)3≥22p , ∴22p =4,∴p =2, 故抛物线C 的方程为x 2=4y .直线与圆锥曲线问题的求解策略例(12分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由. 规范解答解 (1)∵抛物线C :x 2=1my ,∴它的焦点为F ⎝ ⎛⎭⎪⎫0,14m .[2分](2)∵|RF |=y R +14m ,∴2+14m =3,得m =14.[4分](3)存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0(m >0),依题意,有Δ=(-2)2-4×m ×(-2)=8m +4>0恒成立, 方程必有两个不等实根.[6分]设A (x 1,mx 21),B (x 2,mx 22),则⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m.(*)∵P 是线段AB 的中点,∴P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m,y P ,∴Q ⎝ ⎛⎭⎪⎫1m ,1m ,[8分]得QA →=⎝⎛⎭⎪⎫x 1-1m,mx 21-1m ,QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m .若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0,[10分]结合(*)式化简得-4m2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,∵m >0,∴m =2.∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[12分]解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x 或y 的一元二次方程; 第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点);第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.1.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A.y =12x 2B.y =12x 2或y =-36x 2C.y =-36x 2D.y =112x 2或y =-136x 2答案 D解析 分两类a >0,a <0,可得y =112x 2或y =-136x 2.2.(2018·大连模拟)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( ) A.y 2=-12x B.y 2=-8x C.y 2=-6x D.y 2=-4x答案 B解析 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.3.(2018·辽宁五校联考)抛物线x 2=4y 的焦点为F ,过点F 作斜率为33的直线l 与抛物线在y 轴右侧的部分相交于点A ,过点A 作抛物线准线的垂线,垂足为H ,则△AHF 的面积是( )A.4B.33C.43D.8 答案 C解析 由抛物线的定义可得|AF |=|AH |,∵AF 的斜率为33,∴AF 的倾斜角为30°,∵AH 垂直于准线,∴∠FAH =60°,故△AHF 为等边三角形.设A ⎝ ⎛⎭⎪⎫m ,m 24,m >0,过F 作FM ⊥AH 于M ,则在△FAM 中,|AM |=12|AF |,∴m 24-1=12⎝ ⎛⎭⎪⎫m 24+1,解得m =23,故等边三角形AHF 的边长|AH |=4,∴△AHF 的面积是12×4×4sin60°=4 3.故选C.4.抛物线C :y 2=2px (p >0)的焦点为F ,M 是抛物线C 上的点,若△OFM 的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p 等于( ) A.2B.4C.6D.8 答案 D解析 ∵△OFM 的外接圆与抛物线C 的准线相切, ∴△OFM 的外接圆的圆心到准线的距离等于圆的半径. ∵圆的面积为36π,∴圆的半径为6. 又∵圆心在OF 的垂直平分线上,|OF |=p2,∴p 2+p4=6,∴p =8.故选D. 5.(2018·盘锦模拟)过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |的值等于( )A.13B.23C.34D.43 答案 A解析 记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C ,则cos∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |,即cos60°=|BF |-|AF ||AF |+|BF |=12,由此得|AF ||BF |=13. 6.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为( ) A.x 2=8y B.x 2=4y C.y 2=8x D.y 2=4x答案 C解析 由题意,设抛物线方程为y 2=2px (p >0),直线方程为x =my +p 2,联立⎩⎪⎨⎪⎧y 2=2px ,x =my +p 2,消去x 得y 2-2pmy -p 2=0,显然方程有两个不等实根. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my 1+p 2⎝ ⎛⎭⎪⎫my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12,得p =4(舍负),即抛物线C 的方程为y 2=8x .7.动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,则动点P 的轨迹方程为____________. 答案 x 2=8y解析 ∵动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,∴动点P 到点A (0,2)的距离与它到直线y =-2的距离相等.根据抛物线的定义可得点P 的轨迹为以A (0,2)为焦点,以直线y =-2为准线的抛物线,其标准方程为x 2=8y .8.(2018·呼伦贝尔质检)已知F 是抛物线y 2=4x 的焦点,A ,B 是抛物线上两点,若△AFB 是等边三角形,则△AFB 的边长为________________. 答案 8+43或8-4 3解析 由题意可知点A ,B 一定关于x 轴对称,且AF ,BF 与x 轴夹角均为30°,由于y 2=4x的焦点为(1,0),由⎩⎪⎨⎪⎧y =33(x -1),y 2=4x ,化简得y 2-43y -4=0,解得y 1=23+4,y 2=23-4,所以△AFB 的边长为8+43或8-4 3.9.已知直线l :y =kx +t 与圆:x 2+(y +1)2=1相切,且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是____________. 答案 t >0或t <-3解析 由题意知k ≠0.因为直线l 与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .由k 2>0,得t >0或t <-2,再把直线l 的方程代入抛物线方程并整理得x 2-4kx -4t =0,于是由Δ=16k 2+16t =16(t 2+2t )+16t >0,得t >0或t <-3.综上,实数t 的取值范围是t >0或t <-3. 10.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________. 答案 4解析 设AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C ,过B 作BD ⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.11.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.则该抛物线的方程为________.答案 y 2=8x解析 直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0.由题意知,Δ=25p 2-16p 2=9p 2>0,方程必有两个不等实根. 所以x 1+x 2=5p4,由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而抛物线方程为y 2=8x .12.(2018·包头模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C 于A ,B 两点,且|AB |=8. (1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标.解 (1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线定义知|AB |=x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1,∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1,∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0,恒过点(-1,0).13.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A.5B.6C.163D.203答案 C 解析 方法一如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AF |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,解得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得,3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.方法二 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AF |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =163.故选C. 方法三 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AF |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.故选C.14.过点(0,3)的直线与抛物线y 2=4x 交于A ,B 两点,线段AB 的垂直平分线经过点(4,0),F 为抛物线的焦点,则|AF |+|BF |的值为________. 答案 6解析 设AB 的中点为H ,抛物线的焦点为F (1,0),准线方程为x =-1,设A ,B ,H 在准线上的射影为A ′,B ′,H ′,则|HH ′|=12(|AA ′|+|BB ′|),由抛物线的定义可得,|AF |=|AA ′|,|BF |=|BB ′|,|AF |+|BF |=|AA ′|+|BB ′|=2|HH ′|.由题意知直线的斜率必存在,设为y =kx +3,与y 2=4x 联立得k 2x 2+(6k -4)x +9=0,Δ=(6k -4)2-36k 2>0,计算得出k <13且k ≠0,又x 1+x 2=4-6k k2,AB 的中点为⎝ ⎛⎭⎪⎫2-3k k 2,2k ,线段AB 的垂直平分线过点(4,0),方程为y =-1k(x -4),且过中点⎝ ⎛⎭⎪⎫2-3k k 2,2k ,则2k =-1k⎝ ⎛⎭⎪⎫2-3k k 2-4,得2k 2+3k -2=0,解得k =-2或k =12(舍去),则H (2,-1),|HH ′|=2+1=3,则|AF |+|BF |=|AA ′|+|BB ′|=2|HH ′|=6.15.已知曲线G :y =-x 2+16x -15及点A ⎝ ⎛⎭⎪⎫12,0,若曲线G 上存在相异两点B ,C ,其到直线l :2x +1=0的距离分别为|AB |和|AC |,则|AB |+|AC |=________. 答案 15解析 曲线G :y =-x 2+16x -15,即为半圆M :(x -8)2+y 2=49(y ≥0),由题意得B ,C 为半圆M 与抛物线y 2=2x 的两个交点,由y 2=2x 与(x -8)2+y 2=49(y ≥0)联立方程组得x 2-14x +15=0,方程必有两不等实根,设B (x 1,y 1),C (x 2,y 2).所以|AB |+|AC |=x 1+12+x 2+12=14+1=15.16.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________. 答案 (2,4)解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2, 又y 1+y 2=2y 0,所以y 0k =2. 由CM ⊥AB ,得k ·y 0-0x 0-5=-1, 即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上.将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<23, 因为点M 在圆上, 所以(x 0-5)2+y 20=r 2, 故r 2=y 20+4<12+4=16.又y 20+4>4(为保证有4条,在k 存在时,y 0≠0),所以4<r2<16,即2<r<4.。
新人教A版版高考数学一轮复习第九章平面解析几何椭圆教案理解析版
基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做错误!椭圆.这两定点叫做椭圆的错误!焦点,两焦点间的距离叫做错误!焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若错误!a>c,则集合P表示椭圆;(2)若错误!a=c,则集合P表示线段;(3)若错误!a<c,则集合P为空集.2.椭圆的标准方程和几何性质续表椭圆的常用性质(1)设椭圆错误!+错误!=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)过椭圆的焦点且垂直于长轴的弦之长为错误!.(5)椭圆离心率e=错误!.1.已知椭圆错误!+错误!=1,长轴在y轴上,若焦距为4,则m等于()A.4B.5C.7 D.8答案D解析椭圆焦点在y轴上,∴a2=m—2,b2=10—m.又c=2,∴m—2—(10—m)=c2=4.∴m=8.2.(2018·广西模拟)若椭圆C:错误!+错误!=1(a>b>0)的短轴长等于焦距,则椭圆的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析因为椭圆的短轴长等于焦距,所以b=c,所以a2=b2+c2=2c2,所以e=错误!=错误!,故选C.3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于错误!,则椭圆C的方程是()A.错误!+错误!=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案D解析依题意,设椭圆方程为错误!+错误!=1(a>b>0),所以错误!解得a2=9,b2=8.故椭圆C 的方程为错误!+错误!=1.4.(2019·西安模拟)已知点P(x1,y1)是椭圆错误!+错误!=1上的一点,F1,F2是其左、右焦点,当∠F1PF2最大时,△PF1F2的面积是()A.错误!B.12C.16(2+错误!)D.16(2—错误!)答案B解析∵椭圆的方程为错误!+错误!=1,∴a=5,b=4,c=错误!=3,∴F1(—3,0),F2(3,0).根据椭圆的性质可知当点P与短轴端点重合时,∠F1PF2最大,此时△PF1F2的面积S=错误!×2×3×4=12,故选B.5.椭圆3x2+ky2=3的一个焦点是(0,错误!),则k=________.答案1解析方程3x2+ky2=3可化为x2+错误!=1.a2=错误!>1=b2,c2=a2—b2=错误!—1=2,解得k=1.6.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F 2,∠PF1F2=30°,则C的离心率为________.答案错误!解析设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=错误!x.又|PF1|+|PF 2|=2a,|F1F2|=2c.∴2a=3x,2c=错误!x,∴C的离心率为e=错误!=错误!.核心考向突破考向一椭圆定义的应用例1(1)(2018·湖北八校联考)设F1,F2为椭圆错误!+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为()A.错误!B.错误!C.错误!D.错误!解析由题意知a=3,b=错误!,c=2.设线段PF1的中点为M,则有OM∥PF2,∵OM⊥F1F2,∴PF2⊥F1F2,∴|PF2|=错误!=错误!.又∵|PF1|+|PF2|=2a=6,∴|PF1|=2a—|PF2|=错误!,∴错误!=错误!×错误!=错误!.故选B.(2)设F1,F2分别是椭圆E:错误!+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E 于A,B两点,|AF1|=3|F1B|,且|AB|=4,△ABF2的周长为16.则|AF2|=________.答案5解析由|AF1|=3|F1B|,|AB|=4,得|AF1|=3.∵△ABF2的周长为16,∴4a=16,∴a=4.则|AF1|+|AF2|=2a=8,∴|AF2|=8—|AF1|=8—3=5.触类旁通椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|,通过整体代入可求其面积等.即时训练1.(2019·甘肃联考)设A,B是椭圆C:错误!+错误!=1的两个焦点,点P是椭圆C与圆M:x2+y2=10的一个交点,则||PA|—|PB||=()A.2错误!B.4错误!C.4错误!D.6错误!答案C解析由题意知,A,B恰好在圆M上且AB为圆M的直径,∴|PA|+|PB|=2a=4错误!,|PA|2+|PB|2=(2c)2=40,∴(|PA|+|PB|)2=|PA|2+|PB|2+2|PA||PB|,解得2|PA||PB|=8,∴(|PA|—|PB|)2=|PA|2+|PB|2—2|PA||PB|=32,则||PA|—|PB||=4错误!,故选C.2.已知椭圆C:错误!+错误!=1,点M与椭圆C的焦点不重合.若M关于椭圆C的焦点的对称点分别为A,B,线段MN的中点在椭圆C上,则|AN|+|BN|=________.解析取MN的中点为G,点G在椭圆C上.设点M关于椭圆C的焦点F1的对称点为A,点M关于椭圆C的焦点F2的对称点为B,则有|GF1|=错误!|AN|,|GF2|=错误!|BN|,所以|AN|+|BN|=2(|GF 1|+|GF2|)=4a=12.考向二椭圆的标准方程例2(1)(2019·杭州模拟)已知椭圆C:错误!+错误!=1(a>b>0)的左、右焦点为F1,F2,离心率为错误!,过F2的直线l交C于A,B两点.若△AF1B的周长为4错误!,则C的方程为()A.错误!+错误!=1B.错误!+y2=1C.错误!+错误!=1D.错误!+错误!=1答案A解析由题意及椭圆的定义知4a=4错误!,则a=错误!,又错误!=错误!=错误!,∴c=1,∴b2=2,∴C的方程为错误!+错误!=1.选A.(2)已知A错误!,B是圆:错误!2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为________.答案x2+错误!y2=1解析如图,由题意知|PA|=|PB|,|PF|+|BP|=2.所以|PA|+|PF|=2且|PA|+|PF|>|AF|,即动点P的轨迹是以A,F为焦点的椭圆,a=1,c=错误!,b2=错误!.所以动点P的轨迹方程为x2+错误!y2=1.触类旁通求椭圆方程的常用方法(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义.2待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1m>0,n>0,m≠n,再用待定系数法求出m,n的值即可.即时训练3.(2019·青岛模拟)已知F1(—1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为()A.错误!+y2=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案C解析如图,|AF2|=错误!|AB|=错误!,|F1F2|=2,由椭圆定义,得|AF1|=2a—错误!. 1在Rt△AF1F2中,|AF1|2=|AF2|2+|F1F2|2=错误!2+22.2由12得a=2,∴b2=a2—c2=3.∴椭圆C的方程为错误!+错误!=1,应选C.4.设F1,F2为椭圆C:错误!+错误!=1(a>b>0)的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为4错误!的等边三角形,则椭圆C的方程为________.答案错误!+错误!=1解析l经过F1垂直于x轴,得yA=错误!,在Rt△AF1F2中,∠AF2F1=30°,得错误!=错误!×2c,错误!×2c×错误!=4错误!,a2=b2+c2,解得a2=9,b2=6,c2=3.所求的椭圆方程为错误!+错误!=1.考向三椭圆的几何性质例3(1)(2018·全国卷Ⅰ)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析根据题意,可知c=2,因为b2=4,所以a2=b2+c2=8,即a=2错误!,所以椭圆C的离心率为e=错误!=错误!.故选C.率e的取值范围是________.答案错误!解析∵c2—b2+ac<0,∴c2—(a2—c2)+ac<0,即2c2—a2+ac<0,∴2错误!—1+错误! <0,即2e2+e—1<0,解得—1<e<错误!.又∵0<e<1,∴0<e<错误!.∴椭圆的离心率e的取值范围是错误!.触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.即时训练5.(2018·全国卷Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF 2,且∠PF2F1=60°,则C的离心率为()A.1—错误!B.2—错误!C.错误!D.错误!—1答案D解析在△F1PF2中,∠F1PF2=90°,∠PF2F1=60°,设|PF2|=m,则2c=|F1F2|=2m,|PF 1|=错误!m,又由椭圆定义可知2a=|PF1|+|PF2|=(错误!+1)m,则离心率e=错误!=错误!=错误!=错误!—1.故选D.6.(2019·江苏模拟)已知椭圆错误!+错误!=1(a>b>0),A为左顶点,B为上顶点,F为右焦点且AB⊥BF,则这个椭圆的离心率等于________.答案错误!解析由题意得A(—a,0),B(0,b),F(c,0),∵AB⊥BF,∴错误!·错误!=0,∴(a,b)·(c,—b)=ac—b2=ac—a2+c2=0,∴e—1+e2=0,解得e=错误!.考向四直线与椭圆的位置关系角度错误!弦的中点问题例4(2018·全国卷Ⅲ)已知斜率为k的直线l与椭圆C:错误!+错误!=1交于A,B两点.线段AB 的中点为M(1,m)(m>0).(1)证明:k<—错误!;(2)设F为C的右焦点,P为C上一点,且F错误!+F错误!+F错误!=0.证明:|错误!|,|错误!|,|错误! |成等差数列,并求该数列的公差.解(1)证明:设A(x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1.两式相减,并由错误!=k得错误!+错误!·k=0.由题设知错误!=1,错误!=m,于是k=—错误!.1由题设得m< 错误!=错误!,且m>0,即0<m<错误!,故k<—错误!.(2)由题意得F(1,0).设P(x3,y3),则由(1)及题设得(x3—1,y3)+(x1—1,y1)+(x2—1,y2)=(0,0),x3=3—(x1+x2)=1,y3=—(y1+y2)=—2m<0.又点P在C上,所以m=错误!,从而P错误!,|F错误!|=错误!.于是|F错误!|=错误!=错误!=2—错误!.同理|F错误!|=2—错误!.所以|F错误!|+|F错误!|=4—错误!(x1+x2)=3.故2|F错误!|=|F错误!|+|F错误!|,即|错误!|,|错误!|,|错误!|成等差数列.设该数列的公差为d,则2|d|=||错误!|—|错误!||=错误!|x1—x2|=错误!错误!.2将m=错误!代入1得k=—1.所以l的方程为y=—x+错误!,代入C的方程,并整理得7x2—14x+错误!=0.故x1+x2=2,x1x2=错误!,代入2解得|d|=错误!.所以该数列的公差为错误!或—错误!.角度错误!弦长的问题例5(2019·陕西咸阳模拟)在平面直角坐标系xOy中,已知椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),且离心率e=错误!.(1)求椭圆C的方程;(2)直线l的斜率为错误!,直线l与椭圆C交于A,B两点.求△PAB面积的最大值.解(1)∵e2=错误!=错误!=错误!,∴a2=4b2.又椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),∴错误!+错误!=1,∴a2=8,b2=2.故所求椭圆方程为错误!+错误!=1.(2)设l的方程为y=错误!x+m,点A(x1,y1),B(x2,y2),联立错误!整理,得x2+2mx +2m2—4=0.∵Δ=4m2—8m2+16>0,解得|m|<2.∴x1+x2=—2m,x1x2=2m2—4.则|AB|=错误!× 错误!=错误!.点P到直线l的距离d=错误!=错误!.∴S△PAB=错误!d|AB|=错误!×错误!×错误!=错误!≤错误!=2.当且仅当m2=2,即m=±错误!时取得最大值.触类旁通1解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(3)直线与椭圆相交时常见问题的处理方法涉及问题处理方法弦长根与系数的关系、弦长公式(直线与椭圆有两交点)中点弦或弦点差法(结果要检验Δ>0)的中点即时训练7.