高考数学圆

合集下载

高考数学必考之圆的方程

高考数学必考之圆的方程

高考数学必考之圆的方程考点一 圆的方程1.圆心为()3,1,半径为5的圆的标准方程是【答案】()()223125x y -+-=【解析】∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()223125x y -+-=,2.已知点()3,6A ,()1,4B ,()1,0C ,则ABC ∆外接圆的圆心坐标为 【答案】()5,2【解析】线段AB 中点坐标为()2,5,线段AB 斜率为64131-=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+.线段AC 中点坐标为()2,3,线段AC 斜率为60331-=-,所以线段AC 垂直平分线的斜率为13-,故线段AC 的垂直平分线方程为()1323y x -=--,即11133y x =-+.由75111233y x x y y x =-+⎧=⎧⎪⇒⎨⎨==-+⎩⎪⎩.所以ABC ∆外接圆的圆心坐标为()5,2. 3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是【答案】-2<a <23【解析】由题意可得圆的标准方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<.考点二 点与圆的位置关系1.点()1,1在圆()2211x y +-=的( )A .圆上B .圆内C .圆外D .无法判定【答案】A【解析】将点()1,1的坐标代入圆()2211x y +-=的方程即()221111+-=,∴点()1,1在圆()2211x y +-=上,2.经过点(1,2)A 可做圆22240x y mx y ++-+=的两条切线,则m 的范围是( )A .(,(23,)-∞-+∞B .(5,(23,)--+∞C .(,)-∞-⋃+∞D .(5,(22,)--+∞【答案】B【解析】圆22240x y mx y ++-+=,即为222()(1)324m m x y -+-=-, 2304m ∴->⇒m <-m > 由题意知点A 在圆外,14440m ∴++-+>,解得5m >-.所以5m -<<-m >故选B3.若坐标原点在圆22222240x y mx my m +-++-=的内部,则实数m 的取值范围是( )A .()1,1-B .,22⎛-⎝⎭C .(D .(【答案】D【解析】把原点坐标代入圆的方程得:222002020240m m m +-⨯+⨯+-<解得:m <本题正确选项:D考点三 直线与圆1.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = 。

圆的高考数学试卷

圆的高考数学试卷

一、选择题(每小题5分,共50分)1. 在直角坐标系中,圆C的方程为x² + y² - 4x - 6y + 9 = 0,则圆C的半径为:A. 2B. 3C. 4D. 52. 已知圆O的半径为r,圆心坐标为(a,b),则圆O的标准方程为:A. (x - a)² + (y - b)² = r²B. (x - a)² - (y - b)² = r²C. (x + a)² + (y + b)² = r²D. (x + a)² - (y + b)² = r²3. 若直线y = kx + b与圆x² + y² = 4相切,则k和b的关系为:A. k² + b² = 4B. k² + b² = 1C. k² + b² = 16D. k² + b² = 04. 在平面直角坐标系中,圆C的方程为(x - 1)² + (y + 2)² = 9,则圆C的圆心坐标为:A. (1, -2)B. (1, 2)C. (-1, -2)D. (-1, 2)5. 已知圆C的方程为x² + y² - 6x + 4y + 12 = 0,圆C关于直线y = x的对称圆方程为:A. x² + y² - 6y + 4x + 12 = 0B. x² + y² + 6y - 4x + 12 = 0C. x² + y² + 6x - 4y + 12 = 0D. x² + y² - 6x - 4y + 12 = 06. 圆O的半径为r,圆心坐标为(0,0),若圆上任意一点P的坐标为(x,y),则|OP|的最大值为:A. rB. r + 1C. r - 1D. 2r7. 若圆C的方程为(x - 2)² + (y - 3)² = 1,则圆C上的点到直线3x + 4y - 5 = 0的距离的最大值为:A. 1B. 2C. 3D. 48. 圆O的方程为x² + y² = 4,直线l的方程为y = mx + c,若圆O与直线l相切,则m和c的关系为:A. m² + c² = 4B. m² + c² = 1C. m² + c² = 16D. m² + c² = 09. 圆C的方程为(x - 3)² + (y + 1)² = 25,若直线y = kx + b与圆C相交,则k和b的关系为:A. k² + b² = 25B. k² + b² = 1C. k² + b² = 9D. k² + b² = 1610. 若圆C的方程为x² + y² - 8x + 6y + 12 = 0,则圆C关于原点O的对称圆方程为:A. x² + y² - 8x - 6y + 12 = 0B. x² + y² + 8x - 6y + 12 = 0C. x² + y² - 8x + 6y - 12 = 0D. x² + y² + 8x + 6y - 12 = 0二、填空题(每小题5分,共50分)1. 圆C的方程为(x - 2)² + (y - 3)² = 1,圆心坐标为________,半径为________。

