相似三角形教案
27.2相似三角形(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
27.2相似三角形的性质教案
在今天的教学中,我引导学生们探索了相似三角形的性质。整体来看,学生对这部分内容表现出较高的兴趣,但在实际操作中也遇到了一些困难。
首先,我发现学生们在理解相似三角形的定义和判定方法上相对顺利,但到了应用性质解决具体问题时,部分学生就显得有些力不从心。特别是在将实际问题转化为相似三角形问题时,他们往往不知道如何下手。这说明我们在教学中需要更多地结合实际例子,让学生在实践中掌握这一转化过程。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的物体?”(如照片与实际物体的相似关系)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定和性质这两个重点。对于难点部分,如AAA相似判定,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题,如实际物体与其影子的相似关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形的模型,并测量它们的边长比例。
1.培养学生运用数学语言描述现实世界中相似图形的能力,增强几何直观;
2.培养学生运用数学知识分析问题、解决问题的能力,提高逻辑推理和数学运算素养;
3.通过对相似三角形性质的探究,培养学生的空间想象力和创新意识;
4.培养学生团队合作意识,提高交流表达能力,使学生在互动中相互启发,共同成长。
三、教学难点与重点
举例:重点讲解如何通过已知条件判定两个三角形相似,并强调在解题过程中应首先考虑寻找相似关系。
相似三角形的性质教案
相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。
二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。
三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。
2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。
教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。
4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。
教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。
(2)对应边成比例性质:相似三角形的三个对应边都成比例。
(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。
四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。
五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
性质:1. 对应角相等性质:相似三角形的三个对应角都相等。
2. 对应边成比例性质:相似三角形的三个对应边都成比例。
3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。
通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。
相似三角形优秀教案相似三角形教案
相似三角形优秀教案相似三角形教案相似三角形教案(好)一、知识概述(一)相似三角形1、对应角相等,对应边成比例的两个三角形,叫做相似三角形.温馨提示:①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛.2、相似三角形对应边的比叫做相似比.温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.温馨提示:①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似.判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.温馨提示:①有平行线时,用上节学习的预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.温馨提示:①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.(三)三角形的重心1、三角形三条中线的交点叫做三角形的重心.2、三角形的重心与顶点的距离等于它与对边中点的距离的两倍.二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于,形成一整套完整的判定方法.如:(1)“平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的.温馨提示:从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.三、解题方法技巧点拨1、寻找相似三角形的个数例1、(吉林)将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.分析:(1)在△ABC内,有五个三角形,加上△ABC与△AFG,共有七个三角形.(2)这是依据相似三角形判定定理来解决的计数问题.