(2019·广西联考)已知椭圆C:错误!+错误!=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为错误!,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A,B两点,线段AB的中点为P.(1)求椭圆C的标准方程;(2)过点P垂直于AB的直线与x轴交于点D错误!,求k的值.解(1)由题易得,过椭圆短轴的一个端点与两个焦点的圆的半径为错误!.设椭圆的右焦点的坐标为(c,0),依题意知错误!又因为b>1,解得a=2,b=错误!,c=1,所以椭圆C的标准方程为错误!+错误!=1.(2)由题意,过椭圆C的右焦点的直线l的方程为y=k(x—1),将其代入错误!+错误!=1,得(3+4k2)x2—8k2x+4k2—12=0.设A(x1,y1),B(x2,y2),则x1+x2=错误!,x1x2=错误!,所以y1+y2=k(x1+x2)—2k=错误!.因为P为线段AB的中点,所以点P的坐标为错误!.又因为直线PD的斜率为—错误!,所以直线PD的方程为y—错误!=—错误!错误!.令y=0,得x=错误!,所以点D的坐标为错误!,则错误!=错误!,解得k=±1.8.(2019·云南昆明模拟)已知中心在原点O,焦点在x轴上的椭圆E过点C(0,1),离心率为错误!.(1)求椭圆E的方程;(2)直线l过椭圆E的左焦点F,且与椭圆E交于A,B两点,若△OAB的面积为错误!,求直线l的方程.解(1)设椭圆E的方程为错误!+错误!=1(a>b>0),由已知得错误!解得a2=2,b2=1,所以椭圆E的方程为错误!+y2=1.(2)由已知,直线l过左焦点F(—1,0).当直线l与x轴垂直时,A错误!,B错误!,此时|AB|=错误!,则S△OAB=错误!×错误!×1=错误!,不满足条件.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由错误!得(1+2k2)x2+4k2x+2k2—2=0,所以x1+x2=—错误!,x1x2=错误!.因为S△OAB=错误!|OF|·|y1—y2|=错误!|y1—y2|,由已知S△OAB=错误!得|y1—y2|=错误!.因为y1+y2=k(x1+1)+k(x2+1)=k(x1+x2)+2k=k· 错误!+2k=错误!,y1y2=k(x1+1)·k(x2+1)=k2(x1x2+x1+x2+1)=错误!,所以|y1—y2|=错误!=错误!=错误!,所以k4+k2—2=0,解得k=±1,所以直线l的方程为x—y+1=0或x+y+1=0.1.已知点F1,F2是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,那么|错误!+错误!|的最小值是()A.0 B.1C.2D.2错误!答案C解析解法一:设P(x0,y0),则错误!=(—1—x0,—y0),错误!=(1—x0,—y0),所以错误!+错误!=(—2x0,—2y0),所以|错误!+错误!|=错误!=2错误!=2错误!.因为点P在椭圆上,所以0≤y 错误!≤1,所以当y错误!=1时,|错误!+错误!|取最小值2.解法二:由错误!+错误!=错误!+错误!+错误!+错误!=2错误!求解.故选C.2.已知F是椭圆错误!+错误!=1的左焦点,P是此椭圆上的动点,A(1,1)是一定点,求|PA|+|PF|的最大值和最小值.解由题意知a=3,b=错误!,c=2,F(—2,0).设椭圆右焦点为F′,则|PF|+|PF′|=6,所以|PA|+|PF|=|PA|—|PF′|+6.当P,A,F′三点共线时,|PA|—|PF′|取到最大值|AF′|=错误!,或者最小值—|AF′|=—错误!.所以|PA|+|PF|的最大值为6+错误!,最小值为6—错误!.3.在椭圆错误!+错误!=1上求一点,使它到直线2x—3y+15=0的距离最短.解设所求点坐标为A(3错误!cosθ,2错误!sinθ),θ∈R,由点到直线的距离公式得=错误!,当θ=2kπ+错误!,k∈Z时,d取到最小值错误!,此时A点坐标为(—3,2).答题启示椭圆中距离的最值问题一般有3种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e);(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解.对点训练1.设P,Q分别为圆x2+(y—6)2=2和椭圆错误!+y2=1上的点,则P,Q两点间的最大距离是()A.5错误!B.错误!+错误!C.7+错误!D.6错误!答案D解析解法一:设椭圆上任意一点为Q(x,y),则圆心(0,6)到点Q的距离d=错误!=错误!=错误!≤5错误!,P,Q两点间的最大距离d′=dmax+错误!=6错误!.解法二:易知圆心坐标为M(0,6),|PQ|的最大值为|MQ|max+错误!,设Q(错误!cosθ,sinθ),则|MQ|=错误!=错误!当sinθ=—错误!时,|MQ|max=5错误!,所以|PQ|max=5错误!+错误!=6错误!.故选D.2.如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为________.答案4解析设P点坐标为(x0,y0).由题意知a=2,因为e=错误!=错误!,所以c=1,所以b2=a2—c2=3.所以椭圆方程为错误!+错误!=1.所以—2≤x0≤2,—错误!≤y0≤错误!.因为F(—1,0),A(2,0),错误!=(—1—x0,—y0),错误!=(2—x0,—y0),所以错误!·错误!=x错误!—x0—2+y错误!=错误!x错误!—x0+1=错误!(x0—2)2.即当x0=—2时,错误!·错误!取得最大值4.。
高考数学一轮复习 第九章 平面解析几何9 (1)
高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
核按钮(新课标)高考数学一轮复习第九章平面解析几何训
第九章 平面解析几何考纲链接1.平面解析几何初步 (1)直线与方程①在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题. ④初步了解用代数方法处理几何问题的思想. 2.圆锥曲线与方程 (1)掌握椭圆的定义、几何图形、标准方程和简单几何性质(范围、对称性、顶点、离心率).(2)了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).(3)了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率).(4)理解数形结合的思想. (5)了解圆锥曲线的简单应用.§9.1 直线与方程1.平面直角坐标系中的基本公式(1)数轴上A ,B 两点的距离:数轴上点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 两点间的距离|AB |=____________.(2)平面直角坐标系中的基本公式:①两点间的距离公式:在平面直角坐标系中,两点A (x 1,y 1),B (x 2,y 2)之间的距离公式为d (A ,B )=|AB |=_______________________. ②线段的中点坐标公式:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x = ,y = . 2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线l 与x 轴相交时,取x 轴作为基准,x 轴____________与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴________或________时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为__________________.(2)斜率:一条直线的倾斜角α的____________叫做这条直线的斜率,常用小写字母k 表示,即k =______(α≠______).当直线平行于x 轴或者与x 轴重合时,k______0;当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示直线的倾斜程度.(3)经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =.3.直线方程的几种形式(1)截距:直线l 与x 轴交点(a ,0)的____________叫做直线l 在x 轴上的截距,直线l 与y 轴交点(0,b )的____________叫做直线l 在y 轴上的截距.注:截距____________距离(填“是”或“不是”).________的特例.(3)过点P 1(x 1,y 1),P 2(x 2,y 2)的直线方程 ①若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为____________;②若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为____________;③若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为____________;④若x 1≠x 2,且y 1=y 2=0,直线即为x 轴,方程为____________.自查自纠: 1.(1)|x 2-x 1|(2)①()x 2-x 12+()y 2-y 12②x 1+x 22 y 1+y 222.(1)正向 平行 重合 0°≤α<180° (2)正切值 tan α 90° = > < 90° (3)y 2-y 1x 2-x 13.(1)横坐标a 纵坐标b 不是 (2)①y -y 0=k (x -x 0) ②y =kx +b③y -y 1y 2-y 1=x -x 1x 2-x 1④x 1≠x 2且y 1≠y 2 ⑤x a +y b=1 ⑥Ax +By +C =0(A ,B 不同时为0)点斜式 两点式(3)①x =x 1 ②y =y 1 ③x =0 ④y =0过点M (-1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为( )A .1 B.12 C .2 D.13解:由4-m m +2=1,得m =1.故选A.直线3x -3y +1=0的倾斜角是( ) A .30° B .60° C .120° D .135°解:直线方程可变形为y =3x +33,tan α=3,∵倾斜角α∈[0°,180°),∴α=60°.故选B.过点(5,2),且在y 轴上的截距是在x 轴上截距2倍的直线方程是( )A .2x +y -12=0B .2x +y -12=0或2x -5y =0 C .x -2y -1=0D .x -2y -1=0或2x -5y =0解:当直线过原点时所求方程为2x -5y =0;当直线不过原点时,可设其截距式为x a +y2a =1,由该直线过点(5,2)即可解得a =6,对应方程为x 6+y12=1,即2x +y -12=0.故选B.已知直线l 过点(0,2),且其倾斜角的余弦值为45,则直线l 的方程为____________.解:∵cos α=45,α∈[0,π),∴sin α=35,k =tan α=34.∴直线l 的方程为y -2=34x ,即3x-4y +8=0.故填3x -4y +8=0.下列四个命题中真命题有______个. ①经过定点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示;②经过任意两点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程x a +y b=1表示;④经过定点(0,b )的直线都可以用方程y =kx +b 表示.解:①当k 不存在时,直线方程为x =x 0,不正确;②正确;③当直线与坐标轴垂直时不能用该方程表示,不正确;④k 可能不存在,不正确.故填1.类型一 直线的倾斜角和斜率(1)经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为____________,____________.解:如图所示,为使l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角;k =0时,α=0;k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π. 故填[-1,1];⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)如图所示,直线l 1的倾斜角α1=30°,直线l 1与l 2垂直,则直线l 1的斜率k 1=________,直线l 2的斜率k 2=________.解:由图可知,α2=α1+90°=120°,则直线l 1的斜率k 1=tan α1=tan30°=33,直线l 2的斜率k 2=tan α2=tan120°=-3,故填33;-3.点拨:①直线的倾斜角与斜率均是反映直线倾斜程度的量.倾斜角是从“形”的角度刻画直线的倾斜程度,而斜率是从“数”的角度刻画直线的倾斜程度,两者由公式k =tan α联系.②在使用过两点的直线的斜率公式k =y 2-y 1x 2-x 1时,注意同一直线上选取的点不同,直线的斜率不会因此而发生变化,同时还要注意两点横坐标是否相等,若相等,则直线的倾斜角为90°,斜率不存在,但并不意味着直线的方程也不存在,此时直线的方程可写为x =x 1.③在已知两点坐标,求倾斜角α的值或取值范围时,用tan α=k =y 2-y 1x 2-x 1转化,其中倾斜角α∈[0,π),此时依然要注意斜率不存在的情形,同时注意运用数形结合思想解题.(1)直线x sin α-y +1=0的倾斜角的变化范围是( )A.⎝⎛⎭⎪⎫0,π2 B .(0,π)C.⎣⎢⎡⎦⎥⎤-π4,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π解:直线x sin α-y +1=0的斜率是k =sin α, ∵-1≤sin α≤1,∴-1≤k ≤1,当0≤k ≤1时,倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4;当-1≤k <0时,倾斜角的范围是⎣⎢⎡⎭⎪⎫34π,π.故选D.(2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是____________.解:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点.∴实数m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12.故填⎣⎢⎡⎦⎥⎤-23,12. 类型二求直线方程 根据所给条件求直线的方程.(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距相等;(3)直线过点(5,10),且到原点的距离为5. 解:(1)由题意知,直线的斜率存在,设倾斜角为α,则sin α=1010(α∈[0,π)), 从而cos α=±31010,则k =tan α=±13.故所求直线的方程为y =±13(x +4),即x ±3y+4=0.(2)若截距不为0,设直线的方程为x a +y a=1, ∵直线过点(-3,4),∴-3a +4a=1,解得a =1.此时直线方程为x +y -1=0. 若截距为0,设直线方程为y =kx ,代入点(-3,4),有4=-3k ,解得k =-43,此时直线方程为4x+3y =0.综上,所求直线方程为x +y -1=0或4x +3y =0.(3)由题意知,当直线的斜率不存在时符合题意,此时直线方程为x -5=0.当直线斜率存在时,设其方程为y -10=k (x -5),即kx -y +(10-5k )=0.由点到直线的距离公式,得||10-5k 1+k2=5,解得k =34.此时直线方程为3x -4y +25=0. 综上知,所求直线方程为x -5=0或3x -4y +25=0.点拨:本题考查应用直线方程的几种形式求直线方程,难度虽不大,但每小题都有陷阱.(1)给出了倾斜角的正弦值,求正切值时,应注意倾斜角的范围;(2)截距相等包括经过原点的直线,还要注意截距不是距离;(3)应用点斜式求直线方程时,注意点斜式的局限性,它不能表示平面内所有直线.求满足下列条件的所有直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.解:(1)根据题意,设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(4,1),∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,得a =5.∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y-5=0.(2)由已知设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan2α=2tan α1-tan 2α=-34. 又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.类型三 直线方程的应用(1)已知点A (4,-1),B (8,2)和直线 l :x -y -1=0,动点P (x ,y )在直线l 上,则||PA +||PB 的最小值为__________.解:设点A 1(x 1,y 1)与A (4,-1)关于直线l 对称,P 0为A 1B 与直线l 的交点,∴||P 0A 1=||P 0A ,||PA 1= ||PA .∴||PA +||PB =||PA 1 +||PB ≥||A 1B =||A 1P 0+||P 0B =||P 0A +||P 0B .当P 点运动到P 0点时,||PA +||PB 取到最小值||A 1B .∵点A ,A 1关于直线l 对称,∴由对称的充要条件知,⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0, 解得⎩⎪⎨⎪⎧x 1=0,y 1=3, 即A 1(0,3).∴(||PA +||PB )min =||A 1B =82+(-1)2=65.故填65.点拨:平面内,两点间连线中直线段最短,这一最基本的公理是解决此类问题的理论基础.求A 关于l 的对称点是关键一步,而点关于直线对称的充要条件又是求对称点的依据.(2)直线l 过点P (1,4),且分别交x 轴的正半轴和y 轴的正半轴于A ,B 两点,O 为坐标原点.①当|OA |+|OB |最小时,求l 的方程; ②若|PA |·|PB |最小,求l 的方程. 解:①依题意,l 的斜率存在,且斜率为负, 设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A ⎝⎛⎭⎪⎫1-4k,0;令x =0,可得B (0,4-k ).|OA |+|OB |=⎝ ⎛⎭⎪⎫1-4k +(4-k )=5-⎝ ⎛⎭⎪⎫k +4k=5+⎝⎛⎭⎪⎫-k +4-k ≥5+4=9. ∴当且仅当-k =4-k且k <0,即k =-2时,|OA |+|OB |取最小值. 这时l 的方程为2x +y -6=0.②|PA |·|PB |=⎝ ⎛⎭⎪⎫4k 2+16·1+k 2=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-k +(-k )≥8(k <0), 当且仅当1-k=-k 且k <0,即k =-1时,|PA |·|PB |取最小值. 这时l 的方程为x +y -5=0.点拨:直线方程综合问题的两大类型及解法:(1)与函数相结合的问题,解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决;(2)与方程、不等式相结合的问题,一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点; (2)若直线l 不经过第四象限,求k 的取值范围; (3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解:(1)证明:将直线l 的方程变形得k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴无论k 取何值,直线l 过定点(-2,1). (2)当直线l 的倾斜角θ∈[0°,90°]时,直线l 不经过第四象限,∴k ≥0.(3)由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, 当且仅当4k =1k 且k >0,即k =12时等号成立,∴S min =4,此时直线l 的方程为x -2y +4=0.1.直线的倾斜角和斜率的关系,可借助k =tan α的图象(如图)来解决.这里,α∈[0,π),k 的范围是两个不连续的区间.这说明,每条直线都有倾斜角,但不一定每条直线都存在斜率,故在求直线方程时,若不能确定直线的斜率是否存在,则应对斜率存在或不存在进行分类讨论.2.直线在坐标轴上的截距是直线与坐标轴的交点的坐标,它不是距离,它可正、可负、可为0,在用截距式求直线方程时,不可忽视截距为0的情况.3.在解决直线与坐标轴围成的直角三角形的面积、周长等问题时,应用截距式方程比较简单.4.对于直线方程来说,要注意的是,除“一般式”外,每一种形式的二元一次方程表示的直线都是有限制的,具体可参看本节“考点梳理”栏目.在解决关于直线方程的问题中,要把握限制的条件,在求解时要细心处理,否则容易产生增解或漏解的情形.如利用直线的点斜式、斜截式解题时,要注意防止忽视斜率不存在而出现漏解;利用直线的截距式解题时,要注意防止忽视零截距而造成漏解;利用直线的一般式解题时,要注意防止忽视隐含条件A 2+B 2≠0而出现增解.1.若A -B +C =0,则直线Ax +By +C =0必经过点( )A .(0,1)B .(1,0)C .(1,-1)D .(-1,-1)解:将点(1,-1)代入Ax +By +C =0,得A -B +C =0,∴直线Ax +By +C =0必过点(1,-1).故选C.2.下列命题中,正确的是( ) A .直线的斜率为tan α,则直线的倾斜角是α B .直线的倾斜角为α,则直线的斜率为tan α C .直线的倾斜角越大,则直线的斜率就越大D .直线的倾斜角α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时,直线的斜率分别在这两个区间上单调递增解:因为直线的斜率k =tan θ,且θ∈[0,π)时,θ才是直线的倾斜角,所以A 不对;因为任一直线的倾斜角α∈[0,π),而当α=π2时,直线的斜率不存在,所以B 不对;当α∈⎝⎛⎭⎪⎫0,π2时,斜率大于0;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率小于0,C 不对.故选D.3.已知直线的倾斜角为120°,在y 轴上的截距为-2,则此直线的方程为( )A .y =3x +2B .y =-3x +2C .y =-3x -2D .y =3x -2解:∵k =tan120°=-3,且直线在y 轴上的截距为-2,∴由斜截式得y =-3x -2.故选C.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是( )A .1B .-1C .-2或-1D .-2或1解:显然a ≠0,由题意得a +2=a +2a,解得a=-2或1.故选D.5.将直线l 沿y 轴的负方向平移a (a >0)个单位,再沿x 轴正方向平移a +1个单位得直线l ′,此时直线l ′与l 重合,则直线l ′的斜率为( )A.aa +1B .-aa +1C.a +1aD .-a +1a解:设直线l 的倾斜角为θ,则根据题意,有tan(π-θ)=-tan θ=a a +1,∴k =tan θ=-aa +1.故选B.6.(2013·北京海淀模拟)已知点A (-1,0),B (cos α,sin α),且||AB =3,则直线AB 的方程为( )A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2解:∵||AB =(cos α+1)2+sin 2α=2+2cos α=3,∴cos α=12,sin α=±32.当点B 的坐标为⎝ ⎛⎭⎪⎫12,32时,直线AB 的方程为y =33x +33;当点B 的坐标为⎝ ⎛⎭⎪⎫12,-32时,直线AB 的方程为y =-33x -33.故选B. 7.直线l :x sin30°+y cos150°+1=0的斜率是____________.解:由题意得直线l 的斜率k =-sin30°cos150°=tan30°=33,∴直线l 的斜率为33.故填33. 8.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是____________.解:∵k =tan α,α∈⎣⎢⎡⎦⎥⎤π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,∴-3≤k <0或33≤k ≤1.故填[-3,0)∪⎣⎢⎡⎦⎥⎤33,1. 9.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,求直线l 的方程.解:设所求直线l 的方程为x a +yb=1. ∵k =16,∴-b a =16,得a =-6b .又S =12|a |·|b |=3,∴|ab |=6.联立⎩⎨⎧a =-6b ,||ab =6,得⎩⎪⎨⎪⎧a =-6,b =1或⎩⎪⎨⎪⎧a =6,b =-1.∴所求直线方程为:x -6+y 1=1或x 6+y-1=1, 即x -6y +6=0或x -6y -6=0.10.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)∵直线BC 经过B (2,1)和C (-2,3)两点,∴由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)易得BC 边的中点D 的坐标为(0,2),∵BC 边的中线AD 过点A (-3,0),D (0,2)两点,∴由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.11.