高中数学关于圆的知识点总结

高中数学关于圆的知识点总结

高中数学关于圆的知识点总结
圆是高中数学中一个重要的几何图形,它在高考数学中经常出现。

以下是高中数学关于圆的一些知识点总结:
1. 圆的定义:圆是到定点距离等于定长的点的集合。

2. 圆的方程:圆的方程通常用 (x,y) 表示圆心坐标,用 (x0,y0) 表示圆心坐标,用 r 表示圆的半径,则有
x=x0+rcos(θ),y=y0-rsin(θ)。

3. 圆的性质:圆的轴对称性、圆的旋转对称性、圆的平移对称性。

4. 圆的切线:圆上的任意一点到圆心的距离等于该点到切线的
距离,切线的定义、性质、判定。

5. 圆的弦:圆上的任意一点到圆心的距离等于弦的半径,弦的
定义、性质、判定。

6. 圆的弦图:圆的弦图是指用圆规在圆上画出的表示弦的图形,弦图的作用、绘制方法。

7. 圆周角定理及其推论:圆周角定理是指到同圆或等圆中,同
弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

圆周角度数定理是指圆周角的度数等于它所对的弧的度数的一半。

8. 圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长
度相同,匀速圆周运动的特点是质点受到的向心力始终指向圆心,向心力只改变运动物体的速度方向,不改变速度大小。

9. 向心力公式:向心力公式是指 F=ma,其中 F 为向心力,m 为
质点的质量,a 为质点的速度变化率。

10. 圆的幂函数:圆的幂函数是指用圆心角的角度作为自变量,角度的度数作为因变量的函数,幂函数的定义、性质。

高考数学直线与圆的位置关系选择题

高考数学直线与圆的位置关系选择题

高考数学直线与圆的位置关系选择题1. 直线l与圆O的方程分别为x-y+1=0和x^2+y^2-2x-2y+2=0,直线l与圆O的位置关系是()A. 相离B. 相切C. 相交D. 重合2. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合3. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合4. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合5. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合6. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合7. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合8. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合9. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合10. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合11. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合12. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合13. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()B. 相切C. 相交D. 重合14. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合15. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合16. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离C. 相交D. 重合17. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合18. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合19. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切D. 重合20. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合21. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合22. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交23. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合24. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合25. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合26. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合27. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合28. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合29. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合30. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合31. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合32. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合33. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合34. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合35. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()B. 相切C. 相交D. 重合36. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合37. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合38. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离C. 相交D. 重合39. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合40. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合41. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切D. 重合42. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合43. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合44. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交45. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合46. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合47. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合48. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合49. 已知圆的方程为x^2+y^2-2x+2y+1=0,直线l的方程为x+y+1=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合50. 已知圆的方程为x^2+y^2-4x+3y+5=0,直线l的方程为x+y+2=0,则直线l与圆的位置关系是()A. 相离B. 相切C. 相交D. 重合。

