新人教版八年级数学下册《十六章 二次根式 小结 习题训练》研讨课教案_7
(完整版)新人教版八年级数学下册第16章二次根式教案
课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
精编新人教版八年级数学下册第十六章二次根式全单元教案含复习教案(7课时)
16.1 二次根式第1课时二次根式的概念1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点)2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点)一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.问题2:上面得到的式子3,S,65,h5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x(x≤3);(7)-x(x≥0);(8)(a-1)2;(9)-x2-5;(10)(a-b)2(ab≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】根据二次根式有意义求字母的取值范围求使下列式子有意义的x的取值范围.(1)14-3x;(2)3-xx-2;(3)x+5x.解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x有意义;(2)由题意得⎩⎪⎨⎪⎧3-x ≥0,x -2≠0,解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-x x -2有意义; (3)由题意得⎩⎪⎨⎪⎧x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x有意义. 方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】 利用二次根式的非负性求解(1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x 的平方根.解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根.解:(1)根据题意得⎩⎪⎨⎪⎧2a +8=0,b -3=0,解得⎩⎪⎨⎪⎧a =-4,b = 3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)根据题意得⎩⎪⎨⎪⎧x -3≥0,3-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x 的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题先观察下列等式,再回答下列问题.①1+112+122=1+11-11+1=112; ②1+122+132=1+12-12+1=116; ③1+132+142=1+13-13+1=1112. (1)请你根据上面三个等式提供的信息,写出1+142+152的结果;(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120; (2)1+1n 2+1(n +1)2=1+1n -1n +1=11n (n +1)(n 为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.三、板书设计1.二次根式的定义 一般地,我们把形如a (a ≥0)的式子叫做二次根式.2.二次根式有意义的条件被开方数(式)为非负数;a 有意义⇔a ≥0.通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.第2课时 二次根式的性质1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;(重点)2.了解并掌握二次根式的性质,会运用其进行有关计算.(重点,难点)一、情境导入a2等于什么?我们不妨取a的一些值,如2,-2,3,-3,…分别计算出对应的a2的值,看看有什么规律.22=4=2;(-2)2=4=2;32=9=3;(-3)2=9=3;…你能概括一下a2的值吗?二、合作探究探究点一:二次根式的性质【类型一】化简:(1)(5)2;(2)52;(3)(-5)2;(4)(-5)2.解析:根据二次根式的性质进行计算即可.解:(1)(5)2=5;(2)52=5;(3)(-5)2=5;(4)(-5)2=5.方法总结:利用a2=|a|进行计算与化简,幂的运算法则仍然适用,同时要注意二次根式的被开方数要为非负数.【类型二】在实数范围内分解因式.(1)a2-13;(2)4a2-5;(3)x4-4x2+4.解析:由于任意一个非负数都可以写成一个数的平方的形式,利用这个即可将以上几个式子在实数范围内分解因式.