由于“不包括全等”,图中还剩五个非直角三角形,考虑到题设中两个三角形摆放的随意性,∠1不一定等于∠2,而∠B=∠C=45°,∠3、∠4都为钝角,又排除△ABD与△ACE相似,还剩三个三角形,这三个三角形相似.解:(1)共有七个三角形,它们是△ABD、△ABE、△ADE、△ADC、△AEC、△ABC与△AFG.(2)有相似三角形,它们是△ABE∽△DAE,△DAE∽△DCA,△ABE∽△DCA(或△ABE∽△DAE∽△DCA).点拨:①解决这类计数问题,一定要依据图形与定理,全面、周密思考,做到不重不漏,这类题有利于发散思维的培养和创新意识的形成;②有兴趣的同学可继续探索一下本题中BD、DE、EC三条线段有何关系?2、画符合要求的相似三角形例2、(上海)在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)分析:设单位正方形的边长为1,则△ABC的三边为,从而根据相似三角形判定定理2或3可画△A1B1C1,易得点拨:在4×4的正方形方格中,满足题设的△A1B1C1只能画出以上三个,若正方形方格数不加限制,则和△ABC相似且不全等的三角形可以画无数个.3、相似三角形的判定例3、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.分析:(1)根据题设,观察图形易见,DE、EF、FD分别是△AOB、△BOC、△COA的中位线,利用三角形的中位线性质可证△DEF与△ABC的三边对应成比例;(2)由于正方形的四条边相等,且BE=CE,DF=3CF,设出正方形边长后,图中所有线段都能求出,故可从三边是否成比例判定哪些三角形相似.点拨:①第(1)题,若点O在△ABC外,其他条件不变,结论仍成立;②第(2)题也可用判定定理2,先证△ABE∽△ECF,得出∠AEF=90°后,再证其中任意三角形与△AEF相似,显然,以上证法较简便.4、直角三角形相似的判定例4、求证:若一个直角三角形的一条直角边和斜边上的高与另一个直角三角形的一条直角边和斜边上的高成比例,那么这两个直角三角形相似.已知:如图,Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,CD、C′D′分别是两个三角形斜边上的高,且CD︰C′D′=AC︰A′C′.求证:△ABC∽△A′B′C′.分析:判定直角三角形相似的方法除使用一般三角形的判定方法外,还可使用“斜边和一直角边对应成比例的两直角三角形相似”这一定理.证明△ABC∽△A′B′C′,只要再证一锐角对应相等即可.证明:∵CD、C′D′分别是△ABC、△A′B′C′的高,∴△ACD、△A′C′D′是直角三角形.5、三角形重心问题例5、已知△ABC的重心G到BC边上的距离为5,那么BC边上的高为()A.5 B.12C.10 D.15解析:因为G为△ABC的重心,所以DG︰DA=1︰3,因为GE⊥BC,AF⊥BC,所以GE∥AF,所以GE︰AF=DG︰DA=1︰3,因为GE=5,所以AF=15.6、相似三角形的综合运用例6、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.分析:(1)△ADF与△EDB都是直角三角形,要证它们相似,只要再找一个角对应相等即可;(2)注意到CD是斜边AB的中线,AD=BD=CD,由结论(1)不难得出结论(2).证明:(1)∵DF⊥AB,∴∠ADF=∠BDE=90°,又∵∠F+∠A=∠B+∠A,∴∠F=∠B,∴△ADF∽△EDB.(2)由(1)得,∴AD·BD=DE·DF.又∵CD是Rt△ABC斜边上的中线,∴AD=BD=CD.故CD2=DE·DF.点拨:本题综合考查了直角三角形的性质与相似三角形的判定等.这是一道阶梯型问题,第(2)题根据(1)得出有关比例式,然后使用“等线代换”使问题简捷获证.其实第(2)题也可这样思考:把它转化为比例式,证明这三条线段所在的△CDE∽△FDC.请同学们完成这一证明.例7、如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:.分析:待证式中的四条线段不是在两个三角形中,无法直接根据两个三角形相似得出,需要插入一个“中间比”,由题设易证△ABE∽△ACF,△BDE∽△CDF,从中不难找到这个中间比.证明:∵AD是△ABC的角平分线,∴∠1=∠2.∵BE⊥AD,CF⊥AD,∴∠3=∠4=90°,∴△ABE∽△ACF,点拨:①当无法直接由两个三角形相似得出结论中的比例式时,一般可寻找“中间比”帮忙;例8、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC于点P.求证:(1)△PBN∽△PCD;(2)PN⊥PD.分析:要证PN⊥PD,即证∠DPN=90°,由已知∠BPC=90°,而∠BPC与∠DPN有公共部分∠CPN,因此只要证明∠4=∠5即可.这就必须先证明出结论(1).在△PBN与△PCD中,易证∠1=∠3,以下只要证明夹∠1、∠3的两边对应成比例.证明:(1)在正方形ABCD中,AB∥CD,∠ABC=90°.∵BP⊥MC,∴△PBM∽△PCB.点拨:要注意观察出图中存在的“母子相似三角形”基本图形,从而充分利用它得出∠1=∠2及△PBM∽△PCB等重要结论相似三角形教案相似三角形教案①回忆两个三角形相似的概念,巩固两个三角形相似的性质与判定。
相似三角形的判定教案模板
相似三角形的判定教案模板教案能够展现出教师在备课中的思维过程,并且显示出教师对课标、教材、学生的理解和把握的水平以及运用有关教育理论和教学原则组织教学活动的能力。