高考数学直线与圆的位置关系

高考数学直线与圆的位置关系
AB的斜率为k, 由题意:
消去y得:
(1 + k2 )x2 -10k2 x + 25k2 -16 = 0(*)
消去k得: 当y=0时,k=0 此时x=0 而的圆的切线方程,首先必须判 断这点是否在圆上,若在圆上,则该点为切点.若在圆外, 一般用“圆心到切线的距离等于半径长”来解题较为简单. 切线应有两条,若求出的斜率只有一个,应找出过这一点 而与x轴垂直的另一条切线.
3.若方程
有解,则b的取值范围是_____
例题4
已知点P(5,0)和⊙O:x2+y2=16 (1)自P作⊙O的切线,求切线的长及切线的方程; (2)过P任意作直线l与⊙O交于A、B两相异点, 求弦AB中点M的轨迹.
y
x
O
P(5,0)
Q
A
y
M(x ,y)
B
x
O
P(5,0)
例题1 已知点P(5,0)和⊙O:x2+y2=16 (1)自P作⊙O的切线,求切线的长及切线的方程; (2)过P任意作直线l与⊙O交于A、B两相异点, 求弦AB中点M的轨迹.
3.在课前热身(3)中,判断两圆关系得到|O1O2|<|r1+r2|, 未必相交,还可能内含,一定要追加|O1O2|>|r1-r2|才行.
例1(1)过圆x2+y2=1上一点A(a ,b)的切线方程为 ___a_x_+_b_y_=_1___ (2):若点A(a ,b)在圆x2+y2=1内,则直线ax+by=1与 此圆的位置关系是__相_离____
4.在坐标平面上与点A(1, 2 )的距离为1 且与点B(3, 1 )的距离为2的直线共有 __2____条
直线与圆的位置关系 的判定方法:

2025高考数学一轮复习-8.3-圆的方程【课件】

2025高考数学一轮复习-8.3-圆的方程【课件】

A.a<-2
B.-23<a<0
C.-2<a<0
D.-2<a<23
【解析】 由方程表示圆的条件得 a2+(2a)2-4(2a2+a-1)>0, 即 3a2+4a-4<0,∴-2<a<23.故选 D.
6.已知实数 x,y 满足(x-2)2+y2=4,则 3x2+4y2 的最大值为___4_8____.
3.过点 A(1,-1),B(-1,1),且圆心在直线 x+y-2=0 上的圆的方程是( C ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
【解析】 解法一:∵圆心在直线 x+y-2=0 上,
设圆心(a,2-a),圆方程为(x-a)2+(y-2+a)2=r2,代入点 A(1,-1),B(-1,1)得
【解析】 由(x-2)2+y2=4,得 y2=4x-x2≥0,得 0≤x≤4.所以 3x2+4y2=3x2+4(4x -x2)=-x2+16x=-(x-8)2+64,0≤x≤4,所以当 x=4 时,3x2+4y2 取得最大值 48.
易错点睛:(1)忽视表示圆的充要条件 D2+E2-4F>0 致误. (2)忽视圆的方程中变量的取值范围致误.
x-y-1=0.联立 Nhomakorabeax-y-1=0, 2x-7y+8=0,
解得
x=3, y=2.
∴r= 6-32+0-22= 13.
∴圆 C 的方程为(x-3)2+(y-2)2=13.
解法二(待定系数法):设圆 C 的方程为(x-a)2+(y-b)2=r2.
由题意得61- -aa22+ +05- -bb22= =rr22, , 2a-7b+8=0,

高考数学一轮总复习课件:圆的方程及直线与

高考数学一轮总复习课件:圆的方程及直线与
所以圆的方程为x2+y2-4x-235y-5=0. 将D(a,3)代入得a2-4a-21=0. 解得a=7或a=-3(舍).
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.