解:(1)a2-13=a2-(13)2=(a+13)(a-13);(2)4a2-5=(2a)2-(5)2=(2a+5)(2a-5);(3)x4-4x2+4=(x2-2)2=[(x+2)(x-2)]2=(x+2)2(x-2)2.方法总结:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.这就需要把一个非负数表示成平方的形式.探究点二:二次根式性质的综合应用【类型一】结合数轴利用二次根式的性质求值或化简已知实数a,b在数轴上的位置如图所示,化简:(a+1)2+2(b-1)2-|a-b|.解析:根据数轴确定a和b的取值范围,进而确定a+1、b-1和a-b的取值范围,再根据二次根式的性质和绝对值的意义化简求解.解:从数轴上a,b的位置关系可知-2<a<-1,1<b<2,且b>a,故a+1<0,b-1>0,a-b<0.原式=|a+1|+2|b-1|-|a -b|=-(a+1)+2(b-1)+(a-b)=b-3.方法总结:结合数轴利用二次根式的性质求值或化简,解题的关键是根据数轴判断字母的取值范围和熟练运用二次根式的性质.【类型二】二次根式的化简与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c>a,b+a>c.根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号合并即可.解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b +a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.方法总结:解答本题的关键是根据三角形的三边关系得出不等关系,再进行变换后,结合二次根式的性质进行化简.【类型三】利用分类讨论的思想对二次根式进行化简已知x为实数时,化简x2-2x+1+x2.解析:根据a2=|a|,结合绝对值的性质,将x的取值范围分段进行讨论解答.解:x2-2x+1+x2=(x-1)2+x2=|x-1|+|x|.当x≤0时,x-1<0,原式=1-x+(-x)=1-2x;当0<x≤1时,x -1≤0,原式=1-x+x=1;当x>1时,x-1>0,原式=x-1+x=2x-1.方法总结:利用二次根式的性质进行化简时,要结合具体问题,先确定出被开方数的正负,对于式子a2=|a|,当a的符号无法判断时,就需要分类讨论,分类时要做到不重不漏.【类型四】二次根式的规律探究性问题细心观察,认真分析下列各式,然后解答问题.(1)2+1=2,S1=1 2,(2)2+1=3,S2=2 2,(3)2+1=4,S3=3 2.(1)请用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解析:利用直角三角形的面积公式,观察上述结论,会发现第n 个三角形的一直角边长就是n,另一条直角边长为1,然后利用面积公式可得.解:(1)(n)2+1=n+1,S n=n2(n是正整数);(2)∵OA1=1,OA2=2,OA3=3,…∴OA10=10;(3)S 21+S 22+S 23+…+S 210=⎝ ⎛⎭⎪⎪⎫122+⎝ ⎛⎭⎪⎪⎫222+⎝ ⎛⎭⎪⎪⎫322+…+⎝ ⎛⎭⎪⎪⎫1022=14(1+2+3+…+10)=554. 方法总结:解题时通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想.探究点三:代数式的定义及简单应用按照下列程序计算,表格内应输出的代数式是____________.n →立方→+n →÷n →-n →答案解析:根据程序所给的运算,用代数式表示即可,根据程序所给的运算可得输出的代数式为n 3+n n-n .故答案为n 3+n n-n . 方法总结:根据实际问题列代数式的一般步骤:(1)认真审题,对语言或图形中所代表的意思进行仔细辨析;(2)分清语言和图形表述中各种数量的关系;(3)根据各数量间的运算关系及运算顺序写出代数式.三、板书设计1.二次根式的性质1:(a )2=a (a ≥0);2.二次根式的性质2:a 2=a (a ≥0).3.代数式的定义用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.新的教学理念要求教师在课堂教学中注意引导学生进行探究学习,在课堂教学中,对学生探索求知作出了引导,并且鼓励学生自由发言,但在师生互动方面做得还不够,小组间的合作不够融洽,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的学习和生活.16.2 二次根式的乘除第1课时二次根式的乘法1.掌握二次根式乘法法则和积的算术平方根的性质;(重点) 2.会用积的算术平方根的性质对二次根式进行化简.(难点)一、情境导入计算:(1)4×25与4×25;(2)16×9与16×9. 思考:对于2×3与2×3呢?