下面是给大家整理的相似三角形的判定教案5篇,希望大家能有所收获!相似三角形的判定教案1掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE 相似,则BF长为多少?在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形( )A.1对B.2对C.3对D.4对按照一定的顺序去寻找相似三角形. 活动3 课堂小结学生试述:这节课你学到了些什么?相似三角形的判定教案2相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
数学教案三角形相似的判定(优秀3篇)
数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
初中数学相似教案
初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。
教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。
三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。
四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。
教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。
教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。
在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。
同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。
相似三角形教案(完美版)
相似三角形教学目标:1、通过一些具体的情境和应用深化对相似三角形的理解和认识。
2、进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学生学习数学的兴趣和自信心。
教学重点:相似三角形的概念教学难点:灵活解决相似三角形的实际应用设计思路:利用实物以及多媒体演示让学生经历探索相似三角形的概念的过程,同时关注学生学习兴趣及积极性,通过适当的交流合作,使学生共同进步。
教学过程:一、创设问题情境,导入新课:1、上节课我们学习的相似多边形的对应角和对应边各有什么关系?2、相似多边形的形状、大小又怎样呢?学生回答后,立即出示形状相同、大小不等的特殊的三角板请同学们观察,比较角、边,你会发现什么?(学生通过测量得到,对应边成比例,对应角相等)教师:这样的两个三角形叫做什么三角形?3、引入课题:相似三角形二、归纳定义及运用(学生根据观察和体验的过程,归纳定义,提高语言表达能力)1在线分享文档、相似三角形的表示方法利用“超级画板”演示(出示两个相似三角形,让学生表示,强调对应顶点字母写在对应位置上)2、想一想如图:(1)(2)中的△ABC∽△A′B′C′,△ABC∽△ADE,那么哪些角是对应角,哪些边是对应边,对应角有什么关系?对应边呢?(1)(2)(使学生认识定义所揭示的相似三角形的本质属性)教师强调:各边比的前项是同一个三角形的边,比的后项是另一个三角形的边。
3、议一议(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?(可以使用超级画板验证学生的讨论结果,这里主要是利用相似三角形的定义来说明两个三角形是相似的。
通过前面兴趣的激发在讨论过程中学生可能还会讨论出一些新的想法,这时就可以发挥媒体优势即时的演示。
)(给学生思考空间,只要合理应予激励评介,使学生从中体验成功的喜悦)4、练一练(1)在下面的两组图中,各有两个相似三角形,试确定x、y、m、n的值。
相似三角形的性质教案
相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。
2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。
二、教学重难点:1.教学重点:相似三角形的性质。
2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。
三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。
例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。
(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。
(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。
记作ΔABC∼ΔDEF。
(2)相似三角形的性质:相似三角形的对应边成比例。
即有如下比例关系:AB/DE=BC/EF=AC/DF。
3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。
例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。
(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。
代入已知条件,得6/9=8/EF=10/DF。
由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。