高考数学一轮总复习课件:圆与圆的位置关系

高考数学一轮总复习课件:圆与圆的位置关系

【解析】 设圆心到直线l:mx+y+3m- 3 =0的距离为d,
则弦长|AB|=2
12-d2 =2
3
,得d=3,即
|3m- 3| m2+1
=3,解得m=
- 33,则直线l:x- 3y+6=0,数形结合可得|CD|=co|sA3B0°| =4.
(3)【多选题】已知直线l与圆C:x2+y2+2x-4y+a=0相交
因为kMN=65- -31=34,所以两圆的公切线的斜率是-43. 设切线方程为y=-43x+b,则有43×143+23+-1b= 11. 解得b=133±5 311. 容易验证,当b=133+5 311时,直线与后一圆相交,舍去. 故所求公切线方程y=-43x+133-5 311, 即4x+3y+5 11-13=0.
状元笔记
在研究弦长及弦中点问题时,可设弦AB两端点的坐标分别 为A(x1,y1),B(x2,y2).
(1)若OA⊥OB(O为原点),则可转化为x1x2+y1y2=0,再结 合根与系数的关系,代入方程简化运算过程,这在解决垂直关 系问题中是常用的.
(2)若弦AB的中点为(x0,y0),圆的方程为x2+y2=r2, xx1222+ +yy1222= =rr22, ,∴k=yx22- -yx11=-xy22+ +xy11=-xy00.
2+P→C·(C→B+C→A)+C→B·C→A=|P→C|2-1=(x-1)2+(x+1)2-1=2x2
+1,所以P→A·P→B的最小值为1,故选D.
授人以渔
题型一 圆与圆的位置关系
例1 已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+ m=0.求:
(1)m取何值时两圆外切? (2)m取何值时两圆内切,此时公切线方程是什么? (3)求m=45时两圆的公共弦所在直线的方程和公共弦的 长.

高考数学复习第7章解析几何第3讲圆的方程

高考数学复习第7章解析几何第3讲圆的方程
故圆 C 的方程为(x-2)2+y2=9.
答案:(x-2)2+y2=9
(3)(2018 年天津) 在平面直角坐标系中,经过三点(0,0) , (1,1),(2,0)的圆的方程为______________.
解析:设圆的方程为 x2+y2+Dx+Ey+F=0,圆经过三点
F=0, (0,0),(1,1),(2,0),则1+1+D+E+F=0,
解析:抛物线 y2=4x 中,2p=4,p=2,焦点 F(1,0),准线 l 的方程为 x =-1 ,以 F 为圆心,且与 l 相切的圆的方程为 (x-1)2+y2=22,即为(x-1)2+y2=4.
考点 1 求圆的方程 例 1:(1)圆心在直线 x-2y=0 上的圆 C 与 y 轴的正半轴相 切,圆 C 截 x 轴所得弦的长为 2 3,则圆 C 的标准方程为 ________. 解析:∵圆心在直线 x-2y=0 上,∴设圆心为(2a,a), ∵圆 C 与 y 轴的正半轴相切,∴a>0,r=2a,又∵圆 C 截 x 轴 所得弦的长为 2 3,∴a2+( 3)2=(2a)2,a2=1,a=1.则圆 C 的标准方程为(x-2)2+(x-1)2=4.
(2)研究圆的问题,既要理解代数方法,熟练运用解方程思 想,又要重视几何性质及定义的运用,以降低运算量.总之,要 数形结合,拓宽解题思路.与弦长有关的问题经常需要用到点到 直线的距离公式、勾股定理、垂径定理等.
考点 2 与圆有关的最值问题 考向 1 斜率型最值问题 例 2:已知实数 x,y 满足方程 x2+y2-4x+1=0,求yx的最 大值和最小值.
的学习过程中,体会用 与圆的位置关系;二是重在知识的交
代数方法处理几何问题 汇处命题,把解析几何初步与集合、
的思想
向量、函数等知识结合命题,注重考