从计算的结果我们发现2×3=2×3,这是什么道理呢? 二、合作探究探究点一:二次根式的乘法【类型一】 二次根式的乘法法则成立的条件式子x +1·2-x =(x +1)(2-x )成立的条件是( )A .x ≤2 B.x ≥-1 C .-1≤x ≤2 D.-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0,解得-1≤x ≤2.故选C.方法总结:运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0),必须注意被开方数均是非负数这一条件.【类型二】 二次根式的乘法运算 计算:(1)3×5;(2)14×64; (3)627×(-33);(4)3418ab ·⎝⎛⎭⎪⎪⎫-2a 6b 2a .解析:有理式的乘法运算律及乘法公式对二次根式同样适用,计算时注意最后结果要化为最简形式.解:(1)3×5=3×5=15; (2)14×64=14×64=16=4; (3)627×(-33)=-1827×3=-1881=-18×9=-162;(4)3418ab·⎝⎛⎭⎪⎪⎫-2a 6b 2a =-34·2a ·18ab ·6b 2a=-32a ·36×3b 3=-32a ·6b 3b =-9b a3b . 方法总结:在运算过程中要注意根号前的因数是带分数时,必须化成假分数,如果被开方数有能开得尽方的因数或因式,可先将二次根式化简后再相乘.探究点二:积的算术平方根的性质 化简:(1)(-36)×16×(-9); (2)362+482; (3)x 3+6x 2y +9xy 2.解析:主要运用公式ab =a ·b (a ≥0,b ≥0)和a 2=a (a ≥0)对二次根式进行化简.解:(1)(-36)×16×(-9)=36×16×9=62×42×32=62×42×32=6×4×3=72;(2)362+482=(12×3)2+(12×4)2=122×(32+42)=122×52=12×5=60;(3)x 3+6x 2y +9xy 2=x (x +3y )2=(x +3y )2·x =|x +3y|x.方法总结:利用积的算术平方根的性质可以对二次根式进行化简.探究点三:二次根式乘法的综合应用小明的爸爸做了一个长为588πcm,宽为48πcm的矩形木相框,还想做一个与它面积相等的圆形木相框,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据矩形的面积公式、圆的面积公式,构造等式进行计算.解:设圆的半径为r cm.因为矩形木相框的面积为588π×48π=168π(cm2),所以πr2=168π,r=242cm(r=-242舍去).答:这个圆的半径是242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想.三、板书设计1.二次根式的乘法法则:a·b=ab(a≥0,b≥0)2.积的算术平方根:ab=a·b(a≥0,b≥0)在教学安排上,体现由具体到抽象的认识过程.对于二次根式的乘法法则的推导,先利用几个二次根式的具体计算,归纳出二次根式的乘法运算法则.在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,这样安排有助于学生缜密思考和严谨表达,更有助于学生合作精神的培养.第2课时 二次根式的除法1.掌握二次根式的除法法则和商的算术平方根的性质,会运用其进行相关运算;(重点)2.能综合运用已学性质进行二次根式的化简与运算.(难点)一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法 【类型一】 二次根式的除法运算计算:(1)0.760.19;(2)-123÷554; (3)6a 2b2ab ;(4)5÷⎝⎛⎭⎪⎪⎫-5145. 解析:本题主要运用二次根式的除法法则来进行计算,若被开方数是分数,则被开方数相除时,可先用除以一个数等于乘这个数的倒数的方法进行计算,再进行约分.解:(1)0.760.19=0.760.19=4=2; (2)-123÷554=-123÷554=-53×545=-18=-32;(3)6a 2b 2ab=6a 2b2ab=3a ; (4)5÷⎝⎛⎭⎪⎪⎫-5145=-5÷595=-5×15×59=-15×53=-13.方法总结:利用二次根式的除法法则进行计算时,可以用“除以一个不为零的数等于乘这个数的倒数”进行约分化简.【类型二】 二次根式的乘除混合运算 计算:(1)945÷3212×32223;(2)a 2·ab ·bb a÷9b 2a.解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算. 解:(1)原式=9×13×32×45×25×83=183;(2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a .