例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。
(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。
代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。
相似三角形教案
相似三角形教案相似三角形教案一、教学目标:1. 知识与技能:掌握相似三角形的概念;了解相似三角形的性质;能够判断两个三角形是否相似;能够应用相似三角形的性质解决实际问题。
2. 过程与方法:通过实例引入,提供多种不同的教学方法,如讲解、讨论、实例分析等,激发学生的学习兴趣;通过课堂练习和作业的形式,培养学生的分析问题和解决问题的能力。
3. 情感态度与价值观:培养学生的计算能力和分析能力,增强对数学的兴趣;培养学生的逻辑思维能力和创造力,注重培养学生的合作精神和团队意识。
二、教学重点与难点:1. 教学重点:相似三角形的性质及其应用。
2. 教学难点:如何判断两个三角形是否相似;如何应用相似三角形的性质解决问题。
三、教学过程与方法:1. 导入新知识:通过示意图引入相似三角形的概念和性质,让学生对相似三角形有初步的认识。
2. 讲解与示范:讲解相似三角形的判定方法和性质,并通过示例进行演示,让学生理解和掌握相似三角形的性质。
3. 实例分析:让学生通过分析实际生活中的例子,找出相似三角形的特点,并运用相似三角形的性质解决实际问题。
4. 讨论与合作:组织学生进行小组讨论,共同解决相似三角形的问题,培养学生的合作意识和团队精神,激发学生的思考和创造力。
5. 总结与归纳:让学生总结相似三角形的判定方法和性质,进行知识归纳和概念澄清,确保学生对相似三角形有深入的理解。
6. 拓展与巩固:通过练习题和作业的形式,巩固学生对相似三角形知识的掌握和运用能力,培养学生的分析和解决问题的能力。
四、教学资源:1. 教学课件:显示相似三角形的示意图和相关概念。
2. 教学实例:提供多个真实生活中的示例,让学生进行分析和解决问题。
五、教学评估:1. 课堂练习:在教学过程中进行课堂练习,检测学生对相似三角形的掌握程度。
2. 作业评价:布置相关的作业,检测学生对相似三角形的应用能力和解决问题的策略。
六、教后反思:通过本节课的教学,学生能够初步掌握相似三角形的概念和性质,并能够运用相似三角形的性质解决实际问题。
三角形相似的判定第三课时教案
三角形相似的判定第三课时教案一、教学目标:知识与技能:1. 学生能够理解三角形相似的判定方法。
2. 学生能够运用三角形相似的判定方法解决实际问题。
过程与方法:1. 学生通过观察和操作,培养直观思维能力。
2. 学生通过合作交流,提高解决问题的能力。
情感态度价值观:1. 学生培养对数学的兴趣,激发学习热情。
2. 学生在解决问题过程中,培养耐心和自信心。
二、教学重难点:重点:三角形相似的判定方法。
难点:如何运用三角形相似的判定方法解决实际问题。
三、教学准备:教师准备教学PPT,包括三角形相似的判定方法及相关例题。
学生准备教科书、练习本和文具。
四、教学过程:1. 导入:教师通过一个实际问题引入三角形相似的概念,引导学生回顾已学的相似三角形的性质。
2. 新课讲解:教师讲解三角形相似的判定方法,包括:(1) AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
(2) SSS相似定理:如果两个三角形的三边分别成比例,则这两个三角形相似。
(3) SAS相似定理:如果两个三角形的两边及其夹角分别相等,则这两个三角形相似。
教师通过PPT展示相关例题,引导学生理解和运用判定方法。
3. 课堂练习:学生独立完成PPT上的练习题,巩固所学知识。
教师挑选部分学生的作业进行讲解和评价。
4. 小组讨论:教师提出一个实际问题,引导学生分组讨论,运用三角形相似的判定方法解决问题。
每组分享讨论成果,教师进行点评和指导。
学生分享学习收获和感受,提出疑问。
五、课后作业:教师布置课后作业,包括教科书上的练习题和拓展题,巩固所学知识,提高解决问题的能力。
教师及时批改作业,给予反馈和指导。
六、教学反思:本节课结束后,教师应反思教学效果,包括:1. 学生对三角形相似的判定方法的理解和掌握程度。
2. 学生运用三角形相似的判定方法解决实际问题的能力。
3. 教学过程中是否存在不足或需要改进的地方。
4. 学生的学习兴趣和参与度如何。
七、评价与反馈:教师对学生的学习情况进行评价,包括:1. 学生对三角形相似的判定方法的理解和运用能力。
相似三角形的判定数学教学教案【优秀10篇】
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
数学《相似三角形的判定》教案
相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。
从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。
同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。
2、这一内容可分为四课时完成,本教学设计是第一课时。
3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。
教学重点:三角形相似的判定定理1的理解和应用。
教学难点:三角形相似的判定定理1的证明方法。
因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。