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解法一:设直线l 的方程为x a +y b=1(a >0,b >0),将点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线l 的方程为2x +3y -12=0.解法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0),则A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4-k =12×(12+12)=12,当且仅当-9k =4-k ,即k =-23时,等号成立.∴△ABO 的面积的最小值为12,所求直线l 的方程为2x +3y -12=0.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5),∴△ABC 周长的最小值为||A 1A 2=(4-0)2+(-5-7)2=410.§9.2 两条直线的位置关系1.两条直线的位置关系(1)平行:对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔____________,特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为____________.(2)垂直:如果两条直线l 1,l 2的斜率都存在,且分别为k 1,k 2,则有l 1⊥l 2⇔____________,特别地,若直线l 1:x =a ,直线l 2:y =b ,则l 1与l 2的关系为____________.2.两条直线的交点坐标一般地,将两条直线的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 若方程组有惟一解,则两条直线__________,此解就是__________;若方程组无解,则两条直线____________,此时两条直线____________.3.距离公式(1)点到直线的距离:点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d = .(2)两条平行直线间的距离:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离d =____________________. 4.过两直线交点的直线系方程 若已知直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0相交,则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,这条直线可以是l 1,但不能是l 2)表示过l 1和l 2交点的直线系方程.自查自纠:1.(1)k 1=k 2 l 1∥l 2 (2)k 1k 2=-1 l 1⊥l 2 2.相交 交点的坐标 无公共点 平行3.(1)||Ax 0+By 0+C A 2+B 2(2)||C 1-C 2A 2+B 2直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解:由题意知直线l 的斜率是-32,因此直线l的方程为y -2=-32(x +1),即3x +2y -1=0.故选A.(2015·北京海淀区期末)已知直线l 1:x +2y -1=0与直线l 2:mx -y =0平行,则实数m 的值为( )A .-12 B.12C .2D .-2解:∵直线l 1:x +2y -1=0与直线l 2:mx -y=0平行,∴m1=-12≠0,解得m =-12.故选A.(2015·浙江名校联考)已知直线l 1:x +(a -2)y -2=0,l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =-1,则l 1:x -3y -2=0,l 2:-3x -y -1=0,显然两条直线垂直;若l 1⊥l 2,则(a -2)+a (a -2)=0,解得a =-1或a =2,因此,“a =-1”是“l 1⊥l 2”的充分不必要条件.故选A.(2015·武汉调研)直线x -2y +1=0关于直线x =1对称的直线方程是____________.解:设直线x -2y +1=0关于直线x =1对称的直线为l 2,则l 2的斜率为-12,且过直线x -2y +1=0与x =1的交点(1,1),则l 2的方程为y -1=-12(x -1),即x+2y -3=0.故填 x +2y -3=0. 已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为____________.解:设l 1的方程为x +y +c =0,则|c +1|2=2,解得c =1或c =-3.∴直线l 1的方程为x +y +1=0或x +y -3=0.故填x +y +1=0或x +y -3=0.类型一 两条直线平行、重合或相交 已知两条直线:l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,l 1与l 2:(1)相交; (2)平行; (3)重合.解:联立两直线方程⎩⎪⎨⎪⎧x +my +6=0,(m -2)x +3y +2m =0.当m =0或m =2时两直线相交;当m ≠0且m ≠2时,此时A 1A 2=1m -2,B 1B 2=m 3,C 1C 2=62m, 当A 1A 2=B 1B 2时,即1m -2=m3,解得m =-1或m =3;当A 1A 2=C 1C 2时,即1m -2=62m,解得m =3. (1)当m ≠-1且m ≠3时,A 1A 2≠B 1B 2,方程组有唯一一组解.∴l 1与l 2相交.(2)当m =-1时,A 1A 2=B 1B 2且A 1A 2≠C 1C 2,方程组无解.∴l 1与l 2平行.(3)当m =3时,A 1A 2=B 1B 2=C 1C 2,方程组有无穷多组解.∴l 1与l 2重合.点拨:由直线的一般式直接判断两条直线是否平行时,可直接应用本题的结论,即:若A 1A 2=B 1B 2≠C 1C 2,则直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0平行,这是一个很实用的结论,但要注意分母不能为零.当实数m 为何值时,三条直线l 1:3x+my -1=0,l 2:3x -2y -5=0,l 3:6x +y -5=0不能围成三角形.解:当m =0时,直线l 1,l 2,l 3可以围成三角形,要使直线l 1,l 2,l 3不能围成三角形,则m ≠0.记l 1,l 2,l 3三条直线的斜率分别为k 1,k 2,k 3,则k 1=-3m ,k 2=32,k 3=-6.若l 1∥l 2,或l 1∥l 3,则k 1=k 2=32,或k 1=k 3=-6,解得m =-2或m =12;若三条直线交于一点,由⎩⎪⎨⎪⎧3x -2y -5=0,6x +y -5=0得⎩⎪⎨⎪⎧x =1,y =-1, l 2与l 3交于点(1,-1),将点(1,-1)代入3x +my -1=0,得m =2.∴当m =±2或12时,l 1,l 2,l 3不能围成三角形.类型二 两条直线垂直(1)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1⊥l 2,且l 1过点(-3,-1),求a ,b 的值;(2)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,若l 1⊥l 2,求α的值.解:(1)法一:由已知可得l 2的斜率k 2存在,且k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,∴直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,得a =43(矛盾). ∴此种情况不存在,∴k 2≠0, ∴k 1,k 2都存在.∵k 2=1-a ,k 1=a b ,l 1⊥l 2,∴k 1k 2=-1,即ab(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 联立①②可得a =2,b =2.法二:∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即b =a 2-a .①又∵l 1过点(-3,-1), ∴-3a +b +4=0.②联立①②可得⎩⎪⎨⎪⎧a =2,b =2.经验证,符合题意.故a =2,b =2.(2)∵A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件, ∴2sin α+sin α=0,即sin α=0,α=k π,k ∈Z .∴当α=k π,k ∈Z 时,l 1⊥l 2.点拨:判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1·k 2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论.设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.(3)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.“m =3”是“直线l 1:2(m +1)x +(m-3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解:由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,解得m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.故选A.类型三 对称问题已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标; (2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程;(3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解:(1)设A ′(x ,y ),则有⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一:在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3).则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设Q (x ,y )为l ′上任意一点, 则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.点拨:(1)关于中心对称问题的处理方法:①若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1.②求直线关于点的对称直线的方程,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用两直线平行,由点斜式得到所求直线方程,当然,斜率必须存在.(2)关于轴对称问题的处理方法:①点关于直线的对称.若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在l 上,且连接P 1P 2的直线垂直于l ,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).②直线关于直线的对称.此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为____________.解:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有 ⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,∴A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). ∴BC 边所在直线方程为2x -y +3=0. 故填2x -y +3=0.类型四 距离问题(1)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是____________.(2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是____________.解:(1)由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15, 解之得0≤a ≤10,∴a 的取值范围是[0,10].故填[0,10].(2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,∴⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 故填2或-6.点拨:距离的求法:(1)点到直线的距离.可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.(2)两平行直线间的距离.①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式d =|C 1-C 2|A 2+B2.直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程.解:当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在.设直线l 的方程为y +5=k (x -2),即kx -y -2k -5=0,则点A (3,-2)到直线l 的距离d 1=|3k -(-2)-2k -5|k 2+1=|k -3|k 2+1,点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1,∵d 1∶d 2=1∶2,∴|k -3||3k +11|=12,解得k =-1或k =-17.∴所求直线方程为x +y +3=0和17x +y -29=0.类型五 直线系及其应用求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R )恒过定点,并求出定点坐标.证法一:令m =0,则直线方程为3x +y +1=0,①再令m =1时,直线方程为6x +y +4=0,②联立①②,得方程组⎩⎪⎨⎪⎧3x +y +1=0,6x +y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =2. 将点A (-1,2)代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中,(m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1=(3-1-2)m 2+(-2+2)m +2+1-3=0, 故点A (-1,2)的坐标恒满足动直线方程,所以动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A .证法二:将动直线方程按m 降幂排列整理得, m 2(x -y +3)+m (2x +y )+3x +y +1=0,① 不论m 为何实数,①式恒为零,∴有⎩⎪⎨⎪⎧x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2.故动直线恒过点(-1,2).点拨:此题属于数学中恒成立问题,所以证法一是先赋给m 两个特殊值得两条直线,那么这两条直线的交点就是那个定点,但m 只是取两个特殊值,是否m ∈R 时都成立,则要进行代入检验;证法二是将动直线方程按m 的降幂排列,由于∀m ∈R 恒成立,所以得关于x ,y 的方程组,解此方程组便得定点坐标.直线系也称直线束,是具有某一共同性质的直线的集合.常见直线系方程有:(1)过定点(x 1,y 1)的直线系:y -y 1=k (x -x 1)和x =x 1.(2)平行于直线Ax +By +C =0的直线系:Ax +By +λ=0(λ≠C ).(3)垂直于直线Ax +By +C =0的直线系:Bx -Ay +λ=0.(4)过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).已知直线l :(a +b )x +(a -b )y +2=0,其中a ,b 满足3a -b +2=0.求证:直线l 恒过一定点.证明:由已知得b =3a +2,则直线l 的方程可化为(4a +2)x -(2a +2)y +2=0,整理得 a (4x -2y )+2x -2y +2=0. 令⎩⎪⎨⎪⎧4x -2y =0,2x -2y +2=0,解得⎩⎪⎨⎪⎧x =1,y =2. ∵点(1,2)恒满足直线l 的方程,∴直线l 恒过定点(1,2).1.当直线的方程中含有字母参数时,不仅要考虑斜率存在与不存在的情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.两条直线的位置关系一般用斜率和截距来判定,但当直线方程用一般式给出且系数中有参数时,往往需要繁琐地讨论.但也可以这样避免:设两直线为A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0,则两直线垂直的条件为⎝ ⎛⎭⎪⎫-A 1B 1·⎝ ⎛⎭⎪⎫-A 2B 2=-1,由此得A 1A 2+B 1B 2=0,但后者适用性更强,因为当B 1=0或B 2=0时前者不适用但后者适用.3.运用直线系方程,有时会使解题更为简单快捷,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.4.运用公式d =||C 1-C 2A 2+B 2求两平行直线间的距离时,一定要将两条直线方程中x ,y 的系数化成相等的系数,求两平行直线间的距离也可化归为点到直线的距离,即在一条直线上任取一点(如直线与坐标轴的交点),求该点到另一条直线的距离即为两平行直线间的距离.这一方法体现了化归思想的应用.5.对称主要分为中心对称和轴对称两种,中心对称仅用中点坐标公式即可,轴对称因对称点连线的中垂线就是对称轴,所以根据线段的中点坐标公式和两条直线垂直的条件即可解决.1.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0B .2x +y -7=0C .x -2y +3=0D .x -2y +5=0解:由点斜式得所求直线方程为y -3=12(x -2),即x -2y +4=0.故选A.2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解:设所求直线方程为x -2y +c =0,将(1,0)代入得c =-1.∴所求直线方程为x -2y -1=0.故选A.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解:∵直线l 1与l 2关于点(2,1)对称,且直线l 1过点(4,0),∴直线l 2必过点(4,0)关于点(2,1)的对称点(0,2).故选B.4.(2013·长春调研)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A .1710B .175C .8D .2 解:由题意得36=4m ≠-314,解得m =8.∴直线6x +my +14=0可化为3x +4y +7=0.∴两平行线间的距离为d =||-3-732+42=2.故选D. 5.已知过点A (-2,m )和点B (m ,4)的直线为l 1,l 2:2x +y -1=0,l 3:x +ny +1=0.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解:∵l 1∥l 2,∴k AB =4-mm +2=-2,解得m =-8.又∵l 2⊥l 3.∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1,解得n =-2.∴m +n =-10.故选A.6.(2015·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解:∵点P (x 0,y 0)不在直线Ax +By +C =0上,∴Ax 0+By 0+C ≠0,∴直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P .又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行.故选D.7.过圆x 2+y 2+2x -4y =0的圆心,且与直线2x +3y =0垂直的直线方程为____________.解:设与直线2x +3y =0垂直的直线方程为3x -2y +m =0,由于其过圆心(-1,2),所以有3×(-1)-2×2+m =0,得m =7,所求直线方程为3x -2y +7=0.故填3x -2y +7=0.8.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为____________.解法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,解得k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y-5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.解法二:当AB ∥l 时,有k =k AB =-13,直线l的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.故填x +3y -5=0或x =-1.9.已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,试求θ的值,使得:(1)l 1∥l 2; (2)l 1⊥l 2.解:(1)由12sin θ=sin θ≠-11,得sin θ=±22. 由sin θ=±22,得θ=k π±π4(k ∈Z ). ∴当θ=k π±π4(k ∈Z )时,l 1∥l 2. (2)由2sin θ+sin θ=0,得sin θ=0,θ=k π(k ∈Z ),∴当θ=k π(k ∈Z )时,l 1⊥l 2.10求直线l :x -2y +6=0关于点M (-1,1)对称的直线l ′的方程. 解法一:取l 上的两点A (0,3),B (-6,0),求出它们关于点M 的对称点,A ′(-2,-1), B ′(4,2),再用两点式求出l ′的方程为x -2y =0.解法二:设点P ′(x ′,y ′)为所求直线l ′上的任意一点,则点P ′关于点M 在直线l 上的对称点为P (x ,y ).由⎩⎪⎨⎪⎧-1=x +x ′2,1=y +y ′2得 ⎩⎪⎨⎪⎧x =-2-x ′,y =2-y ′, 代入直线l 的方程得:(-2-x ′)-2(2-y ′)+6=0,得x ′-2y ′=0,即x -2y =0为所求直线l ′的方程.11.设一直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解法一:设直线x -y -1=0与l 1,l 2的交点分别为C (x C ,y C ),D (x D ,y D ),则由⎩⎪⎨⎪⎧x +2y -1=0,x -y -1=0解得⎩⎪⎨⎪⎧x C =1,y C=0, ∴C (1,0). 由⎩⎪⎨⎪⎧x +2y -3=0,x -y -1=0解得⎩⎪⎨⎪⎧x D =53,y D =23,∴D ⎝ ⎛⎭⎪⎫53,23.∴CD 的中点为M ⎝ ⎛⎭⎪⎫43,13. 又l 过点(-1,1),由两点式得l 的方程为: y -131-13=x -43-1-43,即2x +7y -5=0. 解法二:∵与l 1,l 2平行且与它们距离相等的直线方程为:x +2y +-1-32=0,即x +2y -2=0,∴由⎩⎪⎨⎪⎧x +2y -2=0,x -y -1=0 得M ⎝ ⎛⎭⎪⎫43,13.(以下同解法一)解法三:过中点且与两直线平行的直线方程为x +2y -2=0,设所求方程为:(x -y -1)+λ(x +2y -2)=0,① ∵(-1,1)在此直线上,∴-1-1-1+λ(-1+2-2)=0,解得λ=-3,代入①得2x +7y -5=0. 解法四:设所求直线与两平行线l 1,l 2的交点为A (x 1,y 1),B (x 2,y 2),则 由⎩⎪⎨⎪⎧x 1+2y 1-1=0,x 2+2y 2-3=0得(x 1+x 2)+2(y 1+y 2)-4=0.①又AB 的中点在直线x -y -1=0上,。
高考数学一轮复习 第9章 平面解析几何 6 第6讲 双曲线教案 理-人教版高三全册数学教案