方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数.探究点二:商的算术平方根的性质【类型一】 利用商的算术平方根的性质确定字母的取值范围 若a2-a =a2-a,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎪⎨⎪⎧a ≥0,2-a >0,解得0≤a <2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式 化简:(1)179; (2)3c 34a 4b 2(a >0,b >0,c >0). 解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43;(2)3c34a4b2=3c34a4b2=c2a2b3c.方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.探究点三:最简二次根式在下列各式中,哪些是最简二次根式?哪些不是?并说明理由.(1)45;(2)13;(3)52;(4)0.5;(5)145.解析:根据满足最简二次根式的两个条件判断即可.解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式;(3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式;(5)145=95=355,被开方数中含有分母,因此它不是最简二次根式.方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.探究点四:二次根式除法的综合运用座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T=2πlg,其中T表示周期(单位:秒),l表示摆长(单位:米),g=9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T=2π0.59.8≈1.42,60T=601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.三、板书设计1.二次根式的除法运算2.商的算术平方根3.最简二次根式被开方数不含分母;被开方数中不含能开得尽方的因数或因式.在教学中应注重积和商的互相转换,让学生通过具体实例再结合积的算术平方根的性质,对比、归纳得到商的算术平方根的性质.在此过程中应给予适当的指导,可提出问题让学生有一定的探索方向.在设计课堂教学内容时,以提问的方式引出本节课要解决的问题,让学生自主探究,在探究过程中观察知识产生发展的全过程,从而让学生的学习情感和学习品质得到升华,学生的创新精神得到发展.16.3 二次根式的加减第1课时二次根式的加减1.会将二次根式化为最简二次根式,掌握二次根式加减法的运算;(重点)2.熟练进行二次根式的加减运算,并运用其解决问题.(难点)一、情境导入小明家的客厅是长7.5m,宽5m的长方形,他要在客厅中截出两个面积分别为8m2和18m2的正方形铺不同颜色的地砖,问能否截出?二、合作探究探究点一:被开方数相同的最简二次根式已知最简二次根式2a+b与a+b3a-4能够合并同类项,求a+b的值.解析:利用最简二次根式的概念求出a,b的值,再代入a+b求解即可.解:∵最简二次根式2a+b与a+b3a-4能够合并同类项,∴a+b=2,2a+b=3a-4,解得a=3,b=-1,∴a+b=3+(-1)=2.方法总结:根据同类二次根式的概念求待定字母的值时,应该根据同类二次根式的概念建立方程或方程组求解.探究点二:二次根式的加减【类型一】二次根式的加减运算计算:12-13-(2)2+|2-3|.解析:二次根式的加减运算应先化简,再合并同类二次根式.解:原式=23-33-2+2-3=⎝⎛⎭⎪⎫2-13-13=233.方法总结:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并时系数相加减,根式不变.【类型二】 二次根式的化简求值先化简,再求值:a 2-b 2a ÷⎝ ⎛⎭⎪⎫a -2ab -b 2a ,其中a =2+3,b =2- 3.解析:先将原式化为最简形式,再将a 与b 的值代入计算即可求出.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a=(a +b )(a -b )a ·a (a -b )2=a +b a -b.当a =2+3,b =2-3时,原式=2+3+2-32+3-2+3=423=233. 方法总结:化简求值时一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.【类型三】 二次根式加减运算在实际生活中的应用母亲节快到了,为了表示对妈妈的感恩,小号同学特地做了两张大小不同的正方形的壁画送给妈妈,其中一张面积为800cm 2,另一张面积为450cm 2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2m 长的金色细彩带,请你帮他算一算,他的金色细彩带够用吗?