二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。
三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。
(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。
三角形相似的判定数学教案
三角形相似的判定数学教案一、教学目标:1. 让学生理解相似三角形的概念,掌握三角形相似的判定方法。
2. 能够运用相似三角形的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 相似三角形的定义。
2. 三角形相似的判定方法:AA相似定理、SAS相似定理、SSS相似定理。
3. 相似三角形的性质。
三、教学重点与难点:1. 教学重点:相似三角形的定义,三角形相似的判定方法。
2. 教学难点:三角形相似的判定方法的灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生探索相似三角形的判定方法。
2. 利用多媒体课件,直观展示相似三角形的性质和判定过程。
3. 开展小组讨论,培养学生的合作意识。
五、教学过程:1. 导入新课:通过展示一些生活中的相似图形,引导学生思考相似图形的性质和判定方法。
2. 自主学习:让学生阅读教材,理解相似三角形的定义和判定方法。
3. 课堂讲解:详细讲解AA相似定理、SAS相似定理、SSS相似定理,并通过例题演示判定过程。
4. 练习巩固:让学生独立完成教材中的练习题,检验对相似三角形判定方法的理解。
6. 课后作业:布置一道运用相似三角形解决实际问题的作业,巩固所学知识。
教案剩余部分(六、七、八、九、十)待补充。
六、教学延伸:1. 利用相似三角形的性质,解释生活中的一些现象,如放大或缩小图形、相似建筑等。
2. 探讨相似三角形的判定方法在解决复杂几何问题中的应用。
七、教学反思:2. 对教学方法进行调整,以提高学生的学习兴趣和效果。
八、教学评价:1. 通过课堂表现、练习题和课后作业,评价学生对相似三角形判定方法和性质的掌握程度。
2. 鼓励学生积极参与课堂讨论,提高他们的逻辑思维能力和解决问题的能力。
九、课后作业:1. 完成教材中的课后练习题。
2. 选择一道与生活实际相关的几何问题,运用相似三角形的判定方法和性质进行解决。
十、教学拓展:1. 探讨相似三角形的其他判定方法,如HL相似定理。
相似三角形性质教案
相似三角形性质教案
一、教学目标:
1. 知识与技能目标:了解相似三角形的性质,并能够运用相似三角形的性质解决实际问题。
2. 过程与方法目标:通过引入问题和解决问题的方式进行课堂教学,并通过示范、练习、讨论等方式帮助学生理解和掌握相似三角形的性质。
二、教学重点与难点:
1. 知识重点:相似三角形的性质。
2. 知识难点:通过图像和文字说明相似三角形的性质。
三、教学过程:
1. 引入问题:讲师出示一个问题,比如:“如何判断两个三角形相似?”让学生思考并讨论答案。
2. 导入知识:通过讨论和引导,引出相似三角形的定义和判定条件。
3. 介绍相似三角形的性质:
a. 相似三角形的对应角相等。
b. 相似三角形的对应边成比例。
c. 相似三角形的对应边比例为常数。
4. 示范与练习:
a. 讲师示范解题,通过图像和文字说明如何应用相似三角形的性质解决问题。
b. 学生在教师指导下进行练习,巩固相似三角形的性质。
5. 拓展练习:讲师出示一些复杂的相似三角形问题,让学生通过运用相似三角形的性质解决问题。
6. 总结回顾:讲师和学生一起回顾相似三角形的性质,并总结运用相似三角形性质解决问题的方法。
四、教学用具:
1. PPT演示或黑板。
2. 课堂练习题。
3. 学生作业本。
五、评价和反馈:
1. 教师观察学生在课堂上的表现,并进行评价。
2. 布置相应的作业,检查学生对相似三角形性质的掌握情况。
三角形教案相似三角形教案(4篇)
三角形教案相似三角形教案(4篇)如何写三角形教案一(1)回忆任意角、象限角与轴线角的概念.(2)回忆锐角三角函数的定义,有了任意角之后,原来三角函数的定义有局限性,需要对其重新定义,以适用于任意的三角函数.(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特别角的三角函数值?(意图是让学生说出)重新定义的原则有哪些?①和谐的原则,新定义应当包含以前的定义,即当角为锐角时,其定义应与前面的三角形边的比值等价.由此可以确定,新的定义仍应是比值的形式;②传承的原则,新定义应保存旧定义中的一些做法,如可以同样在角的终边上任取一点来定义,且所得结果应与所取点的位置无关.③相容的原则,新定义不能与一些熟识的结论相冲突.如当角为钝角时,其余弦值应为负值.由此可知,新的三角函数的定义应保证所得三角函数值有正负之分;④自然的原则,新定义不能出来得很惊奇,要让人承受必需顺其自然,可在我们前面争论的象限角的根底上进展,换句话说,教师在给出一个任意角的时候,就可以将角直接放在直角坐标系下,由于前面已争论过象限角.按上述几个原则让学生自主探究.如何写三角形教案二(一)教材分析:“三角形的熟悉”是小学数学苏教版国标教材第八册第三单元第一课时的内容。
在此之前,学生已经学习了角,初步熟悉了三角形,但对三角形的三边关系未曾探究,本课将重点引导学生探究三角形的三边关系,理解任意二边之和大于第三边。
教材中,例1让学生在现实情境中找出三角形,并用不同的材料、不同的方法做一个三角形,从而唤起学生的已有阅历,进一步抽象出图形,形成三角形的初步概念。
例2让学生任意选三根小棒围一个三角形,在操作中体会和发觉三角形任意两边之和大于第三边。