第6讲双曲线1.双曲线的定义条件结论1结论2 平面内的动点M与平面内的两个定点F1,F2M点的轨迹为双曲线F1、F2为双曲线的焦点|F1F2|为双曲线的焦距||MF1|-|MF2||=2a2a<|F1F2|标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质X围x≥a或x≤-a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴,对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 渐近线y=±bax y=±abx离心率e=ca,e∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a、b、c的关系c2=a2+b2(c>a>0,c>b>0)(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫作等轴双曲线,其标准方程可写作:x2-y2=λ(λ≠0).(2)等轴双曲线⇔离心率e=2⇔两条渐近线y=±x相互垂直.4.双曲线中一些常用的结论(1)双曲线的焦点到其渐近线的距离为b.(2)假设P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,那么|PF1|max=a+c,|PF2|min=c-a.(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a,异支的弦中最短的为实轴,其长为2a.(4)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,直线PA,PB斜率存在且不为0,那么直线PA与PB的斜率之积为b2a2.(5)P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,那么S △PF1F2=b2·1tanθ2,其中θ为∠F1PF2.判断正误(正确的打“√〞,错误的打“×〞)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)椭圆的离心率e∈(0,1),双曲线的离心率e∈(1,+∞).( )(3)方程x2m-y2n=1(mn>0)表示焦点在x轴上的双曲线.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( )答案:(1)×(2)√(3)×(4)√(2017·高考全国卷Ⅲ)双曲线C:x2a2-y2b2=1 (a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,那么C的方程为( )A.x28-y210=1 B.x24-y25=1C.x25-y24=1 D.x24-y23=1解析:选B.根据双曲线C 的渐近线方程为y =52x ,可知b a =52 ①,又椭圆x 212+y23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9 ②,根据①②可知a 2=4,b 2=5,所以选B.(教材习题改编)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为53,那么其渐近线方程为________.解析:法一:由题意,得e =ca =1+⎝ ⎛⎭⎪⎫b a 2=53,解得b a =43,所以双曲线的渐近线方程为y=±b a x =±43x ,即4x ±3y =0.法二:由题意,得e =c a =53,即c =53a ,所以b 2=c 2-a 2=169a 2,所以b a =43,所以双曲线的渐近线方程为y =±b a x =±43x ,即4x ±3y =0.答案:4x ±3y =0(2016·高考卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),那么a =________;b =________.解析:由题意知,渐近线方程为y =-2x ,由双曲线的标准方程以及性质可知b a=2,由c =5,c 2=a 2+b 2,可得b =2,a =1. 答案:1 2双曲线的定义[典例引领](1)设双曲线x 2-y 28=1的两个焦点为F 1,F 2,P 是双曲线上的一点,且|PF 1|∶|PF 2|=3∶4,那么△PF 1F 2的面积等于( ) A .10 3 B .8 3 C .8 5D .16 5(2)(2018·某某质检)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,那么顶点C的轨迹方程是________.【解析】(1)依题意|F1F2|=6,|PF2|-|PF1|=2,因为|PF1|∶|PF2|=3∶4,所以|PF1|=6,|PF2|=8,所以等腰三角形PF1F2的面积S=12×8×62-⎝⎛⎭⎪⎫822=8 5.(2)如图,△ABC与内切圆的切点分别为G,E,F.|AG|=|AE|=8,|BF|=|BG|=2,|CE|=|CF|,所以|CA|-|CB|=8-2=6.根据双曲线定义,所求轨迹是以A,B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x>3).【答案】(1)C (2)x29-y216=1(x>3)假设本例(1)中“|PF1|∶|PF2|=3∶4〞变为“PF1⊥PF2〞,其他条件不变,如何求解.解:设|PF1|=m,|PF2|=n,那么⎩⎪⎨⎪⎧m2+n2=36,m2+n2-2mn=4,解得mn=16,所以S△PF1F2=12mn=8.双曲线定义的应用规律类型解读求方程由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a,2b或2c的值,从而求出a2,b2的值,写出双曲线方程解焦点三角形利用双曲线上点M与两焦点的距离的差||MF1|-|MF2||=2a(其中2a<|F1F2|)与正弦定理、余弦定理,解决焦点三角形问题“常数〞小于|F1F2|,否那么轨迹是线段或不存在.[通关练习]1.双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.假设|PF 1|=43|PF 2|,那么△F 1PF 2的面积为( ) A .48 B .24 C .12D .6解析:选 B.由双曲线的定义可得|PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10,故三角形PF 1F 2为直角三角形,因此S △PF 1F 2=12|PF 1|×|PF 2|=24.2.(2018·某某某某调研)假设双曲线x 24-y 212=1的左焦点为F ,点P 是双曲线右支上的动点,A (1,4),那么|PF |+|PA |的最小值是( ) A .8 B .9 C .10D .12解析:选B.由题意知,双曲线x 24-y 212=1的左焦点F 的坐标为(-4,0),设双曲线的右焦点为B ,那么B (4,0),由双曲线的定义知|PF |+|PA |=4+|PB |+|PA |≥4+|AB |=4+〔4-1〕2+〔0-4〕2=4+5=9,当且仅当A ,P ,B 三点共线且P 在A ,B 之间时取等号.所以|PF |+|PA |的最小值为9.双曲线的标准方程[典例引领](1)(2017·高考某某卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),那么双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 2=1 D .x 2-y 23=1(2)假设双曲线的渐近线方程为y =±12x ,且经过点(4,3),那么双曲线的方程为________.【解析】 (1)由△OAF 是边长为2的等边三角形可知,c =2,b a=tan 60°=3,又c 2=a 2+b 2,联立可得a =1,b =3,所以双曲线的方程为x 2-y 23=1.(2)法一:因为双曲线的渐近线方程为y =±12x ,所以可设双曲线的方程为x 2-4y 2=λ(λ≠0). 因为双曲线过点(4,3),所以λ=16-4×(3)2=4, 所以双曲线的标准方程为x 24-y 2=1.法二:因为渐近线y =12x 过点(4,2),而3<2,所以点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).所以双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,所以双曲线的标准方程为x 24-y 2=1.【答案】 (1)D (2)x 24-y 2=1(1)求双曲线标准方程的答题模板(2)利用待定系数法求双曲线方程的常用方法①与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b2=λ(λ≠0);②假设双曲线的渐近线方程为y =±b a x ,那么双曲线的方程可设为x 2a 2-y 2b 2=λ(λ≠0);③假设双曲线过两个点,那么双曲线的方程可设为x 2m +y 2n=1(mn <0)或mx 2+ny 2=1(mn <0).[通关练习]1.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,那么双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y2100=1 D.3x 2100-3y225=1 解析:选A.由题意知,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,所以ba =2,即b 2=4a 2.又双曲线的一个焦点是直线l 与x 轴的交点,所以该焦点的坐标为(-5,0),所以c =5,即a 2+b 2=25,联立得⎩⎪⎨⎪⎧b 2=4a 2,a 2+b 2=25,解得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选 B.法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),所以4a 2-1b 2=1,a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线方程是x 22-y 2=1.法二:设所求双曲线方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1,解得λ=2(λ=-2舍去),所以所求双曲线方程为x 22-y 2=1.双曲线的几何性质 (高频考点)双曲线的几何性质及应用,是高考命题的热点,多以选择题或填空题的形式呈现,试题多为容易题或中档题.高考对双曲线的几何性质的考查主要有以下三个命题角度: (1)求双曲线的焦点(距)、实、虚轴长; (2)求双曲线的渐近线方程; (3)求双曲线的离心率(或X 围).[典例引领]角度一 求双曲线的焦点(距)、实、虚轴长(2018·某某某某模拟)离心率为52的双曲线C :x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,假设S △OMF 2=16,那么双曲线的实轴长是( ) A .32 B .16 C .84D .4【解析】 由题意知F 2(c ,0),不妨令点M 在渐近线y =bax 上,由题意可知|F 2M |=bc a 2+b 2=b ,所以|OM |=c 2-b 2=a .由S △OMF 2=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C B. 【答案】 B角度二 求双曲线的渐近线方程过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆O :x 2+y 2=a 2的两条切线,切点为A ,B ,双曲线左顶点为C ,假设∠ACB =120°,那么双曲线的渐近线方程为( )A .y =±3xB .y =±33x C .y =±2xD .y =±22x 【解析】 如下图,连接OA ,OB ,设双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c (c >0),那么C (-a ,0),F (-c ,0).由双曲线和圆的对称性知,点A 与点B 关于x 轴对称,那么∠ACO =∠BCO =12∠ACB =12×120°=60°.因为|OA |=|OC |=a ,所以△ACO 为等边三角形,所以∠AOC =60°. 因为FA 与圆O 切于点A ,所以OA ⊥FA ,在Rt △AOF 中,∠AFO =90°-∠AOF =90°-60°=30°,所以|OF |=2|OA |,即c =2a , 所以b =c 2-a 2=〔2a 〕2-a 2=3a ,故双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,即y =±3x .【答案】 A角度三 求双曲线的离心率(或X 围)(1)(2017·高考全国卷Ⅱ)假设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x-2)2+y 2=4所截得的弦长为2,那么C 的离心率为( ) A .2 B. 3 C. 2D.233(2)双曲线x 2a 2-y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),假设双曲线上存在一点P 使sin ∠PF 1F 2sin ∠PF 2F 1=ac,那么该双曲线的离心率的取值X 围是________.【解析】 (1)依题意,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为bx -aybx -ay=0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e =1+b 2a2=1+3=2,选择A. (2)在△PF 1F 2中,由正弦定理知|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1,又sin ∠PF 1F 2sin ∠PF 2F 1=a c ,所以|PF 2||PF 1|=ac ,所以P 在双曲线右支上,设P (x 0,y 0),如图,又因为|PF 1|-|PF 2|=2a ,所以|PF 2|=2a2c -a .由双曲线几何性质知|PF 2|>c -a ,那么2a 2c -a >c -a ,即e 2-2e -1<0,所以1<e <1+ 2.【答案】 (1)A (2)(1,1+2)与双曲线几何性质有关问题的解题策略(1)求双曲线的离心率(或X 围).依据题设条件,将问题转化为关于a ,c 的等式(或不等式),解方程(或不等式)即可求得.(2)求双曲线的渐近线方程.依据题设条件,求双曲线中a ,b 的值或a 与b 的比值,进而得出双曲线的渐近线方程.(3)求双曲线方程.依据题设条件,求出a ,b 的值或依据双曲线的定义,求双曲线的方程.(4)求双曲线焦点(焦距)、实虚轴的长.依题设条件及a ,b ,c 之间的关系求解.[通关练习]1.(2018·某某市第三次调研考试)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,那么它的渐近线方程为( ) A .y =±32xB .y =±23xC .y =±94xD .y =±49x解析:选A.由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,可得c 2a 2=134,所以b 2a2+1=134,可得b a =32,故双曲线的渐近线方程为y =±32x .选A. 2.(2018·某某市第二次质量预测)双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,那么两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为________.解析:设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎪⎨⎪⎧x 24+y 23=1x 2a 2-y 2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧x 2=4a2y 2=3〔1-a 2〕,由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·3〔1-a 2〕=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x212-y212=1,离心率e= 2.答案: 2直线与双曲线的位置关系[典例引领]中心在原点的双曲线C的右焦点为(2,0),实轴长为2 3.(1)求双曲线C的方程;(2)假设直线l:y=kx+2与双曲线C左支交于A,B两点,求k的取值X围.【解】(1)设双曲线C的方程为x2a2-y2b2=1(a>0,b>0).由得,a=3,c=2,再由a2+b2=c2,得b2=1,所以双曲线C的方程为x23-y2=1.(2)设A(x A,y A),B(x B,y B),将y=kx+2代入x23-y2=1,得(1-3k2)x2-62kx-9=0.由题意知⎩⎪⎪⎨⎪⎪⎧1-3k2≠0,Δ=36〔1-k2〕>0,x A+x B=62k1-3k2<0,解得33<k<1.x A x B=-91-3k2>0,所以k的取值X围为⎝⎛⎭⎪⎫33,1.在本例(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值X围.解:由(2)得:x A+x B=62k1-3k2,所以y A+y B=(kx A+2)+(kx B+2)=k(x A+x B)+22=221-3k2.所以AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫32k1-3k 2,21-3k 2.设直线l 0的方程为:y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.因为33<k <1,所以-2<1-3k 2<0.所以m <-2 2. 所以m 的取值X 围为(-∞,-22).研究直线与双曲线位置关系问题的方法(1)直线与双曲线的位置关系的判断和直线与椭圆的位置关系的判断方法类似,利用方程解的个数确定;(2)假设直线与双曲线交于A (x 1,y 1),B (x 2,y 2)两点,直线的斜率为k ,那么|AB |=1+k 2|x 1-x 2|.[提醒] 由方程法判断直线与双曲线位置关系时,应注意当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB 的长.解:(1)因为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点,所以⎩⎪⎨⎪⎧c a =3,a =3,解得c =3,b =6,所以双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),所以经过双曲线右焦点F 2且倾斜角为30°的直线的方程为y =33(x -3). 联立⎩⎪⎨⎪⎧x 23-y 26=1,y =33〔x -3〕,得5x 2+6x -27=0.设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-65,x 1x 2=-275.所以|AB |=1+13×⎝ ⎛⎭⎪⎫-652-4×⎝ ⎛⎭⎪⎫-275=1635.双曲线几何性质的三个关注点(1)“六点〞:两焦点、两顶点、两虚轴端点; (2)“四线〞:两对称轴(实、虚轴)、两渐近线;(3)“两形〞:中心、顶点、虚轴端点构成的三角形;双曲线上的一点(不包括顶点)与两焦点构成的三角形.双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1〞为“0〞就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1(a >0.b >0)的两条渐近线方程. 易错防X(1)双曲线的定义中易忽视2a <|F 1F 2|这一条件.假设2a =|F 1F 2|,那么轨迹是以F 1,F 2为端点的两条射线,假设2a >|F 1F 2|,那么轨迹不存在.(2)区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.(3)双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).1.(2018·某某模拟)双曲线的离心率为2,焦点是(-4,0),(4,0),那么双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 解析:选A.双曲线的离心率为2,焦点是(-4,0),(4,0),那么c =4,a =2,b 2=12,双曲线方程为x 24-y 212=1,应选A.2.(2018·某某某某模拟)当双曲线M :x 2m 2-y 22m +6=1(-2≤m <0)的焦距取得最小值时,双曲线M 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2xD .y =±12x解析:选C.由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为x 2-y 24=1,所以渐近线方程为y =±2x .应选C.3.(2017·高考全国卷Ⅰ)F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),那么△APF 的面积为( ) A.13 B.12 C.23D.32解析:选D.法一:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.应选D.法二:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP →=(1,0),PF →=(0,-3),所以AP →·PF →=0,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.应选D.4.(2018·某某市武昌区调研考试)F 1,F 2是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 1|>|PF 2|,线段PF 1的垂直平分线过F 2,假设椭圆的离心率为e 1,双曲线的离心率为e 2,那么2e 1+e 22的最小值为( )A .6B .3 C. 6D. 3解析:选 A.设椭圆的长半轴长为a ,双曲线的半实轴长为a ′,半焦距为c ,依题意知⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|-|PF 2|=2a ′,2a =2a ′+4c ,所以2e 1+e 22=2a c +c 2a ′=2a ′+4c c +c 2a ′=2a ′c +c2a ′+4≥2+4=6,当且仅当c =2a ′时取“=〞,应选A. 5.(2018·某某某某模拟)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,假设BA →=2AF →,且|BF →|=4,那么双曲线C 的方程为( ) A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1 解析:选D.不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝ ⎛⎭⎪⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①又|BF →|=b 2+c 2=4,c 2=a 2+b 2, 所以a 2+2b 2=16,② 由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,应选D.6.双曲线x 2m -y 23m =1的一个焦点是(0,2),椭圆y 2n -x 2m=1的焦距等于4,那么n =________.解析:因为双曲线的焦点是(0,2),所以焦点在y 轴上,所以双曲线的方程为y 2-3m -x 2-m =1,即a 2=-3m ,b 2=-m ,所以c 2=-3m -m =-4m =4,解得m y 2n+x 2=1,且n >0,椭圆的焦距为4,所以c 2=n -1=4或1-n =4,解得n =5或-3(舍去). 答案:57.(2018·某某某某模拟)设F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,M ,N 是双曲线C 的一条渐近线上的两点,四边形MF 1NF 2为矩形,A 为双曲线的一个顶点,假设△AMN 的面积为12c 2,那么该双曲线的离心率为________.解析:设M ⎝⎛⎭⎪⎫x ,b a x ,根据矩形的性质,得|MO |=|OF 1|=|OF 2|=c ,即x 2+⎝ ⎛⎭⎪⎫b a x 2=c 2,那么x =a ,所以M (a ,b ).因为△AMN 的面积为12c 2,所以2×12·a ·b =12c 2,所以4a 2(c 2-a 2)=c 4,所以e 4-4e 2+4=0,所以e = 2. 答案: 28.设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的左、右焦点,假设△PF 1F 2的面积为12,那么∠F 1PF 2=________.解析:由题意可知,F 1(-13,0),F 2(13,0),|F 1F 2|=213.设P (x 0,y 0),那么△PF 1F 2的面积为12×213|y 0|y 20=12213,将P 点坐标代入双曲线方程得x 20=2513,不妨设点P ⎝⎛⎭⎪⎫51313,121313,那么PF 1→=(-181313,-121313),PF 2→=⎝ ⎛⎭⎪⎫81313,-121313,可得PF 1→·PF 2→=0,即PF 1⊥PF 2,故∠F 1PF 2=π2.答案:π29.椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 解:椭圆D 的两个焦点坐标为(-5,0),(5,0), 因而双曲线中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b2=1(a >0,b >0),所以渐近线方程为bx ±ay =0且a 2+b 2=25, 又圆心M (0,5)到两条渐近线的距离为r =3. 所以|5a |b 2+a 2=3,得a =3,b =4,所以双曲线G 的方程为x 29-y 216=1.10.双曲线y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,假设AP →=PB →,求△AOB 的面积.解:(1)依题意得⎩⎪⎨⎪⎧a b =2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1.(2)由(1)知双曲线的渐近线方程为y =±2x ,设A (m ,2m ),B (-n ,2n ),其中m >0,n >0,由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n .将点P 的坐标代入y 24-x 2=1,整理得mn =1. 设∠AOB =2θ,因为tan ⎝⎛⎭⎪⎫π2-θ=2,那么tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n ,所以S △AOB =12|OA ||OB |sin 2θ=2mn =2.1.(2018·某某市质量检测(二))过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线,切点分别为M ,N ,那么|PM |2-|PN |2的最小值为( )A .10B .13C .16D .19解析:选 B.由题可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|B. 2.(2018·某某模拟)以椭圆x 29+y 25=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2.点M 的坐标为(2,1),双曲线C 上的点P (x 0,y 0)(x 0>0,y 0>0)满足PF 1→·MF 1→|PF 1→|=F 2F 1→·MF 1→|F 2F 1→|,那么S △PMF 1-S △PMF 2=( )A .2B .4C .1D .-1解析:选A.由题意,知双曲线方程为x 24-y 25=1,|PF 1|-|PF 2|=4,由PF 1→·MF 1→|PF 1→|=F 2F 1→·MF 1→|F 2F 1→|,可得F 1P →·F 1M→|MF 1→||F 1P →|=F 1F 2→·F 1M→|MF 1→||F 1F 2→|,即F 1M 平分∠PF 1F 2.又结合平面几何知识可得,△F 1PF 2的内心在直线x =2上,所以点M (2,1)就是△F 1PF 2的内心.故S △PMF 1-S △PMF 2=12×(|PF 1|-|PF 2|)×1=12×4×1=2.3.双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离等于3,过右焦点F 2的直线l 交双曲线于A ,B 两点,F 1为左焦点. (1)求双曲线的方程;(2)假设△F 1AB 的面积等于62,求直线l 的方程.解:(1)依题意,b =3,c a =2⇒a =1,c =2,所以双曲线的方程为x 2-y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由(1)知F 2(2,0).易验证当直线l 斜率不存在时不满足题意,故可设直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k 〔x -2〕,x 2-y23=1,消元得(k 2-3)x 2-4k 2x +4k 2+3=0,k ≠±3,x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,y 1-y 2=k (x 1-x 2),△F 1AB 的面积S =c |y 1-y 2|=2|k |·|x 1-x 2|=2|k |·16k 4-4〔k 2-3〕〔4k 2+3〕|k 2-3|=12|k |·k 2+1|k 2-3|=6 2.得k 4+8k 2-9=0,那么kl 的方程为y =x -2或y =-x +2.4.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的方程为y =3x ,右焦点F 到直线x =a 2c的距离为32.(1)求双曲线C 的方程;(2)斜率为1且在y 轴上的截距大于0的直线l 与双曲线C 相交于B 、D 两点,A (1,0),假设DF →·BF →=1,证明:过A 、B 、D 三点的圆与x 轴相切.解:(1)依题意有b a =3,c -a 2c =32,因为a 2+b 2=c 2,所以c =2a , 所以a =1,c =2,所以b 2=3, 所以双曲线C 的方程为x 2-y 23=1.(2)证明:设直线l 的方程为y =x +m (m >0),B (x 1,x 1+m ),D (x 2,x 2+m ),BD 的中点为M ,由⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1得2x 2-2mx -m 2-3=0,所以x 1+x 2=m ,x 1x 2=-m 2+32,又因为DF →·BF →=1,即(2-x 1)(2-x 2)+(x 1+m )(x 2+m )=1,所以m =0(舍)或m =2, 所以x 1+x 2=2,x 1x 2=-72,M 点的横坐标为x 1+x 22=1,因为DA →·BA →=(1-x 1)(1-x 2)+(x 1+2)(x 2+2)=5+2x 1x 2+x 1+x 2=5-7+2=0,所以AD ⊥AB ,所以过A 、B 、D 三点的圆以点M 为圆心,BD 为直径, 因为点M 的横坐标为1,所以MA ⊥x 轴, 所以过A 、B 、D 三点的圆与x 轴相切.。