如果不够,还需买多长的金色细彩带(2≈1.414,结果保留整数)?解析:先求出每张正方形壁画的边长,再根据正方形的周长公式求所需金色细彩带的长.解:镶壁画所用的金色细彩带的长为:4×(800+450)=4×(202+152)=1402≈197.96(cm).因为 1.2m=120cm<197.96cm,所以小号的金色细彩带不够用.197.96-120=77.96≈78(cm),即还需买78cm的金色细彩带.方法总结:利用二次根式来解决生活中的问题,应认真分析题意,注意计算的正确性与结果的要求.三、板书设计1.被开方数相同的最简二次根式2.二次根式的加减一般地,二次根式加减时,可以先将二次根式化简成最简二次根式,再将被开方数相同的二次根式进行合并.在授课过程中,要以学生为主体,进行探究性学习,让学生自己发现规律,得出结论.在例题的选择上可由简到难,符合学生的认知规律,便于学生掌握知识.在得到定义、法则的过程中,让学生经历发现、思考、探究的过程,体会学习知识的成功与快乐.第2课时二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗?二、合作探究探究点一:二次根式的混合运算【类型一】二次根式的四则运算计算: (1)12223×9145÷35; (2)⎝ ⎛⎭⎪⎪⎫312-213+48÷23+⎝ ⎛⎭⎪⎪⎫132; (3)2-(3+2)÷ 3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2; (2)原式=⎝ ⎛⎭⎪⎪⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233. 方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2);(3)⎝ ⎛⎭⎪⎪⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝ ⎛⎭⎪⎪⎫6-66-326×(-26)=-236×(-26)=8.方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎪⎨⎪⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-4 6B .2C .2 5D .20解析:∵3>2,∴3※2=3- 2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1+52n -⎝ ⎛⎭⎪⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1+52n -⎝ ⎛⎭⎪⎪⎫1-52n =15[1+52-1-52]=15×5=1; 第2个数,当n =2时,15⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1+52n -⎝ ⎛⎭⎪⎪⎫1-52n =15⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1+522-⎝ ⎛⎭⎪⎪⎫1-522=15⎝ ⎛⎭⎪⎪⎫1+52+1-52⎝ ⎛⎭⎪⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.第十六章二次根式教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例6分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2 B.a≥2 C.a≠2 D.a<2A.x+2 B.-x-2 C.-x+2 D.x-2A.2x B.2a C.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:。
八年级数学下册第十六章二次根式小结与复习教案(新版)新人教版【精品教案】
第十六章二次根式小结与复习【授课目的】1. 使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混杂运算.【授课重难点】重点:含二次根式的式子的混杂运算难点:含二次根式的式子的混杂运算.【导学过程】【知识回顾】本章知识结构看法:当时, a才有意义。
a (),即是一个数。
0 a 0 a二次根式的意义性质a 2 ()a 0a 2 (a)二次根式1、二次根式的乘法:;2、二次根式的除法:二次根式的运算3、二次根式的加减:将二次根式化为后,把的根式(同类二次根式)进行。
4、二次根式的混杂运算及实责问题中根式的计算。