高考数学试卷选修圆

高考数学试卷选修圆

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知圆O的半径为2,圆心为点(1,3),则点(4,5)在圆O上的切线斜率为:A. 1B. -1C. 2D. -22. 圆(x-3)²+(y+2)²=1的圆心坐标为:A. (3,-2)B. (-3,2)C. (-3,-2)D. (3,2)3. 下列关于圆的方程中,表示圆的标准方程是:A. x²+y²=5B. (x-1)²+(y+2)²=4C. x²+y²+2x-4y=0D. x²+y²-2x+4y=04. 在平面直角坐标系中,若点P(2,3)在圆x²+y²=25上,则点P到圆心的距离为:A. 5B. 10C. 15D. 205. 已知圆C:x²+y²=4,圆D:x²+y²=1,则两圆的公切线共有:A. 2条B. 4条C. 6条D. 8条6. 在平面直角坐标系中,若点A(2,3)在圆x²+y²=9上,则点A到圆心的距离为:A. 3B. 6C. 9D. 127. 已知圆O的方程为x²+y²=r²,若圆O过点P(2,0),则r的值为:A. 2B. 4C. 6D. 88. 在平面直角坐标系中,若圆x²+y²=4的圆心在直线y=x上,则圆心的坐标为:A. (2,2)B. (-2,-2)C. (2,-2)D. (-2,2)9. 已知圆O的方程为x²+y²=16,若圆O的切线斜率为k,则k的取值范围是:A. k≤4B. k≤2C. k≥4D. k≥210. 在平面直角坐标系中,若圆x²+y²=1的圆心在直线y=3上,则圆心的坐标为:A. (0,3)B. (1,3)C. (-1,3)D. (0,-3)二、填空题(本大题共5小题,每小题10分,共50分。

高考数学第51讲 圆的标准方程和一般方程

高考数学第51讲  圆的标准方程和一般方程

一、圆的方程的三种形式 (1)圆的标准方程: (x -a )2+(y -b )2=r 2,方程表示圆心为(a ,b ),半径为r 的圆. (2)圆的一般方程:对于方程x 2+y 2+Dx +Ey +F =0 ①当D 2+E 2-4F >0时,表示圆心为 (-D 2,-E 2),半径为12D 2+E 2-4F 的圆; ②当D 2+E 2-4F =0时,表示一个点 (-D 2,-E 2);③当D 2+E 2-4F <0时,它不表示任何图形. (3)以A (x 1,y 1),B (x 2,y 2)为直径的两端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. 二、点与圆的位置关系圆的标准方程(x -a )2+(y -b )2=r 2,圆心A (a ,b ),半径r .若点M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2; 若点M (x 0,y 0)在圆外, 则(x 0-a )2+(y 0-b )2>r 2; 若点M (x 0,y 0)在圆内, 则(x 0-a )2+(y 0-b )2<r 2.三、在求圆的方程时,常用到圆的以下几个性质:①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线.的圆的方程是( )A.(x -1)2+(y -1)2=1B.(x +1)2+(y +1)2=1C.(x +1)2+(y +1)2=2D.(x -1)2+(y -1)2=2 【解析】圆的半径r =2211 =2, ∴圆的方程为(x -1)2+(y -1)2=2.答案D 【拓展练习】1.(2016·浙江文10)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________.半径是________. 【解析】由已知方程表示圆,则a 2=a +2,解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0,化为标准方程为(x +2)2+(y +4)2=25,表示以(-2,-4)为圆心,半径为5的圆. 2.(2015·江苏文10)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________. 【解析】直线mx -y -2m -1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r =(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x -1)2+y 2=2.(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量.(2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可. 【例2】(2015·广东深圳模拟11)圆心在直线要点 梳 理 用圆的标准方程直接求圆方程 待定系数法求圆方程 考点剖析第51讲 圆的标准方程和一般方程x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为____________. 【解析】设所求圆的标准方程为 (x -a )2+(y -b )2=r 2,由题意得222222(2)(3),(2)(5),230.a b r a b r a b ⎧-+--=⎪--+--=⎨⎪--=⎩解得 21, 2,10.a b r =-⎧⎪=-⎨⎪=⎩故所求圆的方程为(x +1)2+(y +2)2=10. 【拓展练习】3.圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2)的圆方程为 。