“想想做做”安排了不同层次、不同形式的练习,让学生准时稳固所学的学问,并感受数学学问的有用价值。
学好这局部内容,不仅可以从形的方面加深对四周事物的理解,进展学生的空间观念,可以在动手操作、探究规律等方面进展学生的思维和解决实际问题的力量,同时也为学习其他平面图形和立体图形积存学问阅历。
《相似三角形》教案
相似三角形教案一、教学目标1.了解相似三角形的定义2.掌握相似三角形的判定方法3.学会求解相似三角形的特殊线段长度比4.应用相似三角形解决实际问题二、教学内容1. 相似三角形的定义相似三角形是指具有相同形状但尺寸比例不同的三角形。
2. 相似三角形的判定方法两个三角形相似必须满足下列条件之一:1.两个三角形对应角度相等,对应边比例相等。
2.两个三角形对应角度相等,一对对应边的比例相等,且另一对对应边的比例相等。
3. 求解相似三角形的特殊线段长度比设两个相似的三角形分别为ABC和DEF,则有:1.相似三角形的边长比等于对应边长之比。
2.相似三角形的高比等于对应边长之比。
3.相似三角形的中线比等于对应边长之比。
4.相似三角形的角平分线比等于对应边长之比。
4. 应用相似三角形解决实际问题应用相似三角形解决实际问题是相似三角形的重要应用之一。
三、教学步骤Step1:引入相似三角形是初中数学的重要知识点,今天我们将学习相似三角形的定义、判定方法和应用。
相似三角形在实际中的应用非常广泛,学好相似三角形是我们学好初中数学的基础。
Step2:相似三角形的定义1.定义相似三角形的概念2.给出相似三角形的判定条件3.求解相似三角形的特殊比例关系Step3:应用相似三角形解题实际问题的解决离不开基本知识的应用,通过例题演示,来学习如何使用相似三角形解决实际问题。
Step4:小结总结今天所学的相似三角形相关知识,指出需要注意的事项。
四、教学亮点1.结合实际问题讲解,伴随着训练;2.直观且简单易懂的定义、判定条件等;3.实战见证相似三角形的实际应用。
五、教学评价相似三角形作为初中数学的基础知识点,无论对于日后高中、大学甚至工作生活,都有着重要的作用。
因此在教学中,教师应该注重培养学生的直觉思维和逻辑能力,使他们在理解相似三角形的概念、应用时更加灵活、自如。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形
(一)教学重点:
相似三角形定义的理解和认识。
(二)教学难点:
1.相似三角形的定义所揭示的本质属性的理解和应用;
2.例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(三)教法与学法分析:
本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。
学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。
教学目标:
1知识与技能
(1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
(2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。
2 过程与方法
(1). 领会教学活动中的类比思想,提高学生学习数学的积极性。
(2). 经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形
的定义及表示法,会运用相似比解决相似三角形的边长问题。
3 情感态度与价值观
(1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与
一般的关系。
(2). 深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
三、教学过程分析
第一环节情景引入归纳定义
活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义)
1.上节课我们学习了相似多边形的定义及记法, 请同学们观察下列图形,并指出哪些图形相似相似图形的对应边、对应角有什么关系
2.请问相似三角形是相似多边形吗请同学们回忆一下什么叫相似多边形
3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗
4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similar trangles)
.
如△ABC与△DEF相似,记作△ABC∽△DEF
第二环节:运用定义解决问题
活动内容:想一想议一议例1 例2
1.想一想(展示课件,教师引导、学生自主探索并归纳出相似三角形的性质)
如果△ABC∽△DEF,那么哪些角是对应角哪些边是对应边对应角有什么关系
对应边呢
解:∠A与∠D、∠B与∠E、∠C与∠F.是对应角
AB与DE AC与DF BC与EF
是对应边A
B
C
D
E
F
A
B
C
D
E
F
450
450
A
B
C D
E
F
∠A=∠D 、∠B=∠E 、∠C=∠F.
DE AB =DF AC .=EF BC
相似三角形性质:相似三角形的对应角相等,对应边成比例。
2.议一议(展示课件,让学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由)
(1)两个全等三角形一定相似吗为什么 (2)两个直角三角形一定相似吗
两个等腰直角三角形呢为什么
(3)两个等腰三角形一定相似吗两个等边三角形呢为什么
解:(1)两个全等三角形一定相似.