【经典例题】例 1 ( 1)使 4 x 1 有意义的x的取值范围是;(2)函数y 3 x 中,自变量的取值范围是;x 1(3)使 3 - x x 3 有意义的 x 的取值范围是;(4)使x 2 有意义的 x 的取值范围是;3x例 2 ( 1)已知 a 2 | b 1 | 0 ,那么 a b 2012的值为;(2)已知 m、 n 为实数,且满足m n 2 9 9 n2 4,求 6m-3n 的值?n 3例 3 计算:( 1)123;(3 48 2 27) 3;( 2)1(3)8 ( 2 1) ;( 4)3(3 020 15 2011;2)(1)522m 1 m 1例 4 化简,求值:m( m 1 ),其中 m = 3 .m 2 1 m 1【复习小结】1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件 ( 或题中的隐含条件 ) ,即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,必然要注意论述每一个性质中字母的取值范围的条件.4.经过例题的谈论,要学会综合、灵便运用二次根式的意义、基本性质和法规以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.【随堂练习】复习题 16第1、2、3、6题.2。
新人教版八年级数学下册《十六章 二次根式 小结 构建知识体系》教案_7
第十六章二次根式章末复习一、复习导入1.导入课题同学们学习完“二次根式”这章内容后,你有哪些收获,还存在哪些困惑?这节课我们一起来对本章学过的知识进行复习和巩固.2.复习目标(1)通过复习理清本章的知识结构和重要知识点.(2)总结本章的重要思想方法和技能技巧.3.复习重、难点重点:二次根式的性质和运算.难点:整式的运算性质及公式在二次根式运算中的灵活运用.1.复习指导(1)复习内容:教材P1到P20.(2)复习时间:8分钟.(3)复习要求:通过看课本和学习笔记复习和回顾本章的重要知识点,总结学过的解题技巧,记录易混易错点.(4)复习参考提纲:a 的式子叫做二次根式.)0②最简二次根式:满足条件①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.③二次根式的性质:④二次根式的运算:a.二次根式的加减:二次根式加减时,先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.b.二次根式的乘除:0)0,a b =≥≥ .)0,0a b =≥>. c.二次根式的混合运算:先算乘方(或开方),再算乘除,最后算加减,有括号时先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算.2.自主复习:学生可参考复习参考提纲进行自学.3.互助复习(1)师助生:①明了学情:了解学生复习中的不到之处及易混淆的地方在哪里.②差异指导:指导学生梳理知识要点方法和运算法则的顺、逆运用技巧.(2)生助生:相互交流,帮助矫正错误,展示复习成果.4.强化(12的成立条件及化简结果存在的差异.(2)本章的运算法则.(3)重要概念:最简二次根式.(4)强调本章的数学思想方法.5.例题讲解【例1】已知式子求 的值例2 ()()().283;27232;531a【例3】计算【例4】计算:. ;73241-)(;b a 22+)(a .40323)(0)y >例5已知a,b,c 为△ABC 的三边长,6. 课堂小结7. 作业:教学反思.本节课是复习课,首先帮助学生构建知识框图,其作用在于进行知识梳理,目的是让学生更好地回顾本章的知识点,理解本章的知识体系然后精选部分例题,让学生感受转化思想、整体思想、类比思想、分类讨论思想在本章节中的综合运用,使学生对本章的知识点不光停留在掌握上,更能综合灵活运用.。
人教版数学八年级下册教学设计:第16章二次根式小结复习(二)
人教版数学八年级下册教学设计:第16章二次根式小结复习(二)一. 教材分析人教版数学八年级下册第16章二次根式小结复习(二)的内容主要包括:二次根式的性质、运算规则、化简方法以及应用。
本章是学生在学习了二次根式的基本概念和性质后,进一步深化对二次根式的理解和运用的过程。
通过对本章内容的复习,使学生能够巩固和提高二次根式的运算能力,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了二次根式的基本概念、性质和运算规则,具备了一定的运算能力和解决问题的能力。
但部分学生对二次根式的化简方法和应用仍存在一定的困难,需要通过本节课的复习和训练来进一步提高。
三. 教学目标1.理解二次根式的性质和运算规则,提高运算能力。
2.学会二次根式的化简方法,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.二次根式的性质和运算规则。
2.二次根式的化简方法。
3.二次根式在实际问题中的应用。
五. 教学方法采用讲练结合、分组讨论、案例分析等教学方法,引导学生主动探究,培养学生的运算能力、解决问题的能力和团队协作能力。