高考数学知识点:圆的标准方程与一般方程_知识点总结

高考数学知识点:圆的标准方程与一般方程_知识点总结

高考数学知识点:圆的标准方程与一般方程_知识点总结
高考数学知识点:圆的标准方程与一般方程圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。

定点就是圆心,定长就是半径。

圆的标准方程:
圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为。

圆的一般方程:
圆的一般方程
当>0时,表示圆心在,半径为的圆;
当=0时,表示点;
当<0时,不表示任何图形。

圆的定义的理解:
(1)定位条件:圆心,高考历史;定形条件:半径。

(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.即
几种特殊位置的圆的方程:
条件
标准方程
一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点。

高考数学第四章圆与方程4.1.1圆的标准方程课件新人教A版必修2ppt版本

高考数学第四章圆与方程4.1.1圆的标准方程课件新人教A版必修2ppt版本
5.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准 方程为__x_2+__(_y_-__1_)_2=__1__. 解析 由题意知圆C的圆心为(0,1),半径为1, 所以圆C的标准方程为x2+(y-1)2=1.
解析答案
谢谢
2019/11/13
答案
(2)代数法:可利用圆C的标准方程(x-a)2+(y-b)2=r2来确定: 点M(m,n)在 圆C上 ⇔(m-a)2+(n-b)2=r2; 点M(m,n)在 圆C外 ⇔(m-a)2+(n-b)2>r2; 点M(m,n)在 圆C内 ⇔(m-a)2+(n-b)2<r2. 思考 确定点与圆的位置关系的关键是什么?
自主学习
(x-a)2+(y-b)2=r2 x2+y2=r2
答案
思考 方程(x-a)2+(y-b)2=m2一定表示圆吗? 答 不一定.当m=0时表示点(a,b),当m≠0时,表示圆.
答案
知识点二 点与圆的位置关系 点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与 圆的位置关系有两种方法: (1)几何法:将所给的点M与圆心C的距离跟半径r比较: 若|CM|=r,则点M在 圆上; 若|CM|>r,则点M在 圆外; 若|CM|<r,则点M在 圆内.
反思与感悟
解析答案
跟踪训练2 若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围 是( A ) A.-1<a<1 B.0<a<1 C.a<-1或a>1 D.-1<a<0 解析 直接利用点与圆的位置关系来判断. ∵点(1,1)在圆的内部, ∴(1-a)2+(1+a)2<4. 解得-1<a<1.
解析答案
题型二 点与圆的位置关系的判断 例2 已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的 取值范围. 解 由题意,得点A在圆C上或圆C的外部, ∴(1-a)2+(2+a)2≥2a2, ∴2a+5≥0, ∴a 的取值范围是-52,0∪(0,+∞). 解 由已知,得 C(3,0),r=|A2B|=2,

高考数学直线与圆常用二级结论

高考数学直线与圆常用二级结论

高考数学直线与圆常用二级结论在高考数学中,直线和圆是两个非常重要的图形。

它们之间的关系及二级结论,在解题过程中经常被用到。

本文将介绍一些高考数学中关于直线与圆的常用二级结论。

1. 直线与圆的位置关系首先,我们来讨论直线与圆的位置关系。

在平面直角坐标系中,一条直线可以由方程Ax+By+C=0表示,其中A、B、C是实数且A和B不同时为零。

而一个圆可以由方程(x−a)2+(y−b)2=r2表示,其中(a,b)是圆心的坐标,r是半径。

根据这些方程,我们可以得到以下结论:结论1:直线与圆相交当直线的方程与圆的方程有实数解时,即方程组有唯一实数解时,直线与圆相交。

结论2:直线与圆相切当直线的方程与圆的方程有唯一实数解,且这个解同时满足方程组,即方程组有三个相等的实数解时,直线与圆相切。

此时,我们可以通过判断直线方程和圆方程的判别式来判定直线与圆是否相切。

结论3:直线与圆相离当直线的方程与圆的方程没有实数解时,直线与圆相离。

2. 直线与圆的性质在直线与圆的位置关系之外,直线与圆还有一些重要的性质。

结论4:直线的斜率与圆的切线垂直如果一条直线与一个圆相切于某一点,那么这条直线在这一点的切线与半径的位置平分线垂直。

结论5:垂直直径的圆分割平面如果一个圆的直径垂直于一平面,则该圆将该平面分成两部分,一部分为一个扇形,在圆球内,其圆心角为180度;另一部分为一个圆锥,在圆球外。