高考数学一轮总复习第九章平面解析几何指点迷津九课件
(1 -2 )
2
+ ( - )=0,所以有 kOM·kAB=- 2 .同理可证双曲线的结论.
1 2
2
推论 1:椭圆 2
+
2
=1(a>b>0)上一点
M
与过椭圆中心的弦的两端点所连的两
2
2
线段的斜率之积为定值- 2 .
2
推论 2:双曲线 2
−
2
=1(a>0,b>0)上一点
sin
2
1
1
(4)|| + || = 为定值(点 F 是抛物线的焦点).
过抛物线焦点的直线与抛物线的位置关系是高考命题的切入点,如果掌握
以上结论,在解题时可迅速打开思路.
例2.过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点.若|AF|=2|BF|,
则|AB|等于(
A.4
9
B. 2
2
2
之积为定值 2 .
证明:如图,设A(x1,y1),B(x2,y2),线段AB的中点为M(xM,yM),
由点 A,B 在椭圆上,得
2
即 2
12
2
22
2
12
+ 2
22
+ 2
= 1,
2 ( 1 - 2 )
2 (1 -2 )
两式相减得 2
+
=0,
2
)
C.5
D.6
答案 B
一般解法 易知直线l的斜率存在,设为k,则其方程为y=k(x-1),k≠0.
= (-1),
由 2
得 k2x2-(2k2+4)x+k2=0.
新人教A版版高考数学一轮复习第九章平面解析几何曲线与方程教案理解析版
基础知识整合1.曲线与方程在平面直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是错误!这个方程的解;(2)以这个方程的解为坐标的点都在错误!曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.曲线的交点设曲线C1的方程为F1(x,y)=0,曲线C2的方程为F2(x,y)=0,则C1,C2的交点坐标即为方程组错误!的错误!实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系;(2)设点——设轨迹上的任一点P(x,y);(3)列式——列出动点P所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;(5)证明——证明所求方程即为符合条件的动点轨迹方程.1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.1.(2019·云南质量检测)已知M(—2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P 的轨迹方程为()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±错误!)D.x2+y2=4(x≠±2)答案D解析MN的中点为原点O,易知|OP|=错误!|MN|=2,∴P的轨迹是以原点O为圆心,2为半径的圆,除去与x轴的两个交点,即顶点P的轨迹方程为x2+y2=4(x≠±2),故选D.2.(2019·金华模拟)已知点P是直线2x—y+3=0上的一个动点,定点M(—1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是()A.2x+y+1=0 B.2x—y—5=0C.2x—y—1=0 D.2x—y+5=0答案D解析设Q(x,y),则P为(—2—x,4—y),代入2x—y+3=0,得Q点的轨迹方程为2x—y+5=0.3.已知平面内有一条线段AB,其长度为4,动点P满足|PA|—|PB|=3,O为AB的中点,则|OP|的最小值为()A.1B.错误!C.2D.3答案B解析以AB中点为原点,中垂线为y轴建立直角坐标系,P点的轨迹为双曲线c=2,a=1.5,∴|OP|min =a=1.5.4.已知圆的方程为x2+y2=4,若抛物线过点A(—1,0),B(1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.答案错误!+错误!=1(y≠0)解析设抛物线焦点为F,过A,B,O作准线的垂线AA1,BB1,OO1,则|AA1|+|BB1|=2|OO 1|=4,由抛物线定义得|AA1|+|BB1|=|FA|+|FB|,所以|FA|+|FB|=4,故F点的轨迹是以A,B为焦点,长轴长为4的椭圆(去掉长轴两端点),所以抛物线的焦点轨迹方程为错误!+错误!=1(y≠0).5.(2019·人大附中模拟)在平面直角坐标系xOy中,设点P(x,y),M(x,—4),以线段PM为直径的圆经过原点O.则动点P的轨迹方程为________.答案x2=4y解析由题意可得OP⊥OM,所以错误!·错误!=0,所以(x,y)·(x,—4)=0,即x2—4y=0,所以动点P的轨迹方程为x2=4y.6.(2019·武汉模拟)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD 上一点,且|MD|=错误!|PD|.当P在圆上运动时,点M的轨迹C的方程为________.答案错误!+错误!=1解析设点M的坐标为(x,y),点P的坐标为(xP,yP),由已知得错误!因为P在圆上,所以x2+错误!2=25,即轨迹C的方程为错误!+错误!=1.核心考向突破考向一定义法求轨迹例1(2019·大庆模拟)已知圆C1:(x+3)2+y2=1和圆C2:(x—3)2+y2=9,动圆M 同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.解如图所示,设动圆M与圆C1及圆C2分别外切于点A和点B,则有|MC1|—|AC1|=|MA|,|MC 2|—|BC2|=|MB|.又|MA|=|MB|,所以|MC2|—|MC1|=|BC2|—|AC1|=3—1=2,即动点M到两定点C2,C1的距离的差是常数2,且2<|C1C2|=6,|MC2|>|MC1|,故动圆圆心M的轨迹为以定点C2,C1为焦点的双曲线的左支,则2a=2,所以a=1.又c=3,则b2=c2—a2=8.设动圆圆心M的坐标为(x,y),则动圆圆心M的轨迹方程为x2—错误!=1(x≤—1).触类旁通定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.2利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制.即时训练1.(2019·福建模拟)设动点P(x,y)(y≥0)到定点F(0,1)的距离比它到x轴的距离大1,记点P的轨迹为曲线C.(1)求点P的轨迹方程;(2)设圆M过点A(0,2),且圆心M在曲线C上,EG是圆M在x轴上截得的弦,试探究当M运动时,弦长|EG|是否为定值?为什么?解(1)依题意知,动点P到定点F(0,1)的距离等于P到直线y=—1的距离,故曲线C是以原点为顶点,F(0,1)为焦点的抛物线.∵错误!=1,∴p=2,∴曲线C的方程是x2=4y.(2)设圆的圆心为M(a,b),∵圆M过点A(0,2),∴圆的方程为(x—a)2+(y—b)2=a2+(b—2)2.令y=0得x2—2ax+4b—4=0.设圆M与x轴的两交点分别为E(x1,0),G(x 2,0),不妨设x1>x2,由求根公式得x1=错误!,x2=错误!,∴x1—x2=错误!.又∵点M(a,b)在抛物线x2=4y上,∴a2=4b,∴x1—x2=错误!=4,即|EG|=4,∴当M运动时,弦长|EG|为定值4.考向二直接法求轨迹方程角度1利用动点满足的关系式求轨迹例2在平面直角坐标系xOy中,已知点A(0,—1),B点在直线y=—3上,M点满足错误!∥错误!,错误!·错误!=错误!·错误!,M点的轨迹为曲线C.(1)求曲线C的方程;(2)P为曲线C上的动点,l为曲线C在P点处的切线,求O点到l距离的最小值.解(1)设M(x,y).由已知得B(x,—3),又A(0,—1),所以错误!=(—x,—1—y),错误!=(0,—3—y),错误!=(x,—2).再由题意可知(错误!+错误!)·错误!=0,即(—x,—4—2y)·(x,—2)=0,所以曲线C的方程为y=错误!x2—2.(2)设P(x0,y0)为曲线C:y=错误!x2—2上一点,因为y′=错误!x,所以l的斜率为错误!x0,因此直线l的方程为y—y0=错误!x0(x—x0),即x0x—2y+2y0—x错误!=0,所以O点到l的距离d=错误!.又y0=错误!x错误!—2,所以d=错误!=错误!错误!≥2,当x0=0时取等号,所以O点到l距离的最小值为2.角度2无明确等量关系求轨迹方程例3已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(—1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的平分线,证明直线l过定点.解(1)如图,设动圆圆心为O1(x,y),由题意得|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN于点H,则点H是MN的中点,∴|O1M|=错误!,又|O1A|=错误!,∴错误!=错误!,化简得y2=8x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标为(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x.(2)证明:由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2+(2bk—8)x+b2=0.其中Δ=—32kb+64>0.由根与系数的关系,得x1+x2=错误!,1x1x2=错误!,2∵x轴是∠PBQ的平分线,所以错误!=—错误!,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,3将12代入3,得2kb2+(k+b)(8—2bk)+2k2b=0,∴k=—b,此时Δ>0,∴直线l的方程为y=k(x—1),即直线l过定点(1,0).触类旁通直接法求轨迹方程应注意的问题直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略.如果给出了直角坐标系则可省去建系这一步.求出曲线的方程后还需注意检验方程的纯粹性和完备性.即时训练2.已知|AB|=2,动点P满足|PA|=2|PB|,求动点P的轨迹方程.解如图所示,以AB的中点O为原点,直线AB为x轴建立如图所示的平面直角坐标系,则A(—1,0),B(1,0).设P(x,y),因为|PA|=2|PB|,所以错误!=2错误!,整理得x2+y2—错误!x+1=0,即错误!2+y2=错误!.所以动点P的轨迹方程为错误!2+y2=错误!.3.如图,过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴非负半轴于A点,l2交y轴非负半轴于B点,求线段AB的中点M的轨迹方程.解设点M坐标为(x,y).因为M(x,y)为线段AB的中点,所以点A,B的坐标分别为A(2x,0),B(0,2y).当x≠1时,因为l1⊥l2,且l1,l2过点P(2,4),所以kPA·kPB=—1,即错误!·错误!=—1(x≠1),化简得x+2y—5=0(x≠1).当x=1时,A,B分别为(2,0),(0,4),所以线段AB的中点为(1,2),满足方程x+2y—5=0(x≥0,y≥0).综上得M的轨迹方程为x+2y—5=0(x≥0,y≥0).考向三代入法求轨迹方程例4(2017·全国卷Ⅱ)设O为坐标原点,动点M在椭圆C:错误!+y2=1上,过M作x轴的垂线,垂足为N,点P满足错误!=错误!错误!.(1)求点P的轨迹方程;(2)设点Q在直线x=—3上,且错误!·错误!=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.解(1)设P(x,y),M(x0,y0),则N(x0,0),错误!=(x—x0,y),错误!=(0,y0).由错误!=错误!错误!得x0=x,y0=错误!y.因为点M(x0,y0)在C上,所以错误!+错误!=1.因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(—1,0).设Q(—3,t),P(m,n),则错误!=(—3,t),错误!=(—1—m,—n),错误!·错误!=3+3m—tn,错误!=(m,n),错误!=(—3—m,t—n).由错误!·错误!=1得—3m—m2+tn—n2=1,又由(1)知m2+n2=2,故3+3m—tn=0.所以错误!·错误!=0,即错误!⊥错误!.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.触类旁通代入法求轨迹方程的四个步骤(1)设出所求动点坐标P(x,y).错误!错误!错误!即时训练4.(2019·安徽合肥调研检测)已知M为椭圆C:错误!+错误!=1上的动点,过点M作x 轴的垂线,垂足为D,点P满足错误!=错误!错误!.(1)求动点P的轨迹E的方程;(2)若A,B两点分别为椭圆C的左、右顶点,F为椭圆C的左焦点,直线PB与椭圆C交于点Q,直线QF,PA的斜率分别为kQF,kPA,求错误!的取值范围.解(1)设P(x,y),M(m,n),依题意知D(m,0),且y≠0.由错误!=错误!错误!,得(m—x,—y)=错误!(0,—n),则有错误!⇒错误!又M(m,n)为椭圆C:错误!+错误!=1上的点,∴错误!+错误!=1,即x2+y2=25,故动点P的轨迹E的方程为x2+y2=25(y≠0).(2)依题意知A(—5,0),B(5,0),F(—4,0),设Q(x0,y0),∵线段AB为圆E的直径,∴AP⊥BP,设直线PB的斜率为kPB,则kPA=—错误!,错误!=错误!=—kQFkPB=—kQFkQB=—错误!·错误!=—错误!=—错误!=错误!=错误!=错误!错误!,∵点P不同于A,B两点且直线QF的斜率存在,∴—5<x0<5且x0≠—4,又y=错误!在(—5,—4)和(—4,5)上都是减函数,∴错误!错误!∈(—∞,0)∪错误!,故错误!的取值范围是(—∞,0)∪错误!.考向四参数法求轨迹方程例5(2019·湖北武汉模拟)在平面直角坐标系xOy中取两个定点A1(—错误!,0),A2(错误!,0),再取两个动点N1(0,m),N2(0,n),且mn=2.(1)求直线A1N1与A2N2的交点M的轨迹C的方程;(2)过R(3,0)的直线与轨迹C交于P,Q两点,过点P作PN⊥x轴且与轨迹C交于另一点N,F 为轨迹C的右焦点,若错误!=λ错误!(λ>1),求证:错误!=λ错误!.解(1)依题意知,直线A1N1的方程为y=错误!(x+错误!),1直线A2N2的方程为y=—错误!(x—错误!),2设M(x,y)是直线A1N1与A2N2的交点,1×2得y2=—错误!(x2—6),又mn=2,整理得错误!+错误!=1.故点M的轨迹C的方程为错误!+错误!=1.(2)证明:设过点R的直线l:x=ty+3,P(x1,y1),Q(x2,y2),则N(x1,—y1),由错误!消去x,得(t2+3)y2+6ty+3=0,(*)所以y1+y2=—错误!,y1y2=错误!.由错误!=λ错误!,得(x1—3,y1)=λ(x2—3,y2),故x1—3=λ(x2—3),y1=λy2,由(1)得F(2,0),要证错误!=λ错误!,即证(2—x1,y1)=λ(x2—2,y2),只需证2—x1=λ(x2—2),y1=λy2,只需错误!=—错误!,即证2x1x2—5(x1+x2)+12=0,又x1x2=(ty1+3)(ty2+3)=t2y1y2+3t(y1+y2)+9,x1+x2=ty1+3+ty2+3=t(y1+y2)+6,所以2t2y1y2+6t(y1+y2)+18—5t(y1+y2)—30+12=0,即2t2y1y2+t(y1+y2)=0,而2t2y1y2+t(y1+y2)=2t2·错误!—t·错误!=0成立,即证.触类旁通参数法求轨迹方程的步骤(1)选取参数k,用k表示动点M的坐标.错误!错误!错误!即时训练5.已知椭圆错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,上、下顶点分别是B1,B2,C是线段B1F2的中点,若错误!·错误!=2,且错误!⊥错误!.(1)若点Q是椭圆上任意一点,A(9,6),求|QA|—|QF1|的最小值;(2)若点M,N是椭圆上的两个动点,M,N两点处的切线相交于点P,当错误!·错误!=0时,求点P 的轨迹方程.解(1)由题意得F1(—c,0),F2(c,0),B1(0,b),则C错误!,由错误!得错误!即错误!解得错误!从而a2=4,所以椭圆的方程为错误!+错误!=1.由椭圆的定义得|QF1|+|QF2|=4,所以|QA|—|QF1|=|QA|—(4—|QF2|)=|QA|+|QF2|—4,而|QA|+|QF2|≥|AF2|=错误!=10,所以|QA|—|QF1|的最小值为6.(2)设P(x0,y0),1当PM⊥x轴,或PN⊥x轴时,可知P(2,错误!)或P(2,—错误!)或P(—2,错误!)或P(—2,—错误!).2当PM与x轴不垂直且不平行时,x0≠±2,设直线PM的斜率为k,则k≠0,PN的斜率为—错误!,直线PM的方程为y—y0=k(x—x0),由错误!得(3+4k2)x2+8k(y0—kx0)x+4(y0—kx0)2—12=0.因为直线PM与椭圆相切,所以Δ=0,即4k2(y0—kx0)2—(3+4k2)[(y0—kx0)2—3]=0,即(x错误!—4)k2—2x0y0k+y错误!—3=0,所以k是方程(x错误!—4)k2—2x0y0k+y错误!—3=0的一个根,同理—错误!是方程(x错误!—4)k2—2x0y0k+y错误!—3=0的另一个根,所以k·错误!=错误!,即x错误!+y错误!=7,其中x0≠±2,所以点P的轨迹方程为x2+y2=7(x≠±2).P(2,错误!)或P(2,—错误!)或P(—2,错误!)或P(—2,—错误!)满足上式,综上,点P 的轨迹方程为x2+y2=7.。
高三数学一轮复习课件 第九章 平面解析几何 9.6 双曲线
3.与椭圆标准方程相比较,双曲线标准方程中,a,b只限制a>0,b>0,二者
没有大小要求,若a>b>0,a=b>0,0<a<b,双曲线哪些性质受影响?
提示 离心率受到影响.∵e=ac=
1+ba2,故当 a>b>0 时,1<e< 2,当
a=b>0 时,e= 2(亦称等轴双曲线),当 0<a<b 时,e> 2.
a,b,c的关系
c2=_a_2+__b_2_(c>a>0,c>b>0)
【概念方法微思考】 1.平面内与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹一定 为双曲线吗?为什么? 提示 不一定.当2a=|F1F2|时,动点的轨迹是两条射线; 当2a>|F1F2|时,动点的轨迹不存在; 当2a=0时,动点的轨迹是线段F1F2的中垂线. 2.方程Ax2+By2=1表示双曲线的充要条件是什么? 提示 若A>0,B<0,表示焦点在x轴上的双曲线;若A<0,B>0,表示焦点 在y轴上的双曲线.所以Ax2+By2=1表示双曲线的充要条件是AB<0.
ax22-by22=1,C1 与 C2 的离心率之积为 23,则 C2 的渐近线方程为
√A.x± 2y=0
B. 2x±y=0
C.x±2y=0
D.2x±y=0
a2-b2
a2+b2
解析 椭圆 C1 的离心率为 a ,双曲线 C2 的离心率为 a ,
所以
a2-b2 a·
a2+b2 a=
23,即
a4=4b4,
1234567
PART TWO
题型分类 深度剖析
师生共研
书稿:高考数学一轮复习教案word文档(文)第九章平面解析几何