六. 教学准备1.教学PPT。
2.相关练习题。
3.案例分析材料。
七. 教学过程1.导入(5分钟)通过复习二次根式的基本概念和性质,引导学生回忆起已学的知识,为新课的学习做好铺垫。
2.呈现(10分钟)讲解二次根式的运算规则,并通过例题展示运算过程,让学生理解并掌握运算方法。
3.操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时发现和纠正学生的错误。
4.巩固(10分钟)分组讨论PPT上的练习题,让学生互相交流解题思路,提高团队协作能力。
5.拓展(10分钟)给出一个实际问题,让学生运用二次根式的知识解决,培养学生的解决问题的能力。
6.小结(5分钟)总结本节课所学内容,强调二次根式的性质、运算规则和化简方法。
7.家庭作业(5分钟)布置适量的课后练习题,巩固所学知识。
人教版八年级下册第十六章二次根式小结与复习教学设计
2.知识梳理:对本章的知识点进行梳理,包括二次根式的定义、性质、运算方法等。
3.例题讲解:精选典型例题,讲解解题思路,引导学生掌握解题方法。
4.课堂练习:设计不同难度的练习题,让学生在课堂上进行巩固练习。
5.小组讨论:分组讨论,让学生在交流中碰撞思维火花,共同解决问题。
(2)设计由浅入深的阶梯式练习题,让学生在逐级挑战中掌握化简和运算方法。
(3)运用信息技术,如多媒体课件、网络资源等,提供丰富的学习材料,增强学生的学习兴趣。
2.针对难点内容的教学设想:
(1)采用分组合作学习的方式,让学生在小组内共同解决混合运算问题,通过讨论和交流,互相启发,共同提高。
(2)通过典型例题的剖析,引导学生发现判断最简二次根式的规律,培养学生分析和解决问题的能力。
难点解析:混合运算涉及多个知识点,需要学生具备较强的逻辑思维和运算能力。最简二次根式的判断要求学生对二次根式的性质有深入理解。实际问题中的应用则需要学生能够将理论知识与实际情境有效结合,这是学生学习的较高层次要求。
(二)教学设想
1.针对重点内容的教学设想:
(1)通过直观的图形和实际例子的引入,帮助学生形象理解二次根式的定义和性质。
此外,学生在学习过程中容易出现以下问题:1.对二次根式的定义理解不透彻,导致在解题时出现混淆;2.运算过程中忽视细节,如符号、分母等,导致答案错误;3.在实际问题中,不能灵活运用二次根式解决。
针对以上学情,教师应采取以下措施:1.加强基础知识的巩固,让学生熟练掌握二次根式的运算习惯;3.结合生活实际,设计丰富的教学活动,激发学生学习兴趣,提高学生的应用能力。通过这些措施,使学生在二次根式的学习过程中,既能巩固知识,又能提高能力,实现全面发展。
新人教版八年级数学下册《十六章 二次根式 小结 习题训练》教案_6
二次根式复习课教学设计本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).(3)掌握•=(a≥0,b≥0),=•;=(a≥0,b>0),=(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.二次根式复习课教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.。
八年级数学下册 第十六章 二次根式本章小结学案 (新版)新人教版-(新版)新人教版初中八年级下册数学
第十六章二次根式本章小结学习目标1.掌握二次根式有意义的条件和基本性质(√a)2=a(a≥0).(重点)2.能用二次根式的性质√a2=|a|来化简根式.(难点)3.能识别最简二次根式、同类二次根式.(重点)4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.(难点)学习过程一、梳理知识1.二次根式:一般地,我们把形如的式子叫做二次根式.2.最简二次根式:满足下面两个条件的二次根式是最简二次根式:(1)被开方数中不含分母;(2)被开方数中不含开方开的尽的因数或因式.3.二次根式的性质(1)二次根式√a(a≥0)是一个数.(2)(√a)2=(a≥0).(3)√a2=|a|={(a>0) (a=0) (a<0)4.二次根式的乘除:(1)乘法法则:√a·√a=(a≥0,b≥0).(2)除法法则:√a√a=(a≥0,b>0).5.二次根式的加减:先把各个二次根式化成,再把相同的二次根式进行合并.6.二次根式的混合运算的顺序与运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).二、归纳考点考点一、二次根式概念与性质【例1】二次根式√-2a+4有意义,则实数x的取值X围是()A.x ≥-2B.x>-2C.x<2D.x ≤2【跟踪练习】1.若代数式√3a -1有意义,则x 的取值X 围是() A.x<13 B.x ≤13C.x>13D.x ≥132.代数式√a +1a -1有意义,则x 的取值X 围是()A.x ≥-1且x ≠1B.x ≠1C.x ≥1且x ≠-1D.x ≥-13.