结论6:内接四边形的对角线垂直如果一个四边形是一个圆的内接四边形,则它的对角线互相垂直。

3. 直线与圆的相关定理除了以上的基本性质和位置关系之外,还有一些定理和公式与直线与圆有关。

定理1:切线的判别式一条直线y=kx+b与圆的方程(x−a)2+(y−b)2=r2相切的条件为b2= r2(1+k2)。

定理2:两圆的位置关系两个圆的方程分别为(x−a1)2+(y−b1)2=r12和(x−a2)2+(y−b2)2=r22,则两圆相离的条件为(a1−a2)2+(b1−b2)2>(r1+r2)2;两圆相交的条件为(a1−a2)2+(b1−b2)2<(r1+r2)2;其中当等号成立时,两圆相切。

新高考高二数学关于圆的练习题

新高考高二数学关于圆的练习题

新高考高二数学关于圆的练习题高二数学:关于圆的练习题正文:1.已知半径为5 cm的圆,求其周长和面积。

解:周长C=2πr=2×3.14×5=31.4 cm,面积S=πr²=3.14×5×5=78.5 cm²。

2.已知圆的周长为20 cm,求其半径和面积。

解:设圆的半径为r,则周长C=2πr=20 cm,解得r=10/π≈3.18 cm。

面积S=πr²=3.14×(3.18)²≈31.92 cm²。

3.已知圆的直径为6 cm,求其周长和面积。

解:周长C=πd=3.14×6=18.84 cm,面积S=πr²=3.14×(6/2)²=28.26cm²。

4.已知两个半径分别为3 cm和4 cm的圆外切于一点P,求P到两个圆心的距离。

解:由于两个圆外切于一点P,根据外切圆的性质,连接两个圆心和点P可以得到等边三角形。

设P到两个圆心的距离为d,则两个圆心之间的距离就是2d。

利用勾股定理可以求得2d²=3²+4²=9+16=25。

解方程可得d=√25=5 cm。

因此,P到两个圆心的距离为5 cm。

5.已知圆的半径为r,圆心角为60°,求圆弧的长度。

解:圆弧的长度可以通过计算圆心角所对的弧长来求得。

由于圆心角为60°,所以对应的弧长为圆周的1/6。

即弧长L=(1/6)×2πr=(π/3)r。

6.已知圆的半径为4 cm,求圆心角为120°的圆弧的长度。

解:同样地,圆弧的长度可以通过计算圆心角所对的弧长来求得。

圆心角为120°,所以对应的弧长为圆周的1/3。

即弧长L=(1/3)×2πr=(2/3)×3.14×4=8.38 cm。

7.已知两个圆半径分别为5 cm和8 cm,且圆心距为10 cm,求两个圆的外公切线的长度。

关于高中圆的数学公式

关于高中圆的数学公式

关于高中圆的数学公式高中圆的数学公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】高考数学解题过程及书写格式要求选择填空题解答的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。

关于解答题,考生不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,而且所填结果应力求简练、概括准确;其次,从试题内涵来说,解答题比起选择填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之选择填空题大得多。

在答题过程中,关键语句和关键词是否答出是多得分的关键。

如何答题才更规范?答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。

比如要将你的解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生忽视,导致大量出现“会而不对”“对而不全”的情况。

如立体几何论证中的“跳步”,使很多人丢失得分,代数论证中的“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转换为“文字语言”,尽管考生“心中有数”却说不清楚,因此得分少,只有重视解题过程的语言表述,“会做”的题才能“得分”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章圆
圆的有关性质