§9.1 直线的方程高考会这样考1.考查直线的有关概念,如直线的倾斜角、斜率、截距等;考查过两点的斜率公式;2.求不同条件下的直线方程(点斜式、两点式及一般式等);3.在直线与圆锥曲线的关系问题中考查直线.复习备考要这样做 1.理解数形结合的思想,掌握直线方程的几种形式,会根据已知条件求直线方程;2.会根据直线的特征量画直线,研究直线性质.1. 直线的倾斜角与斜率(1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.②倾斜角的范围为[0°,180°). (2)直线的斜率①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2. 直线方程的五种形式3. 过P 1(x 1,y 1),P 2(x 2,y 2)的直线方程(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0. 4. 线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x22y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[难点正本 疑点清源](1)直线的倾斜角与斜率的关系斜率k 是一个实数,当倾斜角α≠90°时,k =tan α.直线都有倾斜角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率.(2)①求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论.②在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.1. 若直线斜率的绝对值等于1,则直线的倾斜角为___________.答案 45°或135°解析 由|k |=|tan α|=1,知:k =tan α=1或k =tan α=-1.又倾斜角α∈[0°,180°),∴α=45°或135°.2. 若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________.答案 4解析 由a -35-4=5-36-4=1,得a =4.3. 过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________.答案 x +y +1=0或4x +3y =0 解析 ①若直线过原点,则k =-43,∴y =-43x ,即4x +3y =0.②若直线不过原点.设x a +ya =1,即x +y =a .∴a =3+(-4)=-1,∴x +y +1=0.4. 直线l 经过A (2,1),B (1,m 2)(m ∈R )两点.则直线l 的倾斜角的取值范围为____________.答案 ⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析 直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 又∵α∈[0,π),∴α∈⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π. 5. 如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过一、二、四象限,不经过第三象限.题型一 直线的倾斜角与斜率例1 (1)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23(2)直线x cos α+3y +2=0的倾斜角的范围是( )A.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,5π6B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6D.⎣⎡⎦⎤π6,5π6思维启迪:斜率公式和倾斜角的定义是解决这类问题的基础,范围可结合图形考虑. 答案 (1)B (2)B解析 (1)依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.(2)由x cos α+3y +2=0得直线斜率k =-33cos α. ∵-1≤cos α≤1,∴-33≤k ≤33. 设直线的倾斜角为θ,则-33≤tan θ≤33. 结合正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的图象可知, 0≤θ≤π6或5π6≤θ<π.探究提高 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m=0与线段PQ 有交点,求实数m 的取值范围.解 如图所示,直线l :x +my +m =0过定点A (0,-1), 当m ≠0时,k QA =32,k P A =-2,k l =-1m.∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点, 所以,实数m 的取值范围为-23≤m ≤12.题型二 求直线的方程例2 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5. 思维启迪:选择适当的直线方程形式,把所需要的条件求出即可.解 (1)方法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(3,2),∴3a +2a =1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k ,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意 k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =12x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为 y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0y +1=k (x -1),得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2y =4k -2k +2.(k ≠-2,否则与已知直线平行).则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2. 由已知⎝ ⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52, 解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.探究提高 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求:(1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.题型三 直线方程的综合应用例3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.思维启迪:抓住直线过定点这个特征,找直线不经过第四象限的条件,表示△AOB 的面积,然后求最值.(1)证明 直线l 的方程是:k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=01-y =0,解得⎩⎪⎨⎪⎧x =-2y =1,∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2kk ≤-21+2k ≥1,解之得k >0;当k =0时,直线为y =1,符合题意,故k ≥0.(3)解 由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧-1+2kk <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时l 的方程为:x -2y +4=0.探究提高 利用直线方程解决问题,要灵活选用直线方程的形式:一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知截距选择截距式.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +yb =1 (a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k时,即k =-23时,等号成立.即△ABO 面积的最小值为12. 故所求直线的方程为2x +3y -12=0.分类讨论思想在求直线方程中的应用典例:(12分)在平面直角坐标系中,已知矩形ABCD ,AB =2,BC =1,AB 、AD 边分别在x轴、y 轴的正半轴上,A 点与坐标原点重合.将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程.审题视角 (1)题目已告诉直线斜率为k ,即斜率存在.(2)从题意上看,斜率k 可以为0,也可以不为0,所以要分类讨论.规范解答解 (1)当k =0时,此时A 点与D 点重合,折痕所在的直线方程为y =12.[2分](2)当k ≠0时,将矩形折叠后A 点落在线段CD 上的点为 G (a,1),[4分]所以A 与G 关于折痕所在的直线对称, 有k AG ·k =-1,1ak =-1⇒a =-k .[6分]故G 点坐标为G (-k,1),从而折痕所在的直线与AG 的交点坐标(线段AG 的中点)为M ⎝⎛⎭⎫-k 2,12.[8分] 折痕所在的直线方程为y -12=k ⎝⎛⎭⎫x +k 2, 即y =kx +k 22+12.[10分]∴k =0时,y =12;k ≠0时,y =kx +k 22+12.[12分]温馨提醒 (1)求直线方程时,要考虑对斜率是否存在、截距相等时是否为零以及相关位置关系进行分类讨论.(2)本题对斜率k 为0和不为0进行分类讨论.易错点是忽略k =0的情况.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”. 3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性. 3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案 A解析 由y -5=-34(x +2),得:3x +4y -14=0,故选A.2. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的斜率角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3. 已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1答案 D解析 由题意得a +2=a +2a ,∴a =-2或a =1.4. 过两点(-1,1)和(0,3)的直线在x 轴上的截距为( )A .-32B.32C .3D .-3答案 A解析 过两点(-1,1)和(0,3)的直线方程为y -13-1=x -(-1)0-(-1),即y =2x +3,令y =0得x =-32,即为所求. 二、填空题(每小题5分,共15分)5. 过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________.答案 1解析 ∵k MN =m -4-2-m=1,∴m =1.6. 直线l 与两直线y =1,x -y -7=0分别交于P 、Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________. 答案 -23解析 设P (m,1),则Q (2-m ,-3), ∴(2-m )+3-7=0,∴m =-2,∴P (-2,1), ∴k =1+1-2-1=-23.7. 已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.答案 3解析 直线AB 的方程为x 3+y4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3.即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取最大值3. 三、解答题(共22分)8. (10分)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A (-3,4);(2)斜率为16.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是 y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.9. (12分)经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,求直线l 的倾斜角α与斜率k 的范围.解 方法一 如图所示, k P A =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1, 由图可观察出:直线l 倾斜角α的范围是[135°,180°)∪[0°,45°]; 直线l 的斜率k 的范围是[-1,1]. 方法二 设直线l 的斜率为k , 则直线l 的方程为y +1=kx , 即kx -y -1=0.∵A 、B 两点在直线的两侧或其中一点在直线l 上.∴(k +2-1)(2k -1-1)≤0,即2(k +1)(k -1)≤0. ∴-1≤k ≤1.∴直线l 的倾斜角α的范围是[135°,180°)∪[0°,45°]; 直线l 的斜率k 的范围是[-1,1].B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( )A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3D.⎝⎛⎭⎫-12,-3 答案 D解析 ∵(2x +1)-m (y +3)=0恒成立, ∴2x +1=0,y +3=0,∴x =-12,y =-3.2. 设直线l 的方程为x +y cos θ+3=0 (θ∈R ),则直线l 的倾斜角α的范围是( )A .[0,π) B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4答案 C解析 当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π), ∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4.由上知,倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C.3. 经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0答案 B解析 方法一 直线过P (1,4),代入,排除A 、D ,又在两坐标轴上的截距为正,排除C ,故选B.方法二 设方程为x a +y b =1,将P (1,4)代入得1a +4b =1,a +b =(a +b )⎝⎛⎭⎫1a +4b =5+⎝⎛⎭⎫b a +4a b ≥9,当且仅当b =2a ,即a =3,b =6时,截距之和最小, ∴直线方程为x 3+y6=1,即2x +y -6=0.二、填空题(每小题5分,共15分)4. 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的两倍,则直线l 的斜率是________. 答案247解析 因为A (-1,-5),B (3,-2),所以k AB =-2+53+1=34.若设直线AB 的倾斜角为θ,则tan θ=34.这时直线l 的倾斜角为2θ,其斜率为tan 2θ=2tan θ1-tan 2θ=2×341-⎝⎛⎭⎫342=247.5. 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________.答案 x +2y -2=0或2x +y +2=0 解析 设所求直线的方程为x a +yb =1,∵A (-2,2)在直线上,∴-2a +2b =1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得(1)⎩⎪⎨⎪⎧ a -b =1ab =2或(2)⎩⎪⎨⎪⎧a -b =-1ab =-2.由(1)解得⎩⎪⎨⎪⎧ a =2b =1或⎩⎪⎨⎪⎧a =-1b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0为所求直线的方程.6. 若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.答案 16解析 根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0. 根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16. 三、解答题7. (13分)如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点 C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.§9.2 两条直线的位置关系高考会这样考 1.考查两条直线的平行、垂直关系;2.考查两点间的距离公式及点到直线的距离公式的应用.复习备考要这样做 1.对于两条直线的位置关系问题,求解时要注意斜率不存在的情况,注意平行、垂直时直线方程系数的关系;2.熟记距离公式,如两点之间的距离、点到直线的距离、两条平行线之间的距离.1. 两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2. 两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3. 三种距离公式(1)点A (x 1,y 1)、B (x 2,y 2)间的距离: |AB |=(x 2-x 1)2+(y 2-y 1)2.(2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. [难点正本 疑点清源]1. 两条直线平行、垂直的充要条件是有大前提的,就是两条直线都有斜率.当直线无斜率时,要单独考虑.2. 与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0.1. 直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,则C 的值为________.答案 -4解析 因为两直线的交点在y 轴上,所以点⎝⎛⎭⎫0,43在第一条直线上,所以C =-4. 2. 若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.答案 1解析 ∵直线x -2y +5=0与直线2x +my -6=0互相垂直, ∴12×⎝⎛⎭⎫-2m =-1,∴m =1. 3. 已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为________________.答案 x +y +1=0或x +y -3=0解析 设l 1的方程为x +y +c =0,则|c +1|2= 2.∴|c +1|=2,即c =1或c =-3.4. 过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0答案 A解析 ∵所求直线与直线x -2y -2=0平行,∴所求直线的斜率为k =12,排除C 、D.又直线过点(1,0),排除B ,故选A.5. 若经过点(3,a )、(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a 的值为( )A.52B.25C .10D .-10答案 D解析 ∵a -03-(-2)=-2,∴a =-10.题型一 两条直线的平行与垂直例1 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.思维启迪:运用两条直线平行或垂直的条件求解,要注意斜率为0或斜率不存在的情形. 解 (1)方法一 当a =1时, l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线可化为 l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎨⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.方法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6,⇒a =-1,故当a =-1时,l 1∥l 2,否则l 1与l 2不平行. (2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1⇒a =23. 方法二 由A 1A 2+B 1B 2=0得a +2(a -1)=0⇒a =23.探究提高 (1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x 、y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m 、n 的值,使:(1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解 (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =02m -m -1=0,解得m =1,n =7.(2)当m =0时,显然l 1不平行于l 2; 当m ≠0时,由m 2=8m ≠n-1,得⎩⎪⎨⎪⎧ m ·m -8×2=0,8×(-1)-n ·m ≠0, ∴⎩⎪⎨⎪⎧m =4,n ≠-2,或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2时或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当m ·2+8·m =0,即m =0时,l 1⊥l 2.又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1. 题型二 两条直线的交点问题例2 求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.思维启迪:可先求出l 1与l 2的交点,再用点斜式;也可利用直线系方程求解.解 方法一 先解方程组⎩⎪⎨⎪⎧3x +2y -1=05x +2y +1=0,得l 1、l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.方法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1、l 2的交点(-1,2), 故5×(-1)+3×2+C =0,由此求出C =-1, 故l 的方程为5x +3y -1=0.方法三 由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条, 将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0. 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0.探究提高 运用直线系方程,有时会给解题带来方便,常见的直线系方程有: (1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0 (m ∈R 且m ≠C ); (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0 (m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0 (λ∈R ),但不包括l 2.如图,设一直线过点(-1,1),它被两平行直线l 1:x+2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y-1=0上,求其方程.解 与l 1、l 2平行且距离相等的直线方程为x +2y -2=0. 设所求直线方程为(x +2y -2)+λ(x -y -1)=0, 即(1+λ)x +(2-λ)y -2-λ=0.又直线过A (-1,1), ∴(1+λ)(-1)+(2-λ)·1-2-λ=0.解得λ=-13.∴所求直线方程为2x +7y -5=0.题型三 距离公式的应用例3 已知三条直线:l 1:2x -y +a =0 (a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0.且l 1与l 2的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,说明理由.思维启迪:(1)由l 1与l 2的距离构建方程求a ;(2)假设存在点P ,并设出其坐标,根据条件建立方程求解并作出判断.解 (1)∵l 1:4x -2y +2a =0 (a >0),l 2:4x -2y -1=0, ∴两条平行线l 1与l 2间的距离为d =|2a +1|25,由已知,可得|2a +1|25=7510.又a >0,可解得a =3.(2)设点P 的坐标为(x ,y ),由条件①,可知x >0,y >0. 由条件②和③,可得⎩⎪⎨⎪⎧|2x -y +3|5=|4x -2y -1|45,5·|2x -y +3|5=2·|x +y -1|2,化简得⎩⎪⎨⎪⎧4|2x -y +3|=|4x -2y -1|,|2x -y +3|=|x +y -1|,于是可得,4|x +y -1|=|4x -2y -1|, 也就是4(x +y -1)=4x -2y -1, 或4(x +y -1)=-4x +2y +1, 解得y =12,或8x +2y -5=0.当y =12时,代入方程|2x -y +3|=|x +y -1|,解得x =-3<0或x =-23<0,均舍去.由⎩⎪⎨⎪⎧8x +2y -5=0|2x -y +3|=|x +y -1|, 化简得⎩⎪⎨⎪⎧ 8x +2y -5=0x -2y +4=0,或⎩⎪⎨⎪⎧8x +2y -5=03x =-2,解得⎩⎨⎧x =19y =3718或⎩⎨⎧x =-23<0y =316(舍去).即存在满足题设条件的点P ,其坐标为⎝⎛⎭⎫19,3718.探究提高 (1)在应用两条直线间的距离公式时.要注意两直线方程中x 、y 的系数必须相同.(2)第(2)问是开放探索性问题,要注意解决此类问题的一般策略.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|P A |=|PB |,且点P 到直线l 的距离为2.解 设点P 的坐标为(a ,b ),∵A (4,-3),B (2,-1), ∴线段AB 的中点M 的坐标为(3,-2), ∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在上述直线上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2,即4a +3b -2=±10,②联立①②可得⎩⎪⎨⎪⎧a =1b =-4或⎩⎨⎧a =277b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87.对称变换思想的应用典例:(12分)光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.审题视角 (1)入射光线所在直线与反射光线所在直线关于l 对称.(2)对称点的连线被对称轴垂直平分. 规范解答解 方法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).[2分]又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.[4分]而PP ′的中点Q 的坐标为⎝⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0.[6分]由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎨⎧x 0=-1713,y 0=-3213.[8分]根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.[12分]方法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23,[4分]又PP ′的中点Q ⎝⎛⎭⎪⎫x +x 02,y +y 02在l 上, ∴3×x +x 02-2×y +y 02+7=0,[6分]由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的坐标为x 0=-5x +12y -4213,y 0=12x +5y +2813,[10分]代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.[12分]温馨提醒 (1)综合利用物理学知识,利用对称变换的思想方法求解是本题的关键.(2)构建方程解方程组是本题的又一重要方法.(3)坐标转移法是对称变换中常用的方法之一.(4)本题的易错点,一是计算错误,二是不能用对称的思想求解,亦即找不到解决问题的突破口.方法与技巧1. 两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1、l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2. 对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法. 失误与防范1. 在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.2. 