在式子1a -2,1a -3,√a -2,√a -3中,x 可以取2和3的是() A.1a -2B.1a -3C.√a -2D.√a -3考点二、二次根式的运算【例2】 如果ab>0,a+b<0,那么下面各式:①√aa =√a √a,②√a a ·√a a =1,③√aa ÷√aa =-b ,其中正确的是()A.①②B.②③C.①③D.①②③【跟踪练习】 1.下列计算正确的是() A.√4−√2=√2B.√202=√10C.√2·√3=√6D.√(-3)2=-3 2.下列计算错误..的是() A.√2+√3=√6B.√2·√3=√6C.√12÷√3=2D.√8=2√2 3.计算:√27−√3=. 考点三、二次根式混合运算【例3】计算:√24×√13-4×√18×(1-√2)0【跟踪练习】1.下列运算中错误的是() A.√2+√3=√5B.√2×√3=√6C.√8×√2=2D.(-√3)2=32.已知x 1=√6+√5,x 2=√6−√5,则a 12+a 22=.考点四、二次根式运算中的技巧 【例4】若y=√a -4+√4-a 2-2,则(x+y )y=.【跟踪练习】1.若(m-1)2+√a +2=0,则m+n 的值是() A.-1B.0C.1D.22.已知实数x ,y 满足√a -1+|y+3|=0,则x+y 的值为() A.-2B.2C.4D.-4考点五、估算大小【例5】a ,b 是两个连续整数,若a<√7<b ,则a ,b 分别是 ()A.2,3B.3,2C.3,4D.6,8【跟踪练习】若a<√13<b ,且a ,b 为连续正整数,则b 2-a 2=. 三、达标检测 (一)选择题1.下列二次根式:√5,√13,√0.5a ,-2√a 2a ,√a 2+a 2中,是最简二次根式的有() A.2个B.3个C.4个D.5个2.若√a 2=-a 成立,那么a 的取值X 围是() A.a ≤0B.a ≥0C.a<0D.a>03.无论x 取任何实数,代数式√a 2-6a +a 都有意义,则m 的取值X 围是() A.m ≥6 B.m ≥8 C.m ≥9 D.m ≥124.已知a=√5-2,b=√5+2,则√a 2+a 2+7的值为()A.5B.6C.3D.45.已知x+y=-5,xy=3,则x √a a +y √aa 的结果是 ()A.2√3B.-2√3C.3√2D.-3√26.等式√3a -1a -2=√3a -1√a -2成立的条件是() A.x>13B.x ≥13C.x>2D.13≤x<27.计算:6√7×13√21÷2√3的结果是() A.-4 B.-2√3 C.40 D.7(二)填空题8.如果√(2a -1)2=2a-1,则a 的取值X 围是.9.计算:(√24+√16)×√6=. 10.计算(4+√7)(4-√7)的结果等于.11.已知x=12(√7+√5),y=12(√7−√5),则x 2-xy+y 2=.(三)计算题12.计算:(1)√8-2√12;(2)(3√2-2)2;(3)√20+√125√5+5;(4)(√32+√13)×√3-2√163.(四)解答题13.已知实数a ,b 在数轴上的对应点如图所示,化简√a 2+|a+b|+|√2-a|-√(a -√2)2.14.阅读下面材料,并解答后面的问题:√6+√5=√6-√5)(√6+√5)(√6-√5)=√6−√5;√5+2=√5-(√5+2)(√5-2)=√5-2; √4+√3=√4-√3)(√4+√3)(√4-√3)=√4−√3.(1)观察上面的等式,请直接写出√a +1+√a的结果;(2)计算(√a +1+√a )(√a +1−√a )=,此时称√a +1+√a 与√a +1−√a 互为有理化因式;(3)请利用上面的规律与解法计算:√2+1√3+√2√4+√3+…+√100+√99.参考答案一、梳理知识略二、归纳考点考点一、二次根式概念与性质 【例1】 D【跟踪练习】1.D 2.A 3.C 考点二、二次根式的运算 【例2】 B【跟踪练习】1.C 2.A 3.2√3 考点三、二次根式混合运算 【例3】 解:原式=32√2【跟踪练习】1.A 2.22考点四、二次根式运算中的技巧 【例4】 14【跟踪练习】1.A 2.A 考点五、估算大小 【例5】 A 【跟踪练习】7 三、达标检测1.A2.A3.C4.A5.B6.C7.D8.a ≥129.1310.911.51212.解:(1)原式=2√2−√2=√2;(2)原式=18-12√2+4=22-12√2; (3)原式=√5+√5√5+5=7+5=12;(4)原式=(4√2+√33)×√3−8√33=4√6+1-8√33.13.解:由数轴可知:a<b<0,∴a<0,a+b<0,∵√2>0,∴√2-a>0,b-√2<0, ∴原式=|a|-(a+b )+√2-a-|b-√2| =-a-a-b+√2-a+(b-√2) =-3a-b+√2+b-√2=-3a14.(1)√a +1−√a ;(2)1;(3)9。