知能演练提升
能力提升
1.下列说法错误的是()
A.直径是圆中最长的弦
B.长度相等的两条弧是等弧
C.面积相等的两个圆是等圆
D.半径相等的两个半圆弧是等弧
2.如图,在△ABC中,AB为☉O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()
°°
°°
3.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B 也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()
4.如图,AB是半圆O的直径,点P从点O出发,沿OA→AA
⏜→BO的路径运动一周.设OP为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是()
5.如图,A,B是☉O上两点,若四边形ACBO是平行四边形,☉O的半径为r,则点A 与点B之间的距离为.?
6.如图,O2是☉O1上的一点,以O2为圆心,O1O2为半径作☉O2,与☉O1交于点A,B,则∠AO1B的度数为.?
(第5题图)
(第6题图)
7.如图,一根2 m长的绳子,一端拴在墙边,另一端拴着一只羊,画出羊的活动区域.
8.
如图,AB,AC为☉O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C,求证:CE=BF.
★9.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则a,b,c之间有什么关系
10.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且
CD=OA,求证:∠C=1
3∠AOE.
创新应用
★11.如图①,☉O的半径为r(r>0),若点P'在射线OP上,满足OP'·OP=r2,则称点P'是点P关于☉O的“反演点”.
如图②,☉O的半径为4,点B在☉O上,∠BOA=60°,OA=8.点A',B'分别是点A,B 关于☉O的反演点,求A'B'的长.
图①
图②
知能演练·提升
能力提升
AB,不管木杆如何滑动,连接OP,因为OP是Rt△AOB斜边上的中线,所以OP=1
2
它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
当点P从点O向点A运动时,OP逐渐增大,当点P从点A向点B运动时,OP不变,当点P从点B向点O运动时,OP逐渐减小,故能大致地刻画s与t之间关系
的是选项C中的图象.
√3连接AB.∵OA=OB,
∴?ACBO是菱形.
∴AB与CO互相垂直且平分.
∴AB=2√A2-(1
A)2=√3r.
2
°连接AO2,BO2,由题意知☉O1与☉O2是等圆,所以△AO1O2与△BO1O2都为等边三角形.
所以∠AO1O2=∠BO1O2=60°,即∠AO1B=120°.
7.分析根据题意,羊的活动区域应是以O为圆心,以2 m为半径的半圆及其内部.解如图,羊的活动区域是图中的阴影部分(包括半圆周).
8.证明∵OB,OC是☉O的半径,
∴OB=OC.
又∠B=∠C,∠BOE=∠COF,
∴△EOB≌△FOC(ASA).
∴OE=OF.∴CE=BF.
9.解连接OM,OD,OA,根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同
圆的半径相等,得a=b=c.
10.分析因为∠AOE是△COE的一个外角,且与∠C不相邻,
所以∠AOE=∠C+∠E.
∠AOE,即∠AOE=3∠C,所以只要证得∠E=2∠C即可.
现在要证明∠C=1
3
又由于OE为半径,而连接OD后OD也是半径,故OE=OD,所以∠ODE=∠E,从而可证结论成立.
证明如图,连接OD.
因为CD=OA=OD,
所以∠C=∠COD.
又OD=OE,
所以∠OED=∠ODE.
∠AOE.
所以∠AOE=∠C+∠OED=∠C+∠ODE=∠C+∠COD+∠C=3∠C,即∠C=1
3
创新应用
11.解因为☉O的半径为4,点A',B'分别是点A,B关于☉O的反演点,点B在☉O 上,OA=8,所以OA'·OA=16,解得OA'=2.同理可知,OB'=4,所以点B的反演点B'与B重合.设OA交☉O于点M,连接B'M,因为∠BOA=60°,OM=OB',所以△OB'M为
等边三角形,又OA'=A'M=2,所以A'B'⊥OM,所以在Rt△OB'A'中,根据勾股定理,得OB'2=OA'2+A'B'2,即16=4+A'B'2,解得A'B'=2√3.。

相关文档
最新文档