在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B2时,一定要注意将两方程中的x ,y 系数化为分别相等.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0答案 A解析 由题意知,直线l 的斜率为-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.2. (·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 若直线l 1与l 2平行,则a (a +1)-2×1=0, 即a =-2或a =1,所以“a =1”是“直线l 1与直线l 2平行”的充分不必要条件.3. 从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0答案 A解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.4. 已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( )A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0 答案 D解析 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 二、填空题(每小题5分,共15分)5. 若不同两点 P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________. 答案 -1解析 由题可知k PQ =3-a -b3-b -a=1,又k l k PQ =-1⇒k l =-1.6. 若直线ax -2y +2=0与直线x +(a -3)y +1=0平行,则实数a 的值为________.答案 1解析 由两直线平行的条件得a (a -3)=-2,解得a =1或2,经检验,a =2时两直线重合,所以两直线平行时,实数a 的值为1.7. 若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m的倾斜角可以是①15° ②30° ③45° ④60° ⑤75° 其中正确答案的序号是________. 答案 ①⑤解析 两直线x -y +1=0与x -y +3=0之间的距离为|3-1|2=2,又动直线l 1与l 2所截得的线段长为22,故动直线与两直线的夹角应为30°,因此只有①⑤适合.三、解答题(共22分)8. (10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程.解 由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0, 解得⎩⎪⎨⎪⎧x =1,y =2,∴l 1,l 2的交点为(1,2).设所求直线方程为y -2=k (x -1). 即kx -y +2-k =0, ∵P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,解得:k =0或k =43.∴直线方程为y =2或4x -3y +2=0.9. (12分)已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. 解 (1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0, 即a 2-a -b =0.①又点(-3,-1)在l 1上,∴-3a +b +4=0.② 由①②得a =2,b =2.(2)∵l 1∥l 2,∴a +b (a -1)=0,∴b =a1-a ,故l 1和l 2的方程可分别表示为:(a -1)x +y +4(a -1)a =0,(a -1)x +y +a1-a =0,又原点到l 1与l 2的距离相等. ∴4⎪⎪⎪⎪⎪⎪a -1a =⎪⎪⎪⎪⎪⎪a 1-a ,∴a =2或a =23, ∴a =2,b =-2或a =23,b =2.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直答案 C解析 由a sin A =bsin B ,得b sin A -a sin B =0.∴两直线垂直.2. 如图,已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光 线所经过的路程是( )A .210B .6C .3 3D .2 5答案 A解析 由题意知点P 关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线所经过的路程PMN 的长为|CD |=210. 3. 过点A (1,2)且与原点距离最大的直线方程为( )A .x +2y -5=0B .2x +y -4=0C .x +3y -7=0D .3x +y -5=0答案 A解析 所求直线与直线OA 垂直,∵k OA =2, ∴所求直线方程为y -2=-12(x -1),即x +2y -5=0.二、填空题(每小题5分,共15分)4. 已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.答案 18解析 由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时,k =18.5. 一条光线沿直线2x -y +2=0入射到直线x +y -5=0后反射,则反射光线所在的直线方程为________. 答案 x -2y +7=0解析 取直线2x -y +2=0上一点A (0,2),设点A (0,2)关于直线x +y -5=0对称的点为B (a ,b ), 则⎩⎪⎨⎪⎧a 2+b +22-5=0b -2a =1,解得⎩⎪⎨⎪⎧a =3b =5,∴B (3,5),联立方程,得⎩⎪⎨⎪⎧ 2x -y +2=0x +y -5=0,解得⎩⎪⎨⎪⎧x =1y =4,∴直线2x -y +2=0与直线x +y -5=0的交点为P (1,4), ∴反射光线在经过点B (3,5)和点P (1,4)的直线上, 其直线方程为y -4=4-51-3(x -1),整理得x -2y +7=0.6. 已知直线x +2y =2与x 轴、y 轴分别相交于A 、B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________. 答案 12解析 由题意知A (2,0),B (0,1),所以线段AB 的方程用截距式表示为x2+y =1,x ∈[0,2],又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2],又a2+b ≥2ab2, 所以1≥2ab 2,解得0≤ab ≤12,当且仅当a 2=b =12, 即P ⎝⎛⎭⎫1,12时,ab 取得最大值12.三、解答题7. (13分)如图,函数f (x )=x +2x的定义域为(0,+∞).设点P 是函数图象上任一点,过点P 分别作直线y =x 和y 轴的垂线, 垂足分别为M ,N . (1)证明:|PM |·|PN |为定值;(2)O 为坐标原点,求四边形OMPN 面积的最小值. (1)证明 设P ⎝⎛⎭⎫x 0,x 0+2x 0 (x 0>0).则|PN |=x 0,|PM |=⎪⎪⎪⎪2x 02=1x 0,因此|PM |·|PN |=1. (2)解 直线PM 的方程为y -x 0-2x 0=-(x -x 0),即y =-x +2x 0+2x 0.解方程组得⎩⎪⎨⎪⎧y =x ,y =-x +2x 0+2x 0,x =y =x 0+22x 0,S 四边形OMPN =S △NPO +S △OPM =12|PN ||ON |+12|PM ||OM | =12x 0⎝⎛⎭⎫x 0+2x 0+22x 0⎝⎛⎭⎫x 0+12x 0 =2+12⎝⎛⎭⎫x 20+1x 20≥1+2, 当且仅当x 0=1x 0,即x 0=1时等号成立,因此四边形OMPN 的最小值为1+ 2.§9.3 圆的方程高考会这样考 1.考查圆的方程的形式及应用;2.利用待定系数法求圆的方程. 复习备考要这样做 1.熟练掌握圆的方程的两种形式及其特点;2.会利用代数法、几何法求圆的方程,注意圆的方程形式的选择.。
高考数学一轮复习第一部分基础与考点过关第九章平面解析几何学案
第九章 平面解析几何1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π 解析:由-1≤k≤3,即-1≤tan α≤3,∴ α∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x -y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α,由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34. 整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求直线l 1,l 2的斜率.解:直线l 1的斜率k 1=tan α1=tan 30°=33. ∵ 直线l 2的倾斜角α2=90°+30°=120°,∴ 直线l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=- 3. , 3 求直线的倾斜角和斜率的取值范围) , 3) 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1) 求直线l 的斜率k 的取值范围; (2) 求直线l 的倾斜角α的取值范围. 解:如图,由题意可知,k PA =4-0-3-1=-1,k PB =2-03-1=1.(1) 要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2) 由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间. 又PB 的倾斜角是45°,PA 的倾斜角是135°, 所以α的取值范围是[45°,135°]. 变式训练若直线mx +y +1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m 的取值范围.解:直线的斜率为k =-m ,且直线经过定点P (0,-1),因为直线PA ,PB 的斜率分别为-1,2,所以斜率k 的取值范围是(-∞,-1]∪[2,+∞),即实数m 的取值范围是(-∞,-2]∪[1,+∞).1. 已知A (-1,23),B (0,3a ),C (a ,0)三点共线,则此三点所在直线的倾斜角α的大小是 W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π 解析:由直线的方程可知其斜率k =-cos α3∈⎣⎢⎡⎦⎥⎤-33,33.设直线的倾斜角为θ,则tan θ∈⎣⎢⎡⎦⎥⎤-33,33,且θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 3. 已知实数x ,y 满足y =-2x +8,且2≤x≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k∈⎝ ⎛⎭⎪⎫-∞,-34∪⎣⎢⎡⎭⎪⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2 解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为a b =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4.4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝ ⎛⎭⎪⎫π6,π2 解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝ ⎛⎭⎪⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tanα(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3. 故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直. ∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k (x -5)(k≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,又直线过点(-3,4),从而-3a+412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(1) 证明:直线l 的方程是k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k≥0.(3) 解:由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵ S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪-1+2k k ·|1+2k|=12·(1+2k )2k =12·⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0. 变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值. 解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x≤30).在线段EF 上取点P (m ,n ),作PQ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =PQ·PR=(100-m )(80-n ).又m 30+n 20=1(0≤m≤30),∴ n =20⎝ ⎛⎭⎪⎫1-m 30.∴ S =(100-m )⎝⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO=45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO=45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a=1⇒a =5,即OA =5千米. (2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t+6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1,∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为 W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a=b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2, ∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程. 解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎢⎡⎦⎥⎤0,32 解析:直线方程可化为y =⎝ ⎛⎭⎪⎫32-t x -t 2,由题意得⎩⎪⎨⎪⎧32-t≥0,-t2≤0,解得0≤t≤32.3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3.4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b≥2ab 2,所以1≥2ab2,解得0≤ab≤12,当且仅当a 2=b =12,即P ⎝ ⎛⎭⎪⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上, ∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0, ∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a=3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2, ∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4.(必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a .1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a>0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B2. (3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m∈R 且m≠C). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m∈R ).(3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1),∴ -3a +b +4=0.故a =2,b =2. (2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab=1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a 3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点) , 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝ ⎛⎭⎪⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上, ∴ ⎩⎪⎨⎪⎧2a +3b -16=0,2·3+a 2-3·4+b2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0, ∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3), ∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l⊥OP,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值. 解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3,∴ |10+5λ-5|(2+λ)2+(1-2λ)2=3, 即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d≤PA(当l⊥PA 时等号成立).∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴ A ′⎝ ⎛⎭⎪⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝ ⎛⎭⎪⎫-23,-13.所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2.解析:利用两平行线间距离公式得d =|-1-1|22+12=255. 2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎪⎨⎪⎧n +32-1=2⎝ ⎛⎭⎪⎫m +72-2,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.∴ m +n =345. 3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4) 解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC≥AC,PB +PD≥BD,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案: 5解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝ ⎛⎭⎪⎫-16,12解析:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝ ⎛⎭⎪⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝⎛⎭⎪⎫α±π4. 因为tan α=2,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=-3,tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=13, 所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10.3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0.4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2.5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,该方程表示以⎝ ⎛⎭⎪⎫-D 2,-E22(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系:(1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W.(2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W.(3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D2,-E 2,∴ k CB =6+E 28+D 2.∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝ ⎛⎭⎪⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②,又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30,∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB⊥l, 可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴ 所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴ 所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享) 已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB=120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6,所以所求圆的方程为x 2+y 2=36., 2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值;(2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围.解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7.(2) 由圆方程可知, a 2-a >0,解得a >1或a <0.由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为 W. 答案:37解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.备选变式(教师专享)设△ABC 顶点坐标为A (0,a ),B (-3a ,0),C (3a ,0),其中a>0,圆M 为△ABC 的外接圆.(1) 求圆M 的方程;(2) 当a 变化时,圆M 是否过某一定点,请说明理由.解:(1) 设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵ 圆M 过点A (0,a ),B (-3a ,0),C (3a ,0)∴ ⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a ,∴ 圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2) 圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0. 由⎩⎪⎨⎪⎧3+y =0,x 2+y 2+3y =0,解得⎩⎪⎨⎪⎧x =0,y =-3. ∴ 圆M 过定点(0,-3)., 3 圆方程的应用), 3) 如图,某市有一条东西走向的公路l ,现欲经过公路l 上的O 处铺设一条南北走向的公路m.在施工过程中发现在O 处的正北1百米的A 处有一汉代古迹.为了保护古迹,该市决定以A 为圆心,1百米为半径设立一个圆形保护区.为了连通公路l ,m ,欲再新建一条公路PQ ,点P ,Q 分别在公路l ,m 上(点P ,Q 分别在点O 的正东,正北方向上),且要求PQ 与圆A 相切.(1) 当点P 距O 处2百米时,求OQ 的长; (2) 当公路PQ 长最短时,求OQ 的长.。
高三数学一轮复习:第九章 平面解析几何 89
与 C 的一条渐近线相交于点 A.若以 C 的右焦点 F 为圆心、半径为 4 的
圆经过 A,O 两点(O 为坐标原点),则双曲线 C 的方程为( )
A.x42-1y22 =1
B.x72-y92=1
C.x82-y82=1
D.1x22 -y42=1
解:因为渐近线 y=bax 与直线 x=a 交于点 A(a,b),c=4 且 (4-a)2+b2=4,解得 a =2,b2=12,因此双曲线的标准方程为x42-1y22
解:若△ABE 是锐角三角形,只需∠AEF<45°,在 Rt△AFE 中, |AF|=ba2,|FE|=a+c,则ba2<a+c,即 b2<a2+ac,即 2a2-c2+ac>0,
则 e2-e-2<0,解得-1<e<2,又 e>1,则 1<e<2,故选 B.