因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.
(2)两个直角三角形不一定相似.
如图,虽然都是直角三角形, 但也只能确定有一对角即直角相等,
其他的两对角可能相等,也可能不相等,
对应边也不一定成比例,所以它们不一定相似.
两个等腰直角三角形一定相似
. 如图, 在Rt△ABC和Rt△DEF中,
∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有
∠A=∠D,∠B=∠E,∠C=∠F.
再设△ABC中AC=b,△DEF中DF=a,则
AC=BC=b,AB=2b
DF=EF=a,DE=2a
DF AC=EF BC=DE AB=1
所以两个等腰直角三角形一定相似.
(3)如图,两个等腰三角形不一定相似.
如图:因为等腰只能说明一个三角形中有两边相等,
但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似
如图:两个等边三角形一定相似.
因为等边三角形的各边都相等,各角都等于60度, 因此这两个等边三角形一定有对应角相等、 对应边成比例,所以它们一定相似
. 例1 例2(展示课件,教师引导分析、学生自主探索,培
养学生应用知识解决问题的能力)
3.如图,有一块呈三角形形状的草坪,其中一边的长是20 m ,在这个草坪的图
纸上,这条边长5 cm ,其他两边的长都是 cm ,求该草坪其他两边的实际长度. 解:草坪的形状与其图纸上相应的形状相似, 它们的相似比是2000∶5=400∶1 如果设其他两边的实际长度都是x cm ,
那么5.3x =1400
则 x=×400=1400(cm )=14(m )
所以,草坪其他两边的实际长度都是14 m .
4.如图,已知△ABC ∽△ADE, AE=50 cm, EC=30 cm, BC=70 cm, ∠BAC=45°, ∠ACB=400,求
(1)∠AED 和∠ADE 的度数。
(2)DE 的长.
3.5c m
3.5c m
5c m
解:(1)因为△ABC ∽△ADE. 所以由相似三角形对应角相等,得 ∠AED=∠ACB=40° 在△ADE 中,
∠AED+∠ADE+∠A=180° 即40°+∠ADE+45°=180°,
所以∠ADE=180°-40°-45°=95°.
(2)因为△ABC ∽△ADE ,所以由相似三角形对应边成比例,得
AC AE =BC DE 即305050
+=70DE
所以 DE=305070
50+⨯=(cm)
1.想一想
在例2的条件下,图4-16中有哪些线段成比例
解:成比例线段有AE EC =AD DB
△ABC ∽△ADE
AE AC =AD AB =DE BC
∴
AE AC =AD AB
∴
AE AE AC -=AD AD
AB - 即AE EC =AD DB
图中有互相平行的线段,即DE ∥BC.因为△ABC ∽△ADE ,所以∠ADE=∠B.由平行线的判定方法知DE ∥BC. 2.合作探究
1. 在下面的两组图形中,各有两个相似三角形,试确定x ,y ,m ,n 的值. 解:在(1)中
∆ABO ∽∆CDO
∴
48x =3322
∴ x=32
在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
n=55,m=80, y=320
2.等腰直角三角形ABC 与等腰直角三角形A ′B ′C ′相似,相似比为3∶1,已知斜边AB=5 cm ,(1) 求 △A ′B ′C ′斜边A ′B ′的长, (2) 求△A ′B ′C ′斜边A ′B ′上的高。
解:(1) 如图所示,因为△ABC ∽△A ′B ′C ′,
A ′且相似比为3∶1.
所以 ''B A AB =13. 即'
'5B A =13
A ′
B ′=35
(cm ) D
(2) C ′D ′=21A ′B ′=65
(cm )
3.巩固练习: 略
第四环节 回顾反思 课堂小结
活动内容:1.这一节课你学到了什么有什么收获 3.相似三角形的判定方法——定义法
活动目的:培养学生的归纳总结能力,加深对知识的理解和应用能力。
活动实际效果:通过小结发现每个学生都在积极思索这节课的内容,并能正确回答出相似三角形的定义、性质、以及它的表示法。
第五环节 布置作业 活动内容:习题 1 、 2
A ′
D ′
C ′
C B
表示法—相似比{
{
相
似三
角形。