【点拨】(1)要解决双曲线中有关求离心率或求离 心率范围的问题,应找好题中的等量关系或不等关系, 构造出关于 a,c 的齐次式,进而求解.(2)要注意对 题目中隐含条件的挖掘,如对双曲线上点的几何特征
距为 4 5,则 b=( )
A.2
B.4
C.6
D.8
解:由题意得,ba=2⇒b=2a,C2 的焦距 2c= 4 5⇒c= a2+b2=2 5⇒b=4,故选 B.
(2)过双曲线ax22-by22=1(a>0,b>0)的左焦点 F 作圆 O:x2+y2=a2
的两条切线,切点为 A,B,双曲线左顶点为 C,若∠ACB=120°,
|PF|≥c-a 的运用.
(1)在平面直角坐标系 xOy 中,若双曲线xm2- m2y+2 4=1 的离心率大于 6,则 m 的取值范围为________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2.直线方程的五种形式3.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)坐标平面内的任何一条直线均有倾斜角与斜率.(×) (2)直线的倾斜角越大,其斜率就越大.(×) (3)直线的斜率为tan α,则其倾斜角为α.(×) (4)斜率相等的两直线的倾斜角不一定相等.(×)(5)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.(×)(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.(√)2.直线3x -y +a =0(a 为常数)的倾斜角为( ) A .30° B .60° C .150° D .120°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过一、二、四象限,不经过第三象限. 答案 C4.已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0解析 由点斜式,得y -5=-34(x +2),即3x +4y -14=0.答案 A5.(人教A 必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0.答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率【例1】 (1)设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ) A .[0,π) B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4(2)经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的倾斜角α的范围是________.解析 (1)当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k=-1cos θ.∵cos θ∈[-1,1]且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4.综上知,倾斜角的范围是⎣⎢⎡⎦⎥⎤π4,3π4,故选C.(2)法一 如图所示,k P A =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,由图可观察出:直线l 倾斜角α的范围是⎣⎢⎡⎪⎫3π,π∪⎢⎡⎦⎥⎤0,π.法二 由题意知,直线l 存在斜率.设直线l 的斜率为k ,则直线l 的方程为y +1=kx ,即kx -y -1=0.∵A ,B 两点在直线的两侧或其中一点在直线l 上, ∴(k +2-1)(2k -1-1)≤0, 即2(k +1)(k -1)≤0, ∴-1≤k ≤1.∴直线l 的倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.答案 (1)C (2)⎣⎡⎭⎫3π4,π∪⎣⎡⎦⎤0,π4规律方法 (1)由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,正切函数在[0,π)上并不是单调的;(2)过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线无斜率.【训练1】 (1)直线x sin α-y +1=0的倾斜角的变化范围是( ) A.⎝⎛⎭⎫0,π2 B .(0,π)C.⎣⎡⎦⎤-π4,π4D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π (2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.解析 (1)直线x ·sin α-y +1=0的斜率是k =sin α, 又∵-1≤sin α≤1,∴-1≤k ≤1,当0≤k ≤1时,倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4;当-1≤k <0时,倾斜角的范围是⎭⎫⎣⎡34π,π.(2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,kQA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为 -23≤m ≤12. 答案 (1)D (2)⎣⎡⎦⎤-23,12 考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.考点三 直线方程的综合应用【例3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 法一 设直线方程为x a +yb=1(a >0,b >0),点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24, 从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立,即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.规律方法 直线方程综合问题的两大类型及解法:(1)与函数相结合的问题,解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决;(2)与方程、不等式相结合的问题,一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.【训练3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1,∴无论k 取何值,直线总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解之得k >0; 当k =0时,直线为y =1,符合题意,故k ≥0. (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, 等号成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.[思想方法]1.要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. [易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率. 2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组(建议用时:40分钟)一、选择题1.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D. 答案 D2.(2015·太原质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 B3.两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )答案 A4.(2014·郑州模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.⎝⎛⎭⎫-1,15 B.⎝⎛⎭⎫-∞,12∪()1,+∞ C .(-∞,1)∪⎝⎛⎭⎫15,+∞ D .(-∞,-1)∪⎝⎛⎭⎫12,+∞解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴上的截距为-3,此时k =12,满足条件的直线l 的斜率范围是(-∞,-1)∪⎝⎛⎭⎫12,+∞. 答案 D5.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( )A .a +b =1B .a -b =1C .a +b =0D .a -b =0解析 由sin α+cos α=0,得sin αcos α=-1,即tan α=-1.又因为tan α=-a b ,所以-ab =-1.即a =b ,故应选D. 答案 D 二、填空题6.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析 ∵k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4. 答案 47.(2015·烟台模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.解析 令x =0,得y =k 4;令y =0,得x =-k3,则有k 4-k3=2,所以k =-24.答案 -248.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析 设所求直线的方程为x a +yb =1.∵A (-2,2)在此直线上, ∴-2a +2b=1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2.由(1)解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案 x +2y -2=0或2x +y +2=0 三、解答题9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫-4k -3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是 y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0. 10.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,显然相等. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, 得a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,由题意得⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,∴a ≤-1. 综上可知a 的取值范围是(-∞,-1].能力提升题组 (建议用时:25分钟)11.(2015·长春三校调研)一次函数y =-m n x +1n 的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析 因为y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0. 答案 B12.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝⎛⎭⎫b -122+12,由于0≤b ≤1, 故当b =12时,ab 取得最大值12.答案 1213.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为________.解析 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33,所以直线l OA 和直线l OB 的方程分别为y =x ,y =-33x ,设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y=3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0. 答案 (3+3)x -2y -3-3=014.直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A ,B 两点.(1)当|P A |·|PB |最小时,求l 的方程; (2)当|OA |+|OB |最小时,求l 的方程. 解 依题意,l 的斜率存在,且斜率为负. 设l :y -4=k (x -1)(k <0). 令y =0,可得A ⎝⎛⎭⎫1-4k ,0; 令x =0,可得B (0,4-k ). (1)|P A |·|PB |=⎝⎛⎭⎫4k 2+16·1+k 2 =-4k (1+k 2)=-4⎝⎛⎭⎫1k +k ≥8(注意k <0). ∴当且仅当1k=k 且k <0即k =-1时,|P A |·|PB |取最小值.这时l 的方程为x +y -5=0. (2)|OA |+|OB |=⎝⎛⎭⎫1-4k +(4-k )=5-⎝⎛⎭⎫k +4k ≥9. ∴当且仅当k =4k且k <0,即k =-2时,|OA |+|OB |取最小值.这时l 的方程为2x +y -6=0.第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|特别地,原点O (0,0)与任一点P (x ,y )的距离|OP | (2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(×)(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√) 2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0解析 设所求直线方程为x -2y +c =0,将(1,0)代入得c =-1.∴所求直线方程为x -2y -1=0. 答案 A3.(2014·福建卷)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0 D .x -y +3=0解析 已知圆的圆心为(0,3),直线x +y +1=0的斜率为-1,则所求直线的斜率为1,所以所求直线的方程为y =x +3,即x -y +3=0.故选D. 答案 D4.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.答案3245.(人教A 必修2P114A4改编)若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0, 解得a =0或a =1. 答案 0或1考点一 两直线的平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0, 得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0, ⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6⇒a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1⇒a =23. 法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0⇒a =23.规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 已知过点A (-2,m )和点B (m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ) A .-10 B .-2 C .0 D .8解析 ∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8.又∵l 2⊥l 3,∴⎝⎛⎭⎫-1n ×(-2)=-1, 解得n =-2,∴m +n =-10. 答案 A考点二 两条直线的交点与点到直线的距离【例2】 直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程. 解 当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在. ∵直线l 过点P (2,-5),∴设直线l 的方程为y +5=k (x -2), 即kx -y -2k -5=0.∴点A (3,-2)到直线l 的距离d 1=|3k -(-2)-2k -5|k 2+1=|k -3|k 2+1,点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1.∵d 1∶d 2=1∶2,∴|k -3||3k +11|=12,∴k 2+18k +17=0,∴k 1=-1,k 2=-17. ∴所求直线方程为x +y +3=0和17x +y -29=0.规律方法 利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.【训练2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.0),B (0,2). 法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线. ∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12.∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案 (1)⎝⎛⎭⎫-16,12 (2)x +3y -5=0或x =-1考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3). 则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)点关于点的对称:求点P 关于点M (a ,b )的对称点Q 的问题,主要依据M 是线段PQ 的中点,即x P +x Q =2a ,y P +y Q =2b .(2)直线关于点的对称:求直线l 关于点M (m ,n )的对称直线l ′的问题,主要依据l ′上的任一点T (x ,y )关于M (m ,n )的对称点T ′(2m -x ,2n -y )必在l 上.(3)点关于直线的对称:求已知点A (m ,n )关于已知直线l :y =kx +b 的对称点A ′(x 0,y 0)的坐标,一般方法是依据l 是线段AA ′的垂直平分线,列出关于x 0,y 0的方程组,由“垂直”得一方程,由“平分”得一方程.(4)直线关于直线的对称:此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝⎛⎭⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎨⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0,得⎩⎨⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23,又PP ′的中点Q ⎝⎛⎭⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0, 由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为 x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0. 微型专题 直线系方程的灵活应用直线系指具有某一共同性质的直线的集合,它有多种不同的情况,其中以过两条直线交点的直线系为主.利用直线系方程可以降低运算难度,使解题的过程更加简捷,因此在高考中这类问题也可能会成为考查的重点.【例4】 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.点拨 不需要解两直线l 1与l 2的交点,可设直线l 为:3x -y -1+λ(x +y -3)=0,再分两种情况分别求解.解 根据条件可设直线l 的方程为3x -y -1+λ(x +y -3)=0,即(3+λ)x +(λ-1)y -3λ-1=0;直线l 与点A (3,3)和B (5,2)的距离相等可分为两种情况: (1)当直线l 与A ,B 的连线平行时,可知k AB =3-23-5=-12,则3+λ1-λ=-12,解得λ=-7,此时直线l 的方程为x +2y -5=0;(2)当直线l 过线段AB 的中点M ⎝⎛⎭⎫4,52时,将点M ⎝⎛⎭⎫4,52代入直线l 的方程,可得4(3+λ)+52(λ-1)-3λ-1=0,解得λ=-177,此时直线l 的方程为x -6y +11=0.综上,可知所求直线l 的方程为x +2y -5=0或x -6y +11=0.点评 一般情况下,若两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0有交点,则过l 1与l 2的交点的直线系方程可设为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含l 2),利用这一结论可以避免求交点时解方程组带来的麻烦.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法.3.光线的反射问题具有入射角等于反射角的特点,这样就有两种对称关系,一是入射光线与反射光线关于过反射点且与反射轴垂直的直线(法线)对称,二是入射光线与反射光线所在直线关于反射轴对称.1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.使用点到直线的距离公式前必须将直线方程化为一般式,同时此公式对直线与坐标轴垂直或平行的情况也适用;使用两平行线间的距离公式时一定要注意先把两直线方程中的x ,y 的系数化成相等.基础巩固题组(建议用时:40分钟)一、选择题1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析 由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案 A2.(2014·济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =( )A .-1B .2C .0或-2D .-1或2解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2.答案 D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4 B.21313 C.52613D.72010 解析 把3x +y -3=0化为6x +2y -6=0,则两平行线间的距离d =|1-(-6)|62+22=72010.4.(2015·金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 答案 B5.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2). 答案 B 二、填空题6.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0, 解得a =35.答案 357.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -98.(2015·秦皇岛检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=0 三、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合. 解 (1)由已知1×3≠m (m -2), 即m 2-2m -3≠0,解得m ≠-1且m ≠3. 故当m ≠-1且m ≠3时,l 1与l 2相交. (2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时, l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2), 即m =3时,l 1与l 2重合.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解 依题意知:k AC =-2,A (5,1), ∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为⎝⎛⎭⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.能力提升题组 (建议用时:25分钟)11.(2014·泉州一模)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m+3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2. 所以m 2+n 2的最小值为4. 答案 C12.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案 A13.(2014·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________. 解析 易知A (0,0),B (1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|P A |·|PB |≤|P A |2+|PB |22=|AB |22=102=5.答案 514.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由. 解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12;(舍去) 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件. 第3讲 圆的方程最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知 识 梳 理1.圆的定义和圆的方程2. 点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外; (2)d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上; (3)d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.(√)(2)方程x2+y2=a2表示半径为a的圆.(×)(3)方程x2+y2+4mx-2y+5m=0表示圆.(×)(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√) 2.方程|x|-1=1-(y-1)2所表示的曲线是()A.一个圆B.两个圆C.半个圆D.两个半圆解析由题意知,(|x|-1)2+(y-1)2=1又|x|-1≥0,即x≥1或x≤-1,故表示两个半圆.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1) B.(0,1)C.(-∞,-1)∪(1,+∞) D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(人教A必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=105.(2014·山东卷)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析 因为圆心在直线x -2y =0上,且圆C 与y 轴相切,所以可设圆心坐标为(2a ,a ),则(2a )2=a 2+(3)2,解得a =±1.又圆C 与y 轴的正半轴相切,所以a =1,故圆C 的标准方程为(x -2)2+(y -1)2=4.答案 (x -2)2+(y -1)2=4考点一 圆的方程的求法【例1】 (1)经过点P (-2,4),Q (3,-1)两点,并且在x 轴上截得的弦长等于6的圆的方程为________. (2)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x +1)2+(y +1)2=2解析 